REFINEMENTS OF THE FAN-TODD’S INEQUALITIES

K. K. CHONG*

Abstract

Reﬁnements to inequalities on inner product spaces are presented. In this respect, inequalities dealt with in this paper are: Cauchy’s inequality, Bessel’s inequality, Fan-Todd’s inequality and Fan-Todd’s determinantal inequality. In each case, a strictly increasing function is put forward, which lies between the smaller and the larger quantities of each inequality. As a result, an improved condition for equality of the Fan-Todd’s determinantal inequality is deduced.

Keywords Cauchy’s inequality, Bessel’s inequality, Fan-Todd’s inequality, Fan-Todd’s determinantal inequality, Reﬁnements of inequalities

2000 MR Subject Classiﬁcation Primary 26D15
Chinese Library Classiﬁcation O174.1 Document Code A
Article ID 0252-9599(2002)01-0075-10

§1. Introduction

In recent years, reﬁnements or interpolations have played an important role on several types of inequalities with new results deduced as a consequence. Please refer to the papers [2, 8, 9, 12], etc. The aim of this paper is to furnish reﬁnements of the Cauchy’s and Bessel’s inequalities as shown in Section 2, and also reﬁnements of the Fan-Todd’s inequality and the Fan-Todd’s determinantal inequality in Sections 3 and 4, with an improved condition for equality derived.

First of all, we give some basic terms and deﬁnitions. An inner product space on a complex vector space X is a function that associates a complex number $\langle u, v \rangle$ with each pair of vectors u and v in X, in such a way that the following axioms are satisﬁed for all vectors u, v and w in X and all scalars λ:

1. $\langle u, v \rangle = \langle v, u \rangle$;
2. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$;
3. $\lambda \langle u, v \rangle = \langle u, \lambda v \rangle$;
4. $\langle v, v \rangle \geq 0$ and $\langle v, v \rangle = 0$ if and only if $v = 0$.

Here, $\overline{\langle v, u \rangle}$ denotes the complex conjugate of $\langle v, u \rangle$. A complex vector space with an inner product is called a complex inner product space. Let $\|u\| = \sqrt{\langle u, u \rangle}$ denote the norm of u. The content of the paper will be organized as follows: In Section 2, reﬁnements of the

*Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China.
E-mail: makkchon@inet.polyu.edu.hk
Cauchy’s and Bessel’s inequalities will be presented. In Section 3, refinements of the Fan-Todd’s inequality will be put forward. Finally, in Section 4, refinements of the Fan-Todd’s determinantal inequality will be presented, with the condition for equality improved.

§2. Refinements of the Cauchy’s Inequality

The well-known Cauchy’s inequality states as follows:

Theorem 2.1. For any two vectors a and b in an inner product space X, we have

$$|(a, b)| \leq \|a\|\|b\|.$$ \hspace{1cm} (2.1)

The equality holds if and only if a and b are linearly dependent.

We can have a refinement of the Cauchy’s inequality as follows:

Theorem 2.2. Let a and b be two non-zero vectors in an inner product space (real or complex) X, such that $|(a, b)| < \|a\|\|b\|$.

For any $t \in [0, 1]$, we define

$$a_t = [(1 - t)(a, b)b]/\|b\|^2 + ta$$ \hspace{1cm} (2.2)

and

$$F(t) = \|a_t\|.$$ \hspace{1cm} (2.3)

Then we have

(1) $\|a_t\| < \|a\|$ for $t \in [0, 1)$ and $|(a, b)| < \|a_t\|\|b\|$ for $t \in (0, 1]$;

(2) For $0 \leq s < t \leq 1$, we have $F(s) < F(t)$;

(3) $F(t)$ is a strictly increasing function for $t \in [0, 1]$, with $F(0) = |(a, b)|/\|b\|$ and $F(1) = \|a\|$ i.e. we have the refinement $|(a, b)|/\|b\| < F(t) < \|a\|$ for $t \in (0, 1)$.

Proof. (1) For $t \in [0, 1)$, by (2.2), we have

$$\|a_t\| = \|[1 - t](a, b)b]/\|b\|^2 + ta\|$$ \hspace{1cm} (2.4)

$$\leq \|[1 - t]|(a, b)|/\|b\| + t\|a\| < \|a\|.$$ \hspace{1cm} (2.5)

Hence, $\|a_t\| < \|a\|$ for $t \in [0, 1)$.

