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Abstract

This paper studies the asymptotic behavior of solutions to an evolutionary Ginzburg-Landau
equation in 3 dimensions. It is shown that the motion of the Ginzburg-Landau vortex curves
is the flow by its curvature. Away from the vortices, the author uses some measure theoretic
arguments used by F. H. Lin in [16] to show the strong convergence of solutions.

Keywords Ginzburg-Landau Equations, Vortex, Curvature flow, Asymptotic behavior
2000 MR Subject Classification 35J55, 35Q40

Chinese Library Classification Document Code A

Article ID 0252-9599(2002)01-0095-14

¢1. Introduction

We consider the following problem

Ou, 1 .

e Au, + g—zug(,@Q(:ﬂ) — |ucl?) in Q x Ry, (1.1)
ue(r,0) = B-ud(z), z€Qq, (1.2)
ue(z,t) =p-g(x), z€¥, t>0, (1.3)
Jus B
95 = 0 for z = 0,1, (1.4)

where Q = Q x [0,1], 2 C R? is a bounded smooth domain, g : ¥ = 9Q x [0,1] — S* is a
CY*map such that deg(g,0Q.) =d >0forall 0 <z <Il. Here Q, = Qx {z}. :Q = R
is a smooth function (say C3(Q)) with positive lower bound. u. : Q x R, — RZ.

The aim of this article is to understand the dynamics of vortices, or zeros, of solutions
u of (1.1)—(1.4). Its importance to the theory of superconductivity and applications are
addressed in many earlier works!%13:20.21.24 " The following is our main theorem.

Let Iy be a collection of d embedded C?-curves in @ with d'g C Q x {0,1}. Moreover,
we assume Iy intersects Q x {0,1} orthogonally along dT'g. Note that the last assumption

0

is compatiable with the assumption aau; = 0 for z = 0,1 (that is the natural compatibilty
condition for problem (1.1)—(1.4). Similarly, we also assume that u = g on %).
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For the initial data u?, we make the following assumptions:

(H1) fQ % (z) {|Vu2|2 + %(\uQP - 1)}(13@ < K for all 0 < e < 1. Here p(x) = dist(x, ');

(H2) u? converges as ¢ — 0% in the C%-norm away from I'g to a map with its image in
St

(H3) Let Iy, i=1,---,k, be connected components of o, and let 6 > 0 be Chos_en so that
the sets I'}(d), i = 1,--- , k, are pairwise disjoint. Here I'}(0) = {x € Q : dist(z,T}) < d}.

Let T > 0, and {I';}, 0 < t < T, be a family of embedded C?-curves inside Q with
boundaries {0T'+} contained in Q x {0,[}, I'; intersect € x {0,[} orthogonally along 0T,
which are obtained from I'y by the following equations in R3:

dz(p, - VB2 (z(p,
{ “E = 0, ~ (1.5)
x(p,0) =p €T,

—

where 7 is the projection onto the normal space of I';, the mean curvature H of T'; is
characterized by the property

divitgdH' = — [ H-¢dH', V¢ € (¢1,62,¢3) € C'(R?, R®).
I Iy
Here div't¢ = d{tqbi is the tangencial divergence of ¢. In case 8 = 1, the equation (1.5)
denotes the flow by mean curvature with codimension 2 in R3.
Theorem 1.1. Assume that f € C3(Q) and By = min 3 > 0. Under the assumptions
Q

(H1)—~(H3) and that for each t, 0 <t <T', one has (by taking subsequences if necessary) that
ue(z,t) = ui(z,t) strongly in HL (Q\I't). Here u.(z,t) satisfies

By — Au, = 5—2(\%*\2 - A(%ﬁQ))u* in Q\I';. (1.6)

The system (1.1)—(1.4) can be viewed as a simplified evolutionary Ginzburg-Landau equa-
tion in the theory of superconductivity of inhomonogence!?4.

Now we briefly describe some mathematical advances concerning this problem. In two
space dimensions, f = 1, the dynamical law for vortices was formally derived in [9,19].
The first rigorous mathematical proof of this dynamical law, which is of form £a(t) =
—Vw(a(t)), was given by F. H. Lin in [13,14] (see also [15, Lecture 3]). In [13,14], one allows
vortices of degree +1 and assumes that they have the same sign. For vortices of degree +1
(possibly of different signs), the same type dynamical law was shown lately't. We refer to
[16] for vortex dynamics under the Neumann boundary conditions for pinning conditions.
In three space dimensions, 5 = 1, a similar dynamical law was also established in [16] for
nearly parallel filaments. The short-time dynamical law for codimension 2 interfaces in
higher dimensions was shown in [16]. In two space dimensions, 8 # 1, the dynamical law
was established in [12,18] under the first boundary condition and the Neumann boundary
condition respectively.

