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ASYMPTOTIC BEHAVIOR OF SOLUTIONS
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FLOW THROUGH POROUS MEDIA
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Abstract

The initial boundary value problems (IBVP) for the system of compressible adiabatic flow
through porous media and the IBVP for its corresponding reduced system through Darcy’

laws on [0, 1] × [0,+∞) are considered respectively. The global existence of smooth solutions
to the IBVP problems for two systems are proved, and their large-time behavior is analyzed.
The time-asymptotic equivalence of these two systems are investigated, the decay rate of the

difference of solutions between these two systems are shown to be determined explicitly by the
initial perturbations and boundary effects. It is found that the oscillation of the specific volume
can be cancelled by that of entropy, i.e., the oscillation of the specific volume and entropy is
not required to be small.
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§1. Introduction

The system of compressible adiabatic gas flow through porous media can be modeled by
the following system 

vt − ux = 0,

ut + p(v, s)x = −αu, α > 0,[
e(v, s) + 1

2u
2
]
t
+ (pu)x = −αu2.

(1.0)

Here, v denotes the specific volume, u is velocity, s stands for entropy, p denotes pressure
with pv(v, s) < 0 for v > 0, and e is the specific internal energy for which es ̸= 0 and
ev + p = 0 holds due to the second law of thermodynamics. For smooth solutions, the
system (1.0) is equivalent to the following system

vt − ux = 0,

ut + p(v, s)x = −αu, α > 0,

st = 0,

(1.1)
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which is strictly hyperbolic with eigenvalues −λ1 = λ3 =
√
−pv, and λ2 = 0.

By approximating (1.1)2 with Darcy’s law, we obtain the following system
ṽt = − 1

αp(ṽ, s)xx,

ũ = − 1
αp(ṽ, s)x,

st = 0.

(1.2)

For the isentropic flow, namely s = const., (1.1) and (1.2) take the following forms
respectively {

vt − ux = 0,

ut + px = −αu, α > 0,
(1.1)′

which can be viewed as the Euler equations with friction term added to the momentum
equation in Lagrangian coordinates, and{

ṽt = − 1
αp(ṽ)xx,

ũ = − 1
αp(ṽ)x.

(1.2)′

It was first shown in [3] that the smooth solutions of the Cauchy problem for (1.1)′ with
initial data

(v, u)(x, 0) = (v0, u0)(x), v0(±∞) = v±,

tend time-asymptotically to the solutions of (1.2)′ with initial data

ṽ(x, 0) = v∗(x+ b),

where v∗ is the similarity solution to (1.2)′1 with v∗(±∞) = v±, and b a constant. Namely,
the nonlinear diffusive phenomena of smooth solutions to (1.1)′ occurs due to the damping
mechanism. Based on the resolution of perturbated Riemann problem for (1.1)′ in [10] and
[11], the nonlinear diffusive phenomena of entropy weak solutions to (1.1) was shown in [6].
There are other related results to [3], such as [2, 4, 5, 8, 9, 18, 21] for smooth solutions, and
[1, 14, 16, 20] for weak solutions.

We are interested in the question concerning the global smooth solutions to the hyperbolic
system (1.1) and the reduced decoupled system (1.2) with boundary effects, and in comparing
their large-time behaviors. In the present paper, we investigate the initial boundary value
problems (IBVP) for (1.1) on Ω ≡ [0, 1]× [0,+∞) with initial data

(v, u)(x, 0) = (v0, u0)(x), x ∈ [0, 1], (1.3)

and boundary values given by one of the followings

u(0, t) = u1(t), u(1, t) = u2(t), t ≥ 0, (1.4)1

u(0, t) = u1(t), p(1, t) = p2(t), t ≥ 0, (1.4)2

p(0, t) = p1(t), p(1, t) = p2(t), t ≥ 0, (1.4)3

where ui(t) → 0 (i = 1, 2) as t → +∞, and p = p(v, s)(x, t). Also, we consider the IBVP for
(1.2) with initial data

ṽ(x, 0) = ṽ0(x), x ∈ [0, 1], (1.5)

and the corresponding boundary values given by

p̃x(0, t) = f1(t), p̃x(1, t) = f2(t), t ≥ 0 (for i = 1), (1.6)1

p̃x(0, t) = f1(t), p̃(1, t) = p2(t), t ≥ 0 (for i = 2), (1.6)2

p̃(0, t) = p1(t), p̃(1, t) = p2(t), t ≥ 0 (for i = 3), (1.6)3

respectively, where p̃ = p(ṽ, s) and fi = −(αui + u′
i)(t) (i = 1, 2).