For $t \in (0, 1]$,

$$\langle a_t, b \rangle = (1 - t)(a, b) + t(a, b) = \langle a, b \rangle.$$ \hspace{1cm} (2.6)

As $|(a, b)| < \|a_t\|\|b\|$ for $t \neq 0$, we have $|(a, b)| < \|a_t\|\|b\|$ for $t \in (0, 1]$. The proof of part (1) is complete.

(2) Suppose $0 < s < t < 1$. We have to set up the following identity first,

$$a_s = [(1 - s/t)(a, b)b]/\|b\|^2 + (s/t)a_t.$$ \hspace{1cm} (2.7)

The last equation can be verified as follows:

$$[(1 - s/t)(a, b)b]/\|b\|^2 + (s/t)a_t$$

$$= (1 - s/t)(a, b)b]/\|b\|^2 + s/t[(1 - t)(a, b)b]/\|b\|^2 + ta]$$

$$= [(1 - s/t) + s/t(1 - t)](a, b)b]/\|b\|^2 + sa$$

$$= [(1 - s)(a, b)b]/\|b\|^2 + sa = a_s.$$ \hspace{1cm} (2.8)

By (2.7) and part (1), we have $\|a_s\| < \|a_t\|$. Hence we have $F(s) < F(t)$ for $s < t$. The case for $s = 0$ and $t = 1$ can be shown easily. Hence the proof of part (2) is complete.

(3) From part (2), we have immediately the result that $F(t)$ is a strictly increasing function for $t \in [0, 1]$. Obviously, $F(0) = |(a, b)|/\|b\|$ and $F(1) = \|a\|$.
Remark 2.1. As the ℓ_2 and L_2 spaces are inner product spaces, the above refinements can be applied to the Hölder’s inequalities in ℓ_2 and L_2 spaces respectively.

In analysis (please refer to [5]), Bessel’s inequality states as follows:

Theorem 2.3. Let X be an inner product space (real or complex) and $a \in X$. Let e_1, e_2, \cdots, e_n be any finite collection of distinct elements of an orthonormal set S in X. Then

$$\sum_{i=1}^{n} |\langle a, e_i \rangle|^2 \leq \|a\|^2. \quad (2.9)$$

A refinement of the Bessel’s inequality can be presented as follows:

Theorem 2.4. Let X be an inner product space (real or complex) and a be a nonzero vector in X. Let $\{e_1, e_2, \cdots, e_n\}$ be an orthonormal set in X, such that

$$\sum_{i=1}^{n} |\langle a, e_i \rangle|^2 < \|a\|^2 \quad (2.10)$$

and $\langle a, e_i \rangle$ are not all zero. Let

$$p = \langle a, e_1 \rangle e_1 + \cdots + \langle a, e_n \rangle e_n. \quad (2.11)$$

For any real number $t \in [0, 1]$, we define

$$a_t = [(1 - t)\langle a, p \rangle] / \|p\|^2 + ta \quad (2.12)$$

and

$$F(t) = \|a_t\|. \quad (2.13)$$

Then we have the following:

1. $\|a_t\| < \|a\|$ for $t \in (0, 1)$, and $\|p\|^2 = \sum_{i=1}^{n} |\langle a, e_i \rangle|^2 < \|a_t\|^2$ for $t \in (0, 1]$;
2. $F(s) < F(t)$ for $0 \leq s < t \leq 1$;
3. $F(t)$ is a strictly increasing function for $t \in [0, 1]$ with $F(0) = \sqrt{\sum_{i=1}^{n} |\langle a, e_i \rangle|^2}$ and $F(1) = \|a\|$, i.e. we have the refinement $\|p\| < F(t) < \|a\|$ for $t \in (0, 1)$.