The rest of the paper is organized as follows. In Section 2, we collect some basic facts on
the curve-shortening flow. In Section 3, we prove the weak convergence. In Section 4, we
study the strong convergence.

§2. Mean Curvature Flow with Codimension 2

Given a set E C R3, we set

ne(r) = %(dist(x,E))Q.
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The following results on the square distance function have been proved in [4]. Let v be a
smooth embeded curve in R?; then 7, is smooth in a suitable tubular neighbourhood € of

v. —AVn, coincides, on v, with the curvature vector H of ~.
Lemma 2.1[4 Lemma 3.7 104 (Te)iepo,r) be a smooth flow. Then, there exists o > 0 such
that the function

1
n(z,t) := idistQ(:L', Ty)

is smooth in {(z,t) € R® x [0,T] : n < o}. Moreover, the displacement of the flow is given
by

dx(p,t
2D Vfap.t).), E0.T], pels
In particular, (I't)icjo,1) is @ smooth curvature flow defined by (1.5) if and only if

V32
B’

Short time existence for curvature flow of smooth initial space curves is a consequence of
a general theorem proved in [1,10,26].

Lemma 2.2. Assume that o is an embedded C*-curve in Q with Oyo € Q x {0,1}.
And, we assume T intersects Q x {0,1} orthogonally along dvo. Then there exist a positive
number to > 0 and a family of embedded C*-curves inside Q with 9Ty C Q x {0,1} such that
the following system of equalities holds on v :

oV, V32
ot 32
and v intersects Q0 x {0,1} orthogonally along 0v;.

Vi, = AVn — V?p on Ty.

(t7p) - Av’?’y(tap) + v277 (p) = 07 te [O7t0]7 JZESHa TS

t3. Some Estimates and Weak Convergence
Let v, = %ug. Then v, satisfies

2 A 1
Vb -V, + jveJr

vet = Ave + 55 5 =T oz

@
=

B2(1 — [v:*)ve in @ x Ry,

(3.1)
ve(z,0) = ul(z), z€Q, (3.2)
ve(z,0) =g(x), €%, t>0, (3.3)
dve 0B B
I6; % + 50 = 0, forz=0,1l. (3.4)
Lemma 3.1. Assume (H1)-(H2). We have

lus| < My in @ x [0,T], (3.5)
where M = max |3(z)|, My depends only on M, u?.
Q

Proof. Let u = % w = |u|> - M, M; = M(1+ K), [u?] < K. Then

M>
Ow — Aw + 2M* e 2[aPw <0 in Q x (0,T),
g—c::() for z =0,1,

w<0, ek t2>0,
w<0, z€@Q, t=0.
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Thus, by maximum principle, we have w < 0 in @ x [0, T]. Hence |u.(z,t)| < M; in Q@ x [0, T).
Lemma 3.2 (Energy Inequality).

t
sup [/ / lve|* + E(v(-,t))| < CE(u) + C, (3.6)
>0 LJo Jg

where C' is independent of €, and

_1 2 L 201 _ ]2 2
B(.0) = 3 [ [I900) + 5260 ~ ol (1)

Proof. |v)? = %div(,@’QVU) v+ 2 vvt %(1 — [v[*)v - vy,

2 - 2 jg 2 _7Q _ 2\2
Ll = [ Gt (o G5 5 0l — o = P,

[ Lo

= [ [aseeo(ge) v [ [ S[30e- Loy

-/ /Qat'wl“ﬂ%t'w'v(w)+/0t[/ w(53)0+ [ v (- 55.)°)
s [ GIEwe] - o= 1opr

A JACE [vo + 2 -y

</Q(O [IVulf? + fi(1—| 0|2>}+2/ oo O

B
+2/Q(0)v Vﬁ //8t bl AB

! 18B||2|:t ! 15’5||2|—
Qo B 0z =0 5 0z =0

where Q(t) = Q x {t}.

[ [ [ e gasa- ey

1 \Y%
< [ [i9eR s ey +2/ oo 2
Q) Q) s
+2/ "W —+/ ||2 w228 4 o
Q(0) Qt) Qo B

where we have used the fact that [v| < C in Q x [0,7]. Hence

| [+ Bty < cB@eo)+ [ pe
0 JQ Q@)
< C(E((,0) + 1)
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Define
1 2 1 2 2\2
ec(v) = 5[IVo? + 558211 — [vf2)?]