First, we consider the IBVP (1.1), (1.3) and (1.4)1 and the IBVP (1.2), (1.5) and (1.6)1
respectively. For simplicity, we consider a typical case p(v, s) = a0v

−γes(x) with a0 > 0 and
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γ ≥ 1, and assume that α = 1. In addition, we assume that the compatibility conditions of
the initial and boundary values at (0, 0) and (1, 0) hold.

Integrating (1.1)1 over [0, 1]× [0, t], we obtain∫ 1

0

v(x, t)dx =

∫ 1

0

v0(x)dx+

∫ t

0

(u2 − u1)(τ)dτ
∆
= Q(t). (1.7)

In order to avoid the appearance of v = 0 or v = +∞, we assume that there are positive
constants Q1 and Q2 such that

0 < Q1 ≤ Q(t) ≤ Q2 < +∞, t ≥ 0. (1.8)

Integrating (1.2)1 over [0, 1]× [0, t], we obtain∫ 1

0

ṽ(x, t)dx =

∫ 1

0

ṽ0(x)dx+

∫ t

0

(u2 − u1)(τ)dτ

+ (u2 − u1)(t)− (u2 − u1)(0)
∆
= Q̃(t). (1.9)

Similarly, we assume that for positive constants Q̃1 and Q̃2 it holds that

0 < Q̃1 ≤ Q̃(t) ≤ Q̃2 < +∞, t ≥ 0. (1.10)

Let vc = Q(+∞) and ṽc = Q̃(+∞), then it holds that ṽc = vc, provided that∫ 1

0

ṽ0(x)dx− (u2 − u1)(0) =

∫ 1

0

v0(x)dx. (1.11)

The main result in this case shows that the global smooth solutions to these two IBVP exist
and are equivalent time-asymptotically, in the sense that they have the same asymptotic
state and decay rate, in H2 norm for any γ ≥ 1, provided that ∥(v0 − v̂, ṽ0 − v̂)(·)∥ +
∥(u0x, (s− γ ln v0)x)∥1 + ∥(f1, f2)∥2 + ∥(f1, f2)∥L1 is small enough and (1.11) holds. Here

v̂ = vce
1
γ s(x)

(∫ 1

0

e
1
γ s(x)dx

)−1

. (1.12)

The other IBVP for (1.1) and (1.2) (namely, the IBVP (1.1), (1.3), (1.4)i and the IBVP
(1.2), (1.5), (1.6)i (i = 2, 3)) can be dealt with also. If we set

pi(t) → p > 0, as t → +∞, i = 1, 2, (1.13)

then the main results for those cases will show that the smooth solutions to the IBVP for
(1.1) and (1.2) are still equivalent time-asymptotically in H2 norm, also in the sense that
they have the same asymptotic state and decay rate, provided that ∥(v0− v̂1, ṽ0− v̂1)(·)∥2+
∥(u0x, (s− γ ln v0)x)∥1 + ∥f1∥2 + ∥(p1 − p, p2 − p)∥3 is small enough, where

v̂1(x) =
(
a0p

−1es(x)
) 1

γ

. (1.14)