Proof. (1)

$$\|\langle a, p \rangle\| = |\langle a, \langle a, e_1 \rangle e_1 + \cdots + \langle a, e_n \rangle e_n \rangle|$$

$$= |\langle a, e_1 \rangle \langle a, e_1 \rangle + \cdots + \langle a, e_n \rangle \langle a, e_n \rangle|$$

$$= \sum_{i=1}^{n} |\langle a, e_i \rangle|^2$$

$$= \langle p, p \rangle = \|p\|^2. \quad (2.14)$$

Hence we have $|\langle a, p \rangle| < \|a\| \|p\|$. By Theorem 2.2(1), we have

$$|\langle a, p \rangle| = \|p\|^2 < \|a_t\| \|p\|. \quad (2.15)$$

The last inequality implies that $\|p\|^2 < \|a_t\|^2$.

The remaining parts of the proof are similar to the proof of Theorem 2.2 with b replaced by p, and the proof is omitted here.

§3. **Refinements of the Fan-Todd’s Inequality**

A. M. Ostrowski presented the following result (please refer to [4] or [5]):
Theorem 3.1. Let \(a = (a_1, \cdots, a_n) \) and \(b = (b_1, \cdots, b_n) \) be two sequences of non-proportional real numbers such that \(\sum_{i=1}^{n} a_i x_i = 0 \), and \(\sum_{i=1}^{n} b_i x_i = 1 \).

Let \(A = \sum_{i=1}^{n} a_i^2 \), \(B = \sum_{i=1}^{n} b_i^2 \), \(C = \sum_{i=1}^{n} a_i b_i \). Then we have \(\sum_{i=1}^{n} a_i^2 \geq \frac{A}{AB-C^2} \) with equality if and only if \(x_i = \frac{Ab_i - Cb_j}{Ab - C} \), \(1 \leq i \leq n \).

Fan and Todd in [4] presented the following theorem:

Theorem 3.2. Let \(a = (a_1, \cdots, a_n) \) and \(b = (b_1, \cdots, b_n) \) with \(n \geq 2 \) be two sequences of real numbers such that \(a_i b_j \neq a_j b_i \) for \(i \neq j \). Then

\[
\frac{\sum_{i=1}^{n} a_i^2}{\left(\sum_{i=1}^{n} a_i^2 \right) \left(\sum_{i=1}^{n} b_i^2 \right) - \sum_{i=1}^{n} a_i b_i^2} \leq \left(\frac{n}{2} \right)^{-2} \sum_{i=1}^{n} \left(\sum_{j=1 \atop j \neq i}^{n} \alpha a_j b_i - a_i b_j \right)^2.
\] (3.1)

Here, \(\binom{n}{2} \) denotes the number of combinations of \(n \) distinct objects chosen 2 at a time.

M. Bjelica in [6, pp.445–448] put forward the following refinement of Fan-Todd’s inequality:

Theorem 3.3. Let \(a = (a_1, \cdots, a_n) \) and \(b = (b_1, \cdots, b_n) \) with \(n \geq 2 \) be two sequences of real numbers such that \(a_i b_j \neq a_j b_i \) for \(i \neq j \). If \(|\alpha| \leq 1 \), then

\[
\frac{A}{AB-C^2} \leq \left(\frac{n}{2} \right)^{-2} \sum_{i=1}^{n} \left[\sum_{j=1 \atop j \neq i}^{n} \alpha a_j b_i - a_i b_j \right] + (1 - \alpha) \frac{Ab_i - C a_i}{AB-C^2} \]

\[
\leq \left(\frac{n}{2} \right)^{-2} \sum_{i=1}^{n} \left(\sum_{j=1 \atop j \neq i}^{n} a_j b_i - a_i b_j \right)^2.
\] (3.2)

Z. M. Mitrovic in [7] established the following theorem:

Theorem 3.4. Let \(a \) and \(b \) be two linearly independent vectors in a complex inner product space \(V \) and let \(x \) be a vector in \(V \) such that \((x, a) = \alpha \) and \((x, b) = \beta \). Then

\[
G(a, b) ||x||^2 \geq ||\alpha b - \beta a||^2
\] (3.3)

with equality if and only if \(x = \frac{a, \beta a - \alpha b - (b, \beta a - \alpha b) a}{G(a,b)} \), where \(G(a,b) \) denotes the Gram determinant of vectors \(a \) and \(b \), i.e.

\[
G(a, b) = \left\| \frac{\langle a, a \rangle}{b, a} \right\| = \left\| \frac{\langle a, b \rangle}{b, b} \right\|.
\] (3.4)

The proofs of the above-mentioned four theorems can be found in [4–7]. It is natural to find some similar refinements for Theorem 3.4 in the complex inner product space. In fact, the following theorem is the answer to this problem.