Gy (1) = Hintto — ] /2 exp [ - =220,
where t < g, z0 = (x0, o),
G(z,t) = Go(z,t),
Sr(z0) = {z = (x,t) : t = to — R?},
Pr(z) = {z = (z,t) : |x — x| < R, |t — to| < R*},
Tr(z0) = {2z = (x,t) : . € R® tg — 4R* < t <ty — R?},
Ty = T:1(0),

W(R) = / e (0) Gy $2dudt,
Tr(20)

®(R) = R? e (v)G., ¢*dadt,
Sr(z0)
where ¢ € C3°(B,y(10)), 0 < ¢ < 1, ¢ =1 for [v — x| < & and [Vo| < %, To € Q,
0 < po < dist(xo, 0Q).
Lemma 3.3 (Monotonicity Formular).
®(R) < exp(C(Ro — R))®(Ro) + C(Ep + 1)(Ro — R), (3.7)
U(R) < exp(C(Ro — R))¥(Ry) + C(Ey +1)(Ry — R), (3.8)
where Eg = E(v(-,0)).
Proof. See [5, 18].
Lemma 3.4 (Small Energy Regularity Theorem). There exists a constant 0y €
(0,1/2) depending only on B such that if for some 0 < R < ¥ty/2, z0 = (zo,t0), v = v
satisfies

W(R) = ;/TR(ZO) [1v0f? + %52(1 — [of)?] Gyt < 0, (3.9)
then
sup {[Vof? + 55871 — o)’} < CGR) (3.10)
Psr(z0) 2

with a constant 6 € (0,1/2) depending only on Ey, inf {R,1} and an absolute constant C.
Proof. The proof of Lemma 3.4 is identical to [5,Theorem 2.1] (or, see [18]).
Lemma 3.5 (Uniformly Estimate).

/ [vet 2 + o (v2)]dadt < C(6,T, 0, K),
Q\TI'¢(d)

where o > 0 is such that the sets T't(40), i =1,--- , k are pairwise disjoint for all0 <t < T,

0<d<o.
Proof. Let ¢, : Ry — R, be a smooth monotone function such that
Go(r) = {

r? ifr<eo

> 0).
402 ifr > 20 (o )
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Define p(x,t) = dist(x, ;). Assume that
min{|lz —y|:x €T,y € 2,0 <t <T} > 4o.
d [1 2 o 1 22
Rl 521 —
i | 29-tete 08 (900 + 55570 bl
_ [, 2, L g o0
= | 30902 + 0 o
1
+ /Q ¢ﬁ2 |:VU . V’Ut + @,82(1 - |’U|2) . (—2’[}1}t):|
=IT+1I.
11— [ 0] - dv= 55201~ o]
Q ¢?

- /Q V(65 Vo- v+ (bBQ?Ut - ¢/82%Ut

o) z Qo

= | —ostnft - [ 5290v0-v— [ o(v5 v

A L A

Now we calculate the expression 32V ¢, Vov;. We shall use the summation convection, and
simplify notation. We shall also set ¢, = ¢,v. = v.

BVGVu - v = VoVu [div(ﬁZVv) + BABY + %54(1 - \u|2)v}
= [(/32%‘)]‘%‘ +ﬂ4i211(1 - |U\2)Uz’]¢i (BAB)v(vigi)
|v]?
= ¢z(/8 Uﬂ}]) d)zﬁ V055 + (ﬁAﬁ)(b ( )7
B = 2] 61+ (g (1 - oY
2
:qbi(,BQU,‘U]‘) (,82 |U]| )(bz (6 ) ¢l(|vj| )

(6A6)¢(‘v|2)1—[54'412( 7] 6+ (B (1 )

where v; = 22, ()7 = g—f_i. Hence

/ BEV Vo - v,
Q

_ 1 i
- /Q oo+ [ B+ /Q S[(A0BIVUE + 20 5 (1 - o2

1 1
- 52¢iVi*VU2+/ — B = |*)hivi
[ Fowglve+ [ st
of?

%)

1 1
+ [ (78t V0 (- i V5 Vo gvel 4 [ (3a8)Ve - (
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1
= [ By + [ FBOITOR + 55020~ i)
V32 1 1 [v]?
[ S velgvel + et =] + [ agve- v ().