Recently, the IBVP for (1.1) was discussed in [15] and [19] with different kinds of boundary
effects on a quarter plane, and in [7] on a strip Ω with fixed endpoints, i.e., u(0, t) = u(1, t) =
0, t ≥ 0. The large-time behavior of solutions and the relation to the corresponding nonlinear
diffusive waves are analysed therein. In [7], the characteristic method was used to control
the uniform upper and lower bounds of v(x, t), which are determined by the initial bounds
of v0(x) and are crucial in proving the existence of global smooth solutions to (1.1). In
addition, the oscillations of v0(x) and s(x) are required to be small, and only the case
1 < γ < 3 was discussed. However, we should point out that the method used in [7] does
not work in the present paper for general γ ≥ 1 and general boundary conditions because
the bounds of v(x, t) may not be controlled by the initial data v0(x) due to the influence
of boundary effects and entropy s(x). Instead, the energy method is used in the present
paper to overcome difficulties. As making the energy estimates, a new weight function
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p is selected to overcome the difficulties, and the IBVP problems for (1.1) and (1.2) are
reformulated differently from those in [7]. Though the value of v(x, t) may not be controlled
by the bounds of v0(x) due to the boundary effects and entropy, the new variable p can
express the common influence of boundary effects, initial perturbations, and entropy. Based
on this observation, we take the expected time-asymptotic state p̂ into consideration with
p̂ = p or p̂ = p(v̂, s), as making energy estimates, and assume that 0 < p− < p̂ < p+,
where p− and p+ are the a priori bounds of p(x, t), to which the a priori bounds of px (or
(s − γ ln v)x) and pt (or ux) are involved. Thus, the oscillations of v0(x) and s(x) are not
required to be small separately. The analysis also works for the IBVP (1.2), (1.5) and (1.6).
Moreover, we find that the boundary effects also influence the time-convergence rate between
the solutions to IBVP (1.1) and (1.2) (see Theorem 4.1). Our results contain that obtained
in [7] (see Remark 2.4). The idea to introduce a new variable and the above analysis can
also be used to solve the Cauchy problem for (1.1) with s(+∞) ̸= s(−∞) which is unsolved
in [5] (see Theorem5.1).

This paper is arranged as follows. The results for IBVP (1.1), (1.3) and (1.4) will be
stated and proved in Section 2. The corresponding results for IBVP (1.2), (1.5) and (1.6)
and the relation between solutions to the IBVP for (1.1) and (1.2) are given in Section 3.
Another suitable weight variable is also introduced in Section 4 to solve Cauchy problem for
(1.1) with s(+∞) ̸= s(−∞).

Notation. From now on, L2 will denote the usual space of square integrable functions
with norm ∥ · ∥ on I = [0, 1],R+ = (0,+∞), or R = (−∞,+∞), and H l(l ≥ 0) the usual
Sobolev space with norm ∥ · ∥l on I = [0, 1], R+, or R. We assume that for any of the above
norms written as ∥ · ∥n, the norm of a vector valued function (g1, g2, g3) is given by

∥(g1, g2, g3)∥n =

3∑
i=1

∥gi∥n.

§2. IBVP for the Original System

We will prove that the IBVP (1.1), (1.3) and (1.4) has global smooth solutions and analyze
their large-time behavior.

Assume (v0, u0) ∈ (H2)2 and v0(x) > 0. Let, for positive constant p,

N1 = ∥(u0x, (s− γ ln v0)x)∥1,

µ0 = ∥(f1, f2)∥2, µ1 = ∥f1∥2 + ∥p2 − p∥3, µ2 = ∥(p1 − p, p2 − p)∥3,
and denote

A1(t) =

√√√√∫ t+1

t

3∑
i=0

(∣∣∣diu1(t)

dti

∣∣∣2 + ∣∣∣diu2(t)

dti

∣∣∣2)dτ,
A2(t) =

√√√√∫ t+1

t

( 3∑
i=0

∣∣∣diu1(t)

dti

∣∣∣2 + (p2 − p)2 + p22t + p22tt + p22ttt

)
dτ,

A3(t) =

√√√√ 2∑
i=1

∫ t+1

t

((pi − p)2 + p2it + p2itt + p2ittt)dτ.

Let C be a generic positive constant. Then, we have
Theorem 2.1. Assume that ui ∈ H3 and fi ∈ L1 (i = 1, 2). Then, there is a δ0 > 0

such that if ∥(v0− v̂)(·)∥+N1+∥(f1, f2)∥L1 +µ0 ≤ δ0, a global solution (v, u) to (1.1), (1.3)
and (1.4)1 exists and satisfies, for some c0 > 0, that

∥(v − v̂, u)(·, t)∥22 ∼ C{e−c0t +A1(t)} → 0, as t → +∞,
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where v̂ is given by (1.12).
Theorem 2.2. Assume that u1 ∈ H3, f1 ∈ L1, and (p2 − p) ∈ H3. Then, there is a

δ1 > 0 such that if ∥(v0 − v̂1)(·)∥+N1 + µ1 ≤ δ1, a global solution (v, u) to (1.1), (1.3) and
(1.4)2 exists and satisfies, for some c0 > 0, that