Theorem 3.5. Let \(a \) and \(b \) be two linearly independent vectors in a complex inner product space \(V \) and let \(x \) be a vector in \(V \) such that \((x, a) = \alpha \) and \((x, b) = \beta \). Let

\[
y = \frac{\langle a, \beta a - \alpha b \rangle b - \langle b, \beta a - \alpha b \rangle a}{G(a,b)}.
\] (3.5)

Let \(\mathbb{D} = \{ t \in \mathbb{C} : |t| \leq 1 \} \) be the closed unit disk in the complex plane \(\mathbb{C} \). For any \(t \in \mathbb{D} \), we define

\[
F(t) = ||tx + (1-t)y||^2.
\]
Suppose \(x \neq y. \) Then \(F(t) \) depends only on the modulus of \(t \) and is a strictly increasing function of \(|t| \), with \(F(0) = \|y\|^2 \) and \(F(t) = \|x\|^2 \) for any \(t \in \partial \mathbb{D} \), the boundary of \(\mathbb{D} \), i.e. we have the refinement for \(t \in \mathbb{D} \):

\[
\|y\|^2 \leq F(t) \leq \|x\|^2.
\]

Proof. It is straightforward to verify that \(\langle y, a \rangle = \alpha \) and \(\langle y, b \rangle = \beta. \) In fact,

\[
G(a, b)\langle y, a \rangle = (a, \overline{ba} - \overline{va})\langle b, a \rangle - (b, \overline{ba} - \overline{va})\langle a, a \rangle
\]

\[
= |\beta||a|^2 - \alpha \|a\|^2| - \alpha \|b\|^2| + |\alpha||b|^2| - \alpha \|a\|^2| + \alpha \|b\|^2| - \alpha \|a\|^2| - |\alpha||b|^2|. \]

Hence, we have \(\langle y, a \rangle = \alpha. \) Also,

\[
G(a, b)\langle y, b \rangle = (a, \overline{ba} - \overline{va})\langle b, b \rangle - (b, \overline{ba} - \overline{va})\langle a, b \rangle
\]

\[
= |\beta||a|^2 - \alpha \|a\|^2| - \alpha \|b\|^2| + |\alpha||b|^2| - \alpha \|a\|^2| - |\alpha||b|^2|. \]

Hence, we have \(\langle y, b \rangle = \beta. \) As a result, we have

\[
\langle y, y \rangle = \frac{1}{G(a, b)}[(a, \overline{ba} - \overline{va})\langle b, y \rangle - (b, \overline{ba} - \overline{va})\langle a, y \rangle]\]

\[
= \|\overline{ba} - \overline{va}\|^2/G(a, b). \]

Similarly, we have

\[
\langle y, x \rangle = \|\overline{ba} - \overline{vb}\|^2/G(a, b) = \|y\|^2. \]

Hence

\[
\langle x, y \rangle = \overline{\langle y, x \rangle} = \|y\|^2. \]

\[
F(t) = \|tx + (1 - t)y\|^2 = \langle tx + (1 - t)y, tx + (1 - t)y \rangle
\]

\[
= t\|x\|^2 + t(1 - t)\langle x, y \rangle + (1 - t)\langle y, x \rangle + (1 - t)(1 - t)\|y\|^2
\]

\[
= t\|x\|^2 + (1 - t)\|y\|^2 = t\|x\|^2 + (1 - t)\|y\|^2 + \|y\|^2. \]

By Theorem 3.4 and \(x \neq y, \|x\|^2 - \|y\|^2 > 0. \) Hence, \(F(t) \) is a strictly increasing function of \(|t| \) on \(\mathbb{D} \), depending only on \(|t| \), with \(F(0) = \|y\|^2 \) and \(F(t) = \|x\|^2 \) for any \(t \in \partial \mathbb{D}. \)

§4. Refinement of the Fan-Todd’s Determinantal Inequality

In [4], Fan and Todd presented the following celebrated theorem:

Theorem 4.1. Let \(n \) and \(m \) be two integers such that \(2 \leq m \leq n \). Let \(a_i = \{a_{i1}, a_{i2}, \ldots, a_{in}\} \) be columns in the unitary \(n \)-space \(U^n \) such that every \(m \times m \) submatrix of the \(m \times n \) matrix

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\]

(4.1)

is nonsingular. Let \(G(a_1, a_2, \ldots, a_{m-1}) \) denote the Gram determinant of the \(m - 1 \) columns \(a_1, a_2, \ldots, a_{m-1}; \) and let \(G(a_1, a_2, \ldots, a_n) \) denote the Gram determinant of the \(m \) columns \(a_1, a_2, \ldots, a_m. \) Let \(M(j_1, j_2, \ldots, j_{m-1}) \) denote the determinant of order \(m - 1 \) formed by the first \(m - 1 \) rows of (4.1) and the columns of (4.1) with indices \(j_1, j_2, \ldots, j_{m-1} \) taken
in this order. Let \(N(j_1, j_2, \cdots , j_{m-1}, j_m) \) denote the determinant of order \(m \) formed by the columns of (4.1) with indices \(j_1, j_2, \cdots , j_{m-1}, j_m \) taken in this order. Then

\[
G(a_1, \cdots , a_{m-1}) \leq \left(\frac{n}{m} \right) ^{-2} \sum _{j_m=1}^{n} \left| \sum _{j_2<j_3<\cdots <j_{m-1}}^{} M(j_1, j_2, \cdots , j_{m-1}) \right| ^{2} . \tag{4.2}
\]

Here, the Gram determinant is given by

\[
G(a_1, a_2, \cdots , a_m) = \begin{vmatrix}
\langle a_1, a_1 \rangle & \langle a_1, a_2 \rangle & \cdots & \langle a_1, a_m \rangle \\
\langle a_2, a_1 \rangle & \langle a_2, a_2 \rangle & \cdots & \langle a_2, a_m \rangle \\
\vdots & \vdots & \ddots & \vdots \\
\langle a_m, a_1 \rangle & \langle a_m, a_2 \rangle & \cdots & \langle a_m, a_m \rangle
\end{vmatrix} . \tag{4.3}
\]

The proof of Theorem 4.1 can be found in [4]. In [1], Beesack presented the following theorem:

Theorem 4.2. Let \(a_1, a_2, \cdots , a_m (m \geq 1) \) be linearly independent vectors in a Hilbert space \(H \) and let \(\alpha_1, \alpha_2, \cdots , \alpha_m \) be given scalars. If \(x \in H \) satisfies

\[
\langle x, a_i \rangle = \alpha_i, \quad i = 1, 2, \cdots , m, \tag{4.4}
\]

then

\[
G^2 \| x \|^2 \geq \sum _{i=1}^{m} \gamma _i a_i^2 , \tag{4.5}
\]

where \(G = G(a_1, a_2, \cdots , a_m) \) is the Gram determinant of \(a_1, a_2, \cdots , a_m \), and \(\gamma _i \) is the determinant obtained from \(G \) by replacing the elements of the \(i \)-th row of \(G \) by \(\langle \alpha_1, \alpha_2, \cdots , \alpha_m \rangle \).

Moreover, equality holds in (4.5) if and only if \(Gx = \sum _{i=1}^{m} \gamma _i a_i \).

The proof of Theorem 4.2 can be found in [1].

Remark 4.1. The \(\gamma _i \)'s in Theorem 4.2 are the unique solution of the following system of equations:

\[
\langle a_1, a_1 \rangle \gamma _1 + \cdots + \langle a_m, a_1 \rangle \gamma _m = G \alpha _1 , \\
\vdots \\
\langle a_1, a_m \rangle \gamma _1 + \cdots + \langle a_m, a_m \rangle \gamma _m = G \alpha _m .
\]

Therefore, we have

\[
\sum _{j=1}^{m} \langle a_j, a_i \rangle \gamma _j = G \alpha _i, \quad i = 1, 2, \cdots , m , \tag{4.6}
\]

or

\[
\sum _{j=1}^{m} \overline{\gamma _j} \langle a_i, a_j \rangle = G \overline{\alpha _i}, \quad i = 1, 2, \cdots , m . \tag{4.7}
\]

Here \(\overline{\alpha} \) denotes the complex conjugate of \(\alpha \).