Let e.(v) = 382[|Vo|* + 55 8%(1 — [v|*)?]. Then

|, e
= [ oweet) = [ o8l ~ | soyectr) - [ (% 9o)este

2
+ /Q B2 viv; — / (BAB)V 6 - v ‘”' / $(VB2 - Vo),

:/Q(qst—A¢—v£2 V¢ e(v /B Gijuiv; — /¢52\vt|2

_/ngvﬁvvvt /(ﬁAﬁ)vW Vot 5o / ¢B | - / (bﬁ

+

Next we observe that on the set {x € Q : p(x,t) < o}, (¢;;) < I in the sence that
$ij&i&; < |€)* for all € € R3. Also on I'y, we have ¢, = 0, A¢ = 2. Since I'; is obtained from

T’y by curvature flow (1.5), by Lemma 2.1, we have V((bt A¢p— va V(;S) =0onI'y. Thus

V32 9
ot — A — 72 V¢ < =2+ Cop?(z,t) = -2+ Ci¢. (3.12)
Combining (3.19) and (3.20) with the fact that ((;5”) < I, we have
2
i [ goe) <o) [ Soewy v o)+ gl [ osSlne - [ oaTine] s)

/%¢e(v))t:t< // —ge(v / S0ew)|_ +C@n+c.

Now we use the assmption (H1) to obtain
/ O (p(x,t))ec(ve)dx

< [ gupla,0)ec(u) + Clo)teC "
Q
< eCOTK 4 TeCOT . C(0), 0<t<T. (3.14)
The last inequality implies that
/ ee(ve)(z,t)dx < C(0,0,T, K) (3.15)
Q\T':(9)

forall0<t<Tand 0 <e <k 1.
Next, for 0 < ¢ < ¢t < ty < T, let n(z) be a smooth cutoff function supported in
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Q\ U T: Then
t1 <t<ts
d
7 an(:r)es(vs)(x,t)dx
= /Qn2(x) [Vv-Vvt—i— %52(1 ~ \@|2)(_2U.Ut)}

:_/Qn2(a:) {Av-vt-i-g%ﬁQ(l—Mz)U'Ut]

1o} 1o}
—Q/UVan-vt—F/ nzl-vt—/ nQ—vvt
Q Qo 3z (ol 32

ov ov
2 2 2 2
=— | n°(x)|vy —2/7]V7711-vt+/ n—vt—/ e —u;
/Q Q Q, 0z o 0z

1
7 (@) or? + 4 / V2|V de
Q

18 2185 2 2105 2
+2at[/90” 55;1 —/an 5.0 ] (3.16)

From Lemma 3.1, (3.23) and (3.24), we obtain that
Ve € Hlloc(a X [O,T}\ U Ft)

0<t<T

IA

S

Here, by taking a subsequence if necessary, we obtain that ve(z,t) — v.(z,t) weakly in
HE (Q x[0,T]\ U Ty). It is easy to verify that v, satisfies

0<i<T
ov 2vp ApB 1 9 9
and v, € S*.
Note that u. = Bv.. We also obtain that u. — u. weakly in HL_(Q x [0,T]\ U I}).
0<i<T

It is easy to verify u, satisfies (1.6).

§¢4. Strong Convergence

The aim of this section is to prove strong convergence. The proof of this conclusion is
based on the fact that the solutions v. to (3.1) satisfy a monotonicity inequality, from which
the e-regularity can be proved. Then, it implies the strong convergence of the sequence of
{ve}-

Theorem 4.1. Let v.(x,t) be a solution of

] 2 A 1 .
a(;; = A'Ue + EVﬁVUa + FBUE + ?62(1 - |UE|2)U5 mn Ql
with
1 1 2
/ / e (v.)ddt + / / Ove | fudt < M
o B3 o Jpy! Ot

for0<e < 1. Herev. € C, Q1 = B} x[0,1], B} = {z € R®: |z| < 1}.
Suppose also that {v.} converges weakly to a map v, as e — 0% in HY(Q1). Then {v.}
converges strongly to v, in HL (Q1), and v, satisfies (3.17).
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Lemma 4.1. Suppose v satisfies

v 2 Ap 1 9 oy

—=A - — —(BAS —

B v—l—ﬁVﬁVv—&- Bv+52(ﬁ B — B7IVul]*)v in Q1
with

ov
2 2
/1 [|V1}| +15] ]dxdtgc.

Then

ve T Q).

loc

Proof. Let v =¢¥. Then ¢y € H'(Q;) and

/ |V |2dadt < C,

1

Py = Ay + %Vﬁ -V in Q.
One has
Y € W3 (Qu).