∥(v − v̂1, u)(·, t)∥22 ∼ C{e−c0t +A2(t)} → 0, as t → +∞,

where v̂1(x) is given by (1.14).
Theorem 2.3. Assume that (pi − p) ∈ H3 (i = 1, 2). Then, there is a δ2 > 0 such that

if ∥(v0 − v̂1)(·)∥+N1 + µ2 ≤ δ2, a global solution (v, u) to (1.1), (1.3) and (1.4)3 exists and
satisfies, for some c0 > 0, that

∥(v − v̂1, u)(·, t)∥22 ∼ C{e−c0t +A3(t)} → 0, as t → +∞, (2.1)

where v̂1(x) is given by (1.14).
Remark 2.1. (1) It is easy to verify that for the IBVP (1.1), (1.3) and (1.4) it holds

that for any x ∈ [0, 1],
∫ x

0
(v(y, t)− vd(y))dy → 0, as t → +∞, where vd(x) = v̂(x) or v̂1(x).

(2) If for i = 1, 2 and j = 0, 1, 2, 3 it holds that

djui(t)

dtj
∼ Ce−η1t,

dj(pi(t)− p)

dtj
∼ Ce−η1t, t ≥ 0,

with a positive constant η1, then there is a constant η2 > 0 such that Ai(t) ∼ Ce−η2t(t ≥
0, i = 1, 2, 3), which implies that for IBVP (1.1), (1.3) and (1.4)

∥(v − vd)(·, t)∥2H2 + ∥u(·, t)∥2H2 ≤ Ce−η3t, t ≥ 0,

with a positive constant η3 and vd(x) given above.
(3) The condition that ∥(s − γ ln v0)x∥1 ≪ 1 implies that there is cancellation between

the oscillations of entropy and the initial specific volume.
We only prove Theorem 2.3. Theorems 2.1–2.2 can be proved by the same approach

except the different resolution on boundary terms.

Representing v by p and s, i.e., v = (a0e
s(x)p−1)1/γ = a(x)p−

1
γ , the IBVP (1.1), (1.3)

and (1.4)3 is reformulated into
a(x)(p−

1
γ )t − ux = 0,

ut + px = −u,

p(0, t) = p1(t), p(1, t) = p2(t),

(p, u)(x, 0) = (p0, u0)(x),

(2.2)

where a(x) = (a0e
s(x))1/γ and p0(x) = p(v0(x), s(x)) > 0.

Let us define the work space for (2.2) (equivalently (1.1), (1.3) and (1.4)3) as

X(0, T ) = {(p, u); (p− p, u) ∈ C0(0, T ; (H2)2), p− ≤ p ≤ p+, x ∈ [0, 1]},
where p is determined by (1.13), p− and p+ satisfy

p− < min
x∈[0,1]

{p, p0(x)}, p+ > max
x∈[0,1]

{p, p0(x)},

and assume apriorily, for (p, u) ∈ X(0, T ), that

η ≡
( 1

γ
+ 1

)
p−1(|pt|+ |px|+ |p+ − p−|) ≪ 1.

Since the local existence of smooth solutions to (2.2) (or (1.1), (1.3) and (1.4)3) can
be proved by the standard method in [12] and [13], what should be done is to obtain the
expected a priori estimates, i.e., Lemmas 2.1–2.3. To prove them, we first assume that (p, u)
(or (v, u)) has enough regularity, i.e., (p, u) ∈ C0(0, T ; (H3)2), then with the help of the
Friedrich’s mollifier, we can verify that they are true for (p, u) ∈ X(0, T ).
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By substituting (2.2)1 into (2.2)2, the IBVP (2.2) can be reformulated into
L1 ≡ a(x)(ptt + pt)− γp1+

1
γ pxx − a(x) 1+γ

γ p−1p2t = 0, (x, t) ∈ Ω,

p(0, t) = p1(t), p(1, t) = p2(t), t ≥ 0,

p(x, 0) = p0(x), pt(x, 0) = −γa
− 1

γ

0 p
1+ 1

γ

0 e−
1
γ s(x)u0x =: p3(x), x ∈ [0, 1].