The following theorem is a generalization of Theorem 4.1 and Theorem 4.2, in the form of refinements of inequalities.

Theorem 4.3. Let \(a_1, a_2, \cdots , a_m (m \geq 2) \) be linearly independent vectors in a complex inner product space \(X \) and let \(\alpha_1, \alpha_2, \cdots , \alpha_m \) be given scalars. Let \(x \in X \) satisfy

\[
\langle x, a_i \rangle = \alpha_i , \quad i = 1, 2, \cdots , m . \tag{4.8}
\]
Let \(y \in X \) be defined by
\[
Gy = \sum_{i=1}^{m} \gamma_i a_i,
\]
where \(G \) and \(\gamma_i \) have the same meanings as in Theorem 4.2. Suppose \(x \neq y \). For \(t \in \mathbb{D} \), the closed unit disk in \(\mathbb{C} \), we define \(Q(t) \) as follows:
\[
Q(t) = \|tx + (1 - t)y\|^2.
\]
Then \(Q(t) \) depends only on the modulus of \(t \) and is a strictly increasing function of \(|t| \) for \(t \in \mathbb{D} \), with \(Q(0) = \|y\|^2 \) and \(Q(t) = \|x\|^2 \) for \(t \in \partial \mathbb{D} \) the boundary of \(\mathbb{D} \). That is, for \(t \in \mathbb{D} \), with \(t \neq 0 \) and \(|t| \neq 1 \), we have
\[
\|y\|^2 < Q(t) < \|x\|^2.
\]

Proof. By (4.8) and (4.9), we have
\[
G\langle y, x \rangle = \sum_{i=1}^{m} \gamma_i(a_i, x) = \sum_{i=1}^{m} \gamma_i a_i,
\]
\[
G\langle y, y \rangle = \left\langle \sum_{i=1}^{m} \gamma_i a_i, \frac{1}{G} \sum_{j=1}^{m} \gamma_j a_j \right\rangle
= \frac{1}{G} \sum_{i=1}^{m} \sum_{j=1}^{m} \gamma_i \gamma_j (a_i, a_j)
= \sum_{i=1}^{m} \gamma_i a_i.
\]
Hence
\[
\langle y, x \rangle = \langle y, y \rangle.
\]
Also, we have
\[
\langle x, y \rangle = \overline{\langle y, x \rangle} = \langle y, y \rangle.
\]

For any \(t \in \mathbb{D} \), we have
\[
Q(t) = \|tx + (1 - t)y\|^2
= \langle tx + (1 - t)y, tx + (1 - t)y \rangle
= |t|^2 \|x\|^2 + (1 - |t|) \|y\|^2
= |t|^2 \|x\|^2 + (1 - |t|) \|y\|^2 + |t|^2 \|y\|^2.
\]

By Theorem 4.2 and \(x \neq y \), we have \(\|x\|^2 - \|y\|^2 > 0 \). Hence, \(Q(t) \) is a strictly increasing function of \(|t| \), depending only on the modulus of \(t \) with \(Q(0) = \|y\|^2 \) and \(Q(t) = \|x\|^2 \) for \(t \in \partial \mathbb{D} \). This completes the proof of the theorem.

Corollary 4.1. Let \(n \) and \(m \) be two integers such that \(2 \leq m \leq n \). Let \(a_i = (a_{i1}, a_{i2}, \cdots, a_{im}) \), \(i = 1, 2, \cdots, m \), be \(m \) vectors in \(U^n \), the unitary \(n \)-space, such that every \(m \times m \)
If a vector \(x \) of the system of equations in (4.4) is a linear combination of \(y \) then the minimum \(\langle \cdot \rangle \) is a determinantal inequality.

4.2, providing us with a necessary and sufficient condition for equality of the Fan-Todd’s lemma was put forward by Fan and Todd in [4].

The minimum value of \(\| y \|^2 = \frac{G(a_1, \ldots, a_m)}{G(a_1, \ldots, a_m)} \leq \left(\frac{n}{m} \right)^{-2} \sum_{j=1}^{n} \sum_{j_1 < j_2 < \cdots < j_{m-1} \neq k} \frac{M(j_1, \ldots, j_{m-1})}{N(j_1, j_2, \ldots, j_m)} \right)^2.