So, by regularity theory and a bootstrap argument, we have

b e Cir R Q).

loc

Hence
ve TR g).

loc

Proof of Theorem 4.1. The proof is identical to [7, Theorem C]. For the sake of
completeness, we sketch it here.

Let P™ denote the m-dimensional Hausdorff measure in R*™! with respect to the para-
bolic metric §((x,t), (y, ) = max{|z—yl|, /|t — 5|}, and H™~2 denote the m—2 dimensional
Hausdorff measure in R™ with respect to the standard metric.

Now assume v, — v, weakly in H'(B; x (0,1)). Then e(v.)dadt — p = 2|Vv,|> + v as
Radon measure for some Radon measure v > 0. Moreover we define

Y= ﬂ {z € B; x (0,1) : lim inf/ n*e(ve)(x, t)G (2, t)dxdt > 90},
R>0 r—0 Tr(2)

where 6 is as in Lemma 3.4. Then the monotonicity formula Lemma 3.3 implies ¥ is closed
and P(XN Pg) < oo for any R < 1. Lemma 3.4 implies that ve — v, in C1(By x (0,1)\X)N
HY(B; x (0,1)\Y) locally (if needed, passing to subsequences). Note that v, is smooth, by
Lemma 4.1.

Claim 1. spt(v) = X.

Proof. In fact, if zg € spt(v), then Lemma 3.4 implies that for all r > 0,
lim inf p_3/ ee,; (Ve;) > 0p.

P,(20)

1—00

Thus zo € ¥. On the other hand, if zy & spt(v), then there is a p > 0 such that P,(zp) N
spt(v) = 0 and e (ve)dadt — L|Vv,|*dzdt as Radon measure. Because v, is smooth, we
derive for all sufficiently small r, 0 < r < p,

) 1 0
o[ v
Py (z0) 2 2
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Hence

p—S/ 65(7]5) < 60
Pp(ZU)

for sufficiently small €. Thus zy € 3.
For the measures u and v above, we define two density functions

0°(p, z) = lim n*Gdp,
R—0 TR(Z)

03(v,z) = lim G .dv
R—0 TR(z)

for z € By x (0,1), if both of the limits exist. Then, from Claim 1, we have
Claim 2. (a) 63(u, 2) exists for any z € ¥ and is upper-semicontinous. (b) 8y < 03(u, z) <
C(K,r) for any z € SN P,. (c) For P3 a.e. z € %, 03(v, 2) exists and 03(v, 2) = 63(, 2).
Now assume that e.(ve)dadt /4 £|Vv,|*dzdt. Then one must have

P3(%) >0, and v(B; x (0,1)) > 0.

Moreover, Claim 2 shows that there exists ¥ C ¥ with P3(X) = P3(X) > 0 such that

03(u,2) = 62(v, z) is approximately continuous for z € ¥. Now, we can choose a 2y =

(wg,t0) € ¥ such that (i) limsupr—3P3(X N P.(20)) > 0; (ii) 63(u,2) is approximately
r—0

5
continuous at zo; and (iii) liH(l) [ (20) |V, |? = 0.
r— "

For r; | 0, define the parabolic dilation D,, by
D,,(A) ={(z,t) € RY: (z,t) = (ryy, r2s) for some (y,s) € A},

and the rescaling measures p1;(A) = r; *u(20 + Dy, (A)) for any A C By x (0,1). Then we
have 6y < p;(By x (0,1)) < C(K). Hence we can assume that u; — p. for some Radon
measure u, > 0. By the diagonal process, one can extract subsequence ¢; | 0,

ee, (ve,)dxdt — p., v, — a constant weakly in H'(B; x (0,1)),

where &; = r; .

Note that X, the support of y., is given by X, = |J X! and
te(—1,1)
»t = ﬂ {x € By : lir_nirolf/ n2esi (ve,)Gzt) > 00}.
R>0 =70 g ()

So (0,0) S Z*, P3(E*) > O, [L*(Bl X (—1,1)) > 00.
Claim 3. There exists ¢y > 0 such that X! # ¢ for any t € (—t,0].
Proof. Soppose not, for ty > 0, X% = ¢. Then for any xy € By, there exists rg > 0 such
that
liminf/ n’e., (V,)G (o) < bo-
Tro ((0,t0))

€3 —0
So Lemma 3.4 yields

sup e, (ve,) < C(0rp) 2
Psro (x0,t0)
for some C > 0 and § > 0. This implies that, for some ¥ > 0, v., — a constant in
CQ(B% X (to = T,to + 7)), and v(By x (to — T,to + 7)) = 0, which implies (0,0) ¢ X, if we

choose tg sufficently small. This leads to a contradiction.
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From Claim 3, one can see e.(v.)(z,t)dz 4 0, for t € (—t,0). On the other hand, there
exist nonnegative Radon measures v; for ¢ € (—tp,0) such that e(v,,)(x,t) — v;. Hence
vi(B1) > 0 for t € (—to,0). It is easy to see that spty; C XY for ¢ € (—to,0). In fact (cf. [17,
Claim 6]), one has

Claim 4. If v5(B;) > 0, then H!(spt(»;)) > 0.