(2.2)′

Consider the following equality

(p− p+ 2pt)L1 = 0. (2.3)

Integrating (2.3) over [0, 1]× [0, t], we get, after computation, that

1

2
E1(t) +

∫ t

0

E2(τ)dτ =
1

2
E0 +B1(t), (2.4)

where

E1(t) ≡
∫ 1

0

{
a(x)[(p− p)2 + 2(p− p)pt + 2p2t ] + 2γp1+

1
γ p2x

}
dx,

E2(t) ≡
∫ 1

0

{
a(x)

[
1−

(
1 +

1

γ

)
p−1(2pt + p− p)

]
p2t

+ γp1+
1
γ

[
1 +

(
1 +

1

γ

)
p−1(pt + p− p)

]
p2x

}
(x, t)dx, (2.5)

E0 ≡
∫ 1

0

{
a(x)((p0 − p)2 + 2(p0 − p)p3 + 2p23) + 2γp

1+ 1
γ

0 p20x

}
dx,

B1(t) ≡
∫ t

0

[
γ(2pt + p− p)p1+

1
γ px(x, τ)

]
g
∣∣∣1
x=0

dτ.

It is easy to obtain, due to (2.4), (2.5), and (2.2)’3, the following lemma.
Lemma 2.1. Under the assumptions of Theorem 2.3, it holds, for (p, u) ∈ X(0, T ), that∫ 1

0

{
a(x)((p− p)2 + p2t ) + γp1+

1
γ p2x

}
dx+

∫ t

0

∫ 1

0

{
γp1+

1
γ p2x + a(x)p2t

}
dxdτ

≤ C(N2 + |B1(t)|),

where N2 = N2
1 + ∥v0 − v̂1∥2, provided that η ≪ 1.

Differentiating (2.2)′1 with t, we get

∂tL1 ≡ a(x)pttt + a(x)ptt

(
1− 3(γ + 1)

γ
p−1pt

)
− γp1+

1
γ pxxt + a(x)n1pt = 0, (2.6)

where

n1 = n1(x, t) = − (1 + γ)

γ
p−1pt +

2γ + 1

γ + 1

( (1 + γ)

γ
p−1pt

)2

.

Consider the following equality

(pt + 2ptt)∂tL1 = 0. (2.7)

Integrating (2.7) by parts over [0, 1]× [0, t], and using Lemma 2.1, we obtain
Lemma 2.2. Under the assumptions of Theorem 2.3, it holds, for (p, u) ∈ X(0, T ), that∫ 1

0

{a(x)(p2t + p2tt) + γp1+
1
γ p2xt}dx

+

∫ t

0

∫ 1

0

{a(x)p2tt + γp1+
1
γ p2xt}dxdτ ≤ C(N2 + |B1(t)|+ |B2(t)|),
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where

B2(t) =

∫ t

0

[
γ(pt + 2ptt)p

1+ 1
γ pxt(x, τ)

]
g|1x=0dτ,

provided that η ≪ 1.
Then, we have, with the help of Lemmas 2.1–2.2, and (2.2)′1, that∫ 1

0

{a(x)(p2t + p2tt + (p− p)2) + γp1+
1
γ (p2x + p2xx + p2xt)}dx

+

∫ t

0

∫ 1

0

{a(x)(p2t + p2tt) + γp1+
1
γ (p2x + p2xt)}dxdτ (2.10)

≤ C(N2 + |B1(t)|+ |B2(t)|).

The terms in the right-hand side of (2.10) can be estimated as follows. We estimate the
terms in B2(t) first. Integrating by part, we have

B2(t) =
[
γ(2ptt + pt)p

1+ 1
γ px(x, τ)

]
g|1x=0g|tτ=0

+

∫ t

0

[
(2pttt + ptt + (2ptt + pt)

(
1 +

1

γ

)
p−1pt)γp

1+ 1
γ px(x, τ)

]∣∣∣1
x=0

dτ.