Furthermore, equality holds if and only if \(x = y \).

Proof. Similar to the proof in [4, Theorem 1] or as in the proof of Theorem 4.4 below, we can show that \(\langle a_i, x \rangle = 0 \) if \(1 \leq i \leq m - 1 \), and \(\langle a_m, x \rangle = 1 \). Hence, Theorem 4.3 is applicable with \(X = U^n \), \(\alpha_1 = \alpha_2 = \cdots = m-1 = 0 \), \(\alpha_m = 1 \), and as \(\gamma_m = \frac{G(a_1, \ldots, a_m)}{G(a_1, \ldots, a_m)} \)

\[\| y \|^2 = \left(\frac{1}{G} \right) \sum_{i=1}^{m} \gamma_i a_i = \gamma_m a_m / G = \frac{G(a_1, \ldots, a_m)}{G(a_1, \ldots, a_m)}. \]

Hence, the Fan-Todd’s determinantal inequality is deduced as a consequence of \(\| y \|^2 \leq \| x \|^2 \) in (4.11). By Theorem 4.2, we have, equality holds if and only if \(x = y \).

Remark 4.2. It is clear that Theorem 4.3 is a generalization of Theorem 4.1 and Theorem 4.2, providing us with a necessary and sufficient condition for equality of the Fan-Todd’s determinantal inequality.

In an attempt to give a criterion on \(x \), for which \(\langle x, x \rangle \) will be the minimum, the following lemma was put forward by Fan and Todd in [4].

Lemma 4.1. Let \(a_1, a_2, \ldots, a_m \) be \(m \) linearly independent vectors in \(U^n \) \((2 \leq m \leq n)\). If a vector \(x \) in \(U^n \) varies under the conditions:

\[\langle a_i, x \rangle = 0 \quad \text{if} \quad 1 \leq i \leq m - 1, \]

\[\langle a_i, x \rangle = 1 \quad \text{if} \quad i = m, \]

then the minimum of \(\langle x, x \rangle \) is \(\frac{G(a_1, \ldots, a_m)}{G(a_1, \ldots, a_m)} \). Furthermore, this minimum value is attained if and only if \(x \) is a linear combination of \(a_1, a_2, \ldots, a_m \).

From Corollary 4.1, we have the improved result to Lemma 4.1, with a more explicit expression in the linear combination of \(a_1, a_2, \ldots, a_m \) as follows.

Lemma 4.2. With the same assumptions and notations as in Theorem 4.1 and Lemma 4.1, we have:

(i) The minimum of \(\langle x, x \rangle \) is \(\frac{G(a_1, \ldots, a_m)}{G(a_1, \ldots, a_m)} \).

(ii) The minimum value of \(\langle x, x \rangle \) is attained if and only if

\[x = (1/G) \sum_{i=1}^{m} \gamma_i a_i, \]
where \(\gamma_i \) are the unique solution of the system of equations in (4.6):

\[
\sum_{j=1}^{m} (a_j, a_i) \gamma_j = G a_i \quad i = 1, 2, \cdots, m.
\]

In the next theorem, a deduction of the weighted Fan-Todd’s inequality will also be deduced as an application of our refinement Theorem 4.3. The original statement of Theorem 4.4 can be found in [4].

Theorem 4.4. In addition to the hypotheses of Theorem 4.1, let \(p_{j_1, j_2, \cdots, j_m} \) be complex numbers defined for every set of \(m \) distinct positive integers \(j_1, j_2, \cdots, j_m \leq n \) such that the following two conditions are fulfilled:

(i) \(p_{j_1, j_2, \cdots, j_m} \) is independent of the arrangement of \(j_1, j_2, \cdots, j_m \);

(ii) \(P = \sum_{1 \leq j_1 < j_2 < \cdots < j_m \leq n} p_{j_1, j_2, \cdots, j_m} \neq 0 \).