Claim 4 gives H'(X!) > 0 for any t € (—to,0). Hence, we can pick another point
(x1,t1) € X such that HY(X!) > 0 and al(Eil,xl) = limsup r 'HY(Z% N B,.(z1)) > 0.

r—0
By applying the following Lemma 6 in [16] to Xt at x; we conclude that for r; | 0 there
exist {27} C X! such that
@} — | > or
and

dist(z] — x?,span{x{ —a3}) > oy,
where 2 = x1. Let g ;(A) = rj_?’u*((xl,tl) + D, (A)) for each j and define v, (z,t) =
ve, ((x1 + 1, 1 + r?t)). Then, by the diagonal process again, one can find a subsquence of
€;; (denoted as €;) such that, as ¢; | 0,

P = fas,  €(Vg; )dxdt = [
Moreover, if we denote Yy = sptis, and Xf, = 3., N {t}, then
span{(i} C %0,

where (; = hﬁr{.lo (2 — x})/r;. Note that {¢;} spans a 1-dimensional linear subspace of R.
One also hajs P3(3.) > 0,v, — a constant weakly in H' and 0 (ji4x, 2) is a constant for
2z € Y.

Applying the monotonicity formula Lemma 3.3 at centers (0,0), (¢1,0) and using the fact
that 0! (pix, 2) is constant for z € ¥,,, we have for any r > 0,

(ﬁR)

J

for 0 < k < 1. Here (o = (0,0) and U;—C’R = L., ((Ck, 0) + (Rz, R%t)), B (2, t) = B((Ck, 0) +
(Rx, R?t)). Hence, by Fatou’s Lemma, one has, for 0 < k < 1,

/Bk 2
2(21;2) (1—[vF g?)?G e, ydadt =0, VR € (0,1). (4.2)

/ RdR | |t|” 1’172|’UJ rI’Go)y +1° (1- |vf|2)2G(<k’0)dﬂcdt — 0, asj— oo, (4.1)
0 T

Ejﬁo

lim n2|va|2G(Ck,0)dzdt +1n
T
Let {0} x R! be the span{(;} = {0,0,y3) € R3}. Then (4.2) implies

—t2
tim [ /R [1Vrve, I + (ﬁR> (1~ ok )] et = 0, (4.3)

for any 0 < tg < t; < co. Here T € {0} x Rl, the span{(;} = span {6%3}.
Claim 5.

bian (5,5, 1) = 0% (pon, (2,9, 1) (HVL{O} x RY) x PLS).
!
Here S = U {(z,t) € R* x R_ : © = ¢j/—t} for some 1 < | < oo and ¢; € R? x {0}.
j=1

Moreover, if (x,y,t) € ({0} x RY) x S, then 03 (j.(z,y,t)) = 03(u, (z0,t0))-
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Proof. We note that P3(3,. N Pr) < oo for any R > 0. Note also that
/ |0 |Pdxdt < CR™2 e(ve)dxdt (4.4)
Pr(2) PyR(z)
for any Pr(z) C By x (0,1). Passing (4.4) to the limit, we see that
(Dr) g (Bss) = fax,  Vr > 05

therefore Y. = D, (Z.,) and we can write .. = {(cv/—1,t) : ¢ € Tyt € R_}. Now we
need to show that X! = {0} x R! x S with S as in the claim. Let ¢ € C§°(R?) and for
k=3,0<ty <t <oo, we compute

o [T,
— z)e(ve. )(z,y, t)dxdt
o |, | @)@y
3vgj avsj Ove, 9 (Ove,
/t2 /R2 Or Ox 8y3)+3y3'6‘7y3(8y3)

v, 1 2
_ — (Rk\2 1— 5.2 o g (1 — 8'22.2 kY . R
5? (BR) (x5y3)( |U g| )U j aay —+ 52( ‘U j‘ ) (/BR) a dxdt

j

B /_tg 0¢? dve, 8UEJ / 5| OV, |2
N —t2 R2 dr Ox 8 86:(/3 R2 8y3

1 v, 2 apk

“Av, = (AR (1= o, [P)ve,) o 4 (1= [, [2)28Y - R

o = O e P G+ 50— 0%
8¢> e, 2 (0, VﬁR A Ove,
/ /R oo 0 (- g Ve T g v)) I

Bk
24 R — o P2 4.5
3y3/ /Rz 3y3| / /Ra 625R3y [oe; 1) (4.5)

Combining (4.5) Wlth (4.3), we have
o [~
D ¢2 (:r)du**(x, Y3, t) =0, (46)
Y3J -2 JR2
in the sense of distribution for all y3 € {0} x R, Thus fiss (2, y3,t) = Vi (2, t)dy. Hence if we
denote X, C R% x {0} x R_ as sptv,., then ., = X, x ({0} x R!), .. = LZJ {(cjv/—t,¢) :
i=j

t€ R_} and ¢; € R? x {0} for some 1 <[ < co. The proof of the claim is completed.

From Claim 5, we may assume that v, converges strongly to a constant in H'(R? x
R_\({0} x R') x S) locally.

Without loss of generality, we will assume [ = 1 and denote ¢; = ¢. From (4.5), by
applying the weak L!-estimates of the local Hardy-Littlewood maximal function with respect
to the parabolic distance in R* (cf. [25]) we conclude that there exists 4; C ({0} x R') x S
with P3(A;) > 0 such that for any (c\/=%;,y;,t;) € A;,

sup r_?’/ fi =0, as j = oo, (4.7)
re(o,%) Pl(y;,t;)

where f; = fB2 gz;

2
and —% <t; < —5 for some 0 < tg < t1.

dm. Now, pick up (y;,t;) € A;N{0} x R' x S such that |y;| < 1
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Let 4; | 0 and z; € B%(c,/=t;) such that
4
bo
(m)
= max {5]»_2/ e(ve,)(,yj,) 1 2 € B3 (c\/ftj)}. (4.8)
ng (2)%(t;—062,t;) ' 2

Define v;(x,y,t) = ve, (x5, 5, t;) + (8;(2,9),63t)), on Q; = 6,7 (B} (ey/=F;)) x B3) x
(—0; 2(—2t} +3),0). Then v; satisfies

5»_2/ e(ve, )(x,y;,t)dxdt =
7 JB2 wpxa fézm( SR c

\Y% ApB;
8t'l}j - A'Uj ﬁQ V Bﬁj
J

where B;(z,y) = B((x;,y;) + 0;(x,y)).

1 .
v; + gﬁf(l —[v[*)v; = 0in Q;, (4.9)
J

6o
e(v;)(x,0,t)dxdt =
/fo(—Lo) (®3)( ) C(m)

= max / e(v;)(z,0,t)dxdt : z € 6;1(33 (c —t]—))}. (4.10)

B2(2)x(—1,0) 2

0v;

sup / / = So. 4.11
r€(0,(46;) (0) B2 393 ( )

Claim 6. For any 2z € 53‘_ (B%(c./ftj)> and t € (—o0,0], we have

46,
e(v; < . 4.12
/(Bg(z)xB;(o))x(t—u) (v) C(m) (4.12)
Proof. For the proof of Claim 6, see [16].
Therefore, by choosing sufficiently large C(m), one has
2_3/ e(v;)dzdyds < 6y, (4.13)
B3(2)x B3 (0)x (t—2,t))

for (z,t) € 5;2(Bi (ey/=t;)) x R_. From the local H' boundedness of v; in R? x R_, we
2
may assume that v; — vo, weakly in HL (R x R_, R?). Hence (4.5) implies

fon 5T
R3XR_

which yields voo (7, y,t) = voo(,t) for (z,y,t) € R® x R_. On the other hand, from Claim
6, we can apply small energy regularity theorem to get

v = Voo in CL (R x (B3) x R_, R?).
Combining this with (4.10), we have

0o
e(vso )dxdt = .
/}32><( 1,0) (ve0) C(m)

Hence e(vs) is either 3|Vuso|? 4+ 4 8% (20, 40) (1 —|vao|?)? or §|Vvso|?, where (20, yo, to) =
hm (:Uj,yj, ;). Hence vs, is not a constant. Moreover, vy, satisfies either

1
gj 4 ¢> 0,000 — Ao + —252(x0,y0)(1 — [Vso|* Ve = 0in R? x R_,
c
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orel 0, |ve| =1, and
OiVoo — AVsg — | Voo |* Ve = 0.