Then

\[
G(a_1, \cdots, a_{m-1}) \leq \frac{1}{|P|^2} \sum_{j_m=1}^{n} \sum_{j_1 < j_2 < \cdots < j_{m-1}} p_{j_1, j_2, \cdots, j_m} \frac{M(j_1, j_2, \cdots, j_{m-1})}{\gamma(j_1, j_2, \cdots, j_{m-1}, k)}. \tag{4.20}
\]

Proof. Define a vector \(x = (x_1, x_2, \cdots, x_n) \in U^n \) by

\[
x_k = \frac{1}{P} \sum_{j_1 < j_2 < \cdots < j_{m-1} \neq k} p_{j_1, j_2, \cdots, j_{m-1}} \frac{M(j_1, j_2, \cdots, j_{m-1})}{\gamma(j_1, j_2, \cdots, j_{m-1}, k)}. \tag{4.21}
\]

Let \(y \in U^n \) be defined by

\[
y = \frac{1}{G} \sum_{i=1}^{m} \gamma_i a_i. \tag{4.22}
\]

Following the proof of [4, Theorem 1], we show first that

\[
(a_i, x) = 0, \quad i = 1, 2, \cdots, m-1 \text{ and } (a_m, x) = 1, \tag{4.23}
\]

\[
(a_i, x) = \frac{1}{P} \sum_{k=1}^{n} a_{ik} \sum_{j_1 < \cdots < j_{m-1} \neq k} p_{j_1, j_2, \cdots, j_{m-1}} \frac{M(j_1, j_2, \cdots, j_{m-1})}{\gamma(j_1, j_2, \cdots, j_{m-1}, k)}. \tag{4.24}
\]

For any ordered \(m \)-tuple \([h_1, h_2, \cdots, h_m] \) of integers such that

\[
1 \leq h_1 < h_2 < \cdots < h_m \leq n, \tag{4.25}
\]

the sum on the right side of (4.24) contains exactly \(m \) terms

\[
a_{ik} \frac{M(j_1, j_2, \cdots, j_{m-1})}{\gamma(j_1, j_2, \cdots, j_{m-1}, k)} \tag{4.26}
\]

\((j_1 < j_2 < \cdots < j_{m-1}) \) such that \([j_1, j_2, \cdots, j_{m-1}, k] \) is merely a rearrangement of \([h_1, h_2, \cdots, h_m] \). The sum of these \(m \) terms is denoted by \(S_i(h_1, h_2, \cdots, h_m) \), which can be written as:
\[S_i(h_1, h_2, \ldots, h_m) = \sum_{\nu=1}^{m} \frac{a_{ih_\nu} M(h_1, \ldots, h_{\nu-1}, h_{\nu+1}, \ldots, h_m)}{N(h_1, \ldots, h_{\nu-1}, h_{\nu+1}, \ldots, h_m, h_\nu)} \]
\[= \frac{\sum_{\nu=1}^{m} (-1)^{m+\nu} a_{ih_\nu} M(h_1, \ldots, h_{\nu-1}, h_{\nu+1}, \ldots, h_m)}{N(h_1, \ldots, h_{m-1}, h_m)} \]
\[= \begin{cases} 0 & \text{if } 1 \leq i \leq m-1, \\ 1 & \text{if } i = m. \end{cases} \]
\[\langle a_i, x \rangle = \frac{1}{P} \sum_{1 \leq h_1 < h_2 < \cdots < h_m \leq n} p_{h_1 h_2 \cdots h_m} S_i(h_1, h_2, \ldots, h_m) \]
\[= \begin{cases} 0 & \text{if } 1 \leq i \leq m-1, \\ 1 & \text{if } i = m. \end{cases} \]
This completes the proof of (4.23). By Theorem 4.3, we have \(\|y\|^2 \leq \|x\|^2 \). As in Corollary 4.1, we have
\[\|y\|^2 = (1/G) \sum_{i=1}^{m} \frac{G(a_1, a_2, \ldots, a_{m-1})}{G(a_1, \ldots, a_{m-1}, a_m)} \]
\[\leq \frac{1}{|P|^2} \sum_{k=1}^{n} \left| \sum_{j_1 < j_2 < \cdots < j_{m-1} \neq k} p_{j_1 j_2 \cdots j_{m-1}} M(j_1, j_2, \ldots, j_{m-1})^2 \right| \frac{N(j_1, j_2, \ldots, j_{m-1})}{N(j_1, j_2, \ldots, j_{m-1})^2}. \]
This completes the proof of Theorem 4.4. Finally, we would remark that we have a similar statement for equality to hold in (4.30) as in Corollary 4.1.

References