By Theorem 5.2 in [17], one has vy, = constant. Therefore one yields a contradiction and
the proof of Theorem 4.1 is complete.

REFERENCES

[1] Altschuler, S., Singularities of the curve shortening flow for space curves [J], J. Differential Geometry,
34(1991), 491-514.

[2] Bethuel, F., Brezis, H. & Helein, F., Ginzburg-Landau vortices [A], Progress in Nonlinear Differential
Equations and Their Applications [M], 13. Birkhauser Boston, 1994.

[3] Bauman, P., Chen, C. N., Phillips, D. & Sternberg, P., Vortex annihilation in nonlinear heat flow of
Ginzburg-Landau systems [J], European J. Appl. Math. 6(1995), 115-126.

[4] Ambrosio, L. & Soner, H. M., Level set approach to mean curvature flow in arbitrary codimension [J],
J. Differental Geometry, 43(1996), 693-737.

[5] Chen, Y. M., Dirichlet problems for heat flows of harmonic maps in higher dimensions [J], Math. Z.,
208(1991), 557-565.

[6] Chen, Y. M. & Lin, F. H., Evolution of harmonic maps with Dirichled boundary conditions [J], Com-
mmaunications in Analysis and Geometry, 1(1993), 327-346.

[7] Chen, Y. M. & Struwe, M., Existence and partial regularity for the heat flow for harmonic maps [J],
Math. Z., 201(1989), 83-103.

[8] Ding, S. & Liu, Z., Asymptotics for a class of Ginzburg-Landau functionals [J], Chin. Ann. of Math.,
18A:4(1997), 437-444.

[9] E, W., Dynamics of vortices in Ginzburg-Landau theories with applications to supconductivity [J],
Phys. D, T7(1994), 384-404.

[10] Gage, M. & Hamilton, R. S., The shrinking of convex plane curves by the heat equation [J], J. Differ-
ential Geom., 23(1996), 69-96.

[11] Jerrard, R. & Soner, M., Dynamics of Ginzburg-Landau vortices [J], Arch. Rational Mech. Anal. 142
(1998), 99-125.

[12] Jian, H. Y. & Song, B. H., Vortex dynamics of Ginzburbg-Landau equations in inhomogeneous super-
conductors [R], Preprint, 1999.

[13] Lin, F. H., Some dynamical properties of Ginzburg-Landau vortices [J], Comm. Pure Appl. Math., 49
(1996), 323-359.

[14] Lin, F. H., A remark on the previous paper: “Some dynamical properties of Ginzburg-Landau vortices”
[J], Comm. Pure Appl. Math., 49(1996), 361-364.

[15] Lin, F. H., Static and moving vortices in Ginzburg-Landau theories [A], Nonlinear partial differential
equations in geometry and physics (Knoxville, TN, 1995) [C], 71-111, Progr. Nonlinear Differential
Equations Appl., 29, Birkhauser, Basel, 1997.

[16] Lin, F. H., Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2
submanifolds [J], Comm. Pure Appl. Math., 51(1998), 385-441.

[17] Lin, F. H. & Wang, C. Y., Harmonic and Quasi-Harmonic spheres [R], 1997, Preprint.

[18] Liu, Z. H., Vortex motion law of the Ginzburg-Landau equation with thermal noise [R], 1999, Preprint.

[19] Neu, J. C., Vortices in complex scalar fields [J], Phys. D, 43(1990), 385-406.

[20] Neu, J. C., Vortex dynamics of the nonlinear wave equation [J], Phys. D, 43(1990), 407-420.

[21] Peres, L. & Rubinstein, J., Vortex dynamics in U(1) Ginzburg-Landau models [J], Phys. D., 64(1993),
299-309.

[22] Riviere, T., Line vortices in the U(1)-Higgs model [J], ESIAM Controle Optim, Calc. Var., 1(1995/96),
77-167.

[23] Rubinstein, J., Self-induced motion of line defects [J], Quart. appl. Math., 49(1991), 1-9.

[24] Rubinstein, J., On the equilibrium position of Ginzburg-Landau vortices [J], Z. Angew. Math. Phys.,
46(1995), 739-751.

[25] Stein, E., Singular integrals and differentiability properties of functions [M], Princeton University Press,
Princeton, NJ, 1970.

[26] Stalbl, A., Regularity estimates for solutions to the mean curvature flow with a Neumann boundary
condition [J], Calc. Var. Partial Differential Equations, 4:4(1996), 385-407.