For any (x, t) ∈ [0, 1]× [0, T ], it holds that

γp1+
1
γ p2x ≤

∫ 1

0

γp1+
1
γ p2x

(
1 +

(
1 +

1

γ
)p−1|px|

)
dx+ 2

∣∣∣ ∫ 1

0

γp1+
1
γ pxxpxdx

∣∣∣
≤ C

∫ 1

0

(
γp1+

1
γ p2x

(
1 +

1

γ
a+p

−(1+ 1
γ )

−

)
+ a(x)(p2tt + p2t )

)
dx, (2.11)

where we have used the the equality (2.2)′1, a+ = max
x∈[0,1]

a(x), and η ≪ 1. Then, by Cauchy

inequality and (2.11), we have

|B2(t)| ≤ C(µ2
2 +N2) +

1

4

∫ 1

0

(
γp1+

1
γ p2x

(
1 +

1

γ
a+p

−(1+ 1
γ )

−

)
+ a(x)(p2tt + p2t )

)
dx

+
1

4

∫ t

0

∫ 1

0

(
γp1+

1
γ p2x

(
1 +

1

γ
a+p

−(1+ 1
γ )

−

)
+ a(x)(p2tt + p2t )

)
dxdτ, (2.12)

|B1(t)| ≤ Cµ2 +
1

4

∫ 1

0

{a(x)(p2tt + p2t ) + γp1+
1
γ p2x}dx. (2.13)

Substituting (2.12) and (2.13) into (2.10), we get
Lemma 2.3. Under the assumptions of Theorem 2.3, it holds, for (p, u) ∈ X(0, T ), that∫ 1

0

{a(x)(p2t + p2tt + (p− p)2) + γp1+
1
γ (p2x + p2xx + p2xt)}dx

+

∫ t

0

∫ 1

0

{a(x)(p2t + p2tt) + γp1+
1
γ (p2x + p2xt)}dxdτ ≤ C(N2 + µ2

2),

provided that η ≪ 1.
Remark 2.2. For Theorems 2.1–2.2, the boundary terms can be dealt with as follows.

For example, we consider Theorem 2.2 and only estimate the boundary terms at x = 0,
which we denote by

B3(t) =

∫ t

0

[
γp1+

1
γ ((p− p+ 2pt)px + (pt + 2ptt)pxt)

]
(0, τ)dτ.
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Noticing that px(0, t) = f1(t), pxt(0, t) = f ′
1(t) and

γp1+
1
γ p2t ≤

∫ 1

0

γp1+
1
γ

(
p2t

(
1 + (1 +

1

γ

)
p−1|px|

)
+ |pxtpt|

)
dx ≤ 3

∫ 1

0

γp1+
1
γ (p2t + p2xt)dx,

where we have used that η ≪ 1, we can estimate B3(t), by Cauchy inquality and Sobolev
embedding theorem, as

|B3(t)| ≤ |2γp1+
1
γ ptpxt|1x=0|+

∣∣∣ ∫ t

0

2γp1+
1
γ pt

(
pxtt +

(
1 +

1

γ

)
p−1ptpxt

)
(0, τ)dτ

∣∣∣
+
∣∣∣ ∫ t

0

[
γp1+

1
γ ((p− p2 + p2 − p+ 2pt)px + ptpxt)

]
(0, τ)dτ

∣∣∣
≤ C(µ2

1 +N2) +
1

4

∫ 1

0

(a(x)p2t + γp1+
1
γ p2xt)dx

+
1

4

∫ t

0

∫ 1

0

(a(x)p2t + γp1+
1
γ (p2x + p2xt))dxdτ.

By the local existence theorem and Lemma 2.3, we can prove that the a priori assumption
that η ≪ 1 is true if we choose C(N2 + µ2

2) small enough.
Now, we turn to the proof of the existence of global smooth solution to IBVP (2.2).

Integrating (2.2)2 over [0, 1]× [0, t], we have, after a computation, that

|u(x, t)| ≤ e−t
∣∣∣ ∫ 1

0

u0dx
∣∣∣+ ∣∣∣ ∫ t

0

(p2 − p1)(τ)e
−(t−τ)dτ

∣∣∣+ C

√∫ 1

0

u2
xdx.

which yields∫ 1

0

u2(x, t)dx ≤ C
(
e−t + ∥ux∥2 +

(∫ t

0

(|p2 − p|+ |p1 − p|)(τ)e−(t−τ)dτ
)2)

. (2.14)

Therefore, with the help of Lemma 2.3, (2.14) and (2.2), we can prove, by the standard
continuity argument, that the global smooth solutions to IBVP (2.2) exist, provided that
δ2 ≪ 1.

Moreover, the proof of (2.1) then follows from the Sobelov imbedding theorem, Grown-
wall’s lemma and a complicated analysis on Bi(t) and B2(t). Thus, the proof of Theorem
2.3 is completed.

§3. The IBVP for (1.2) and Comparision

We will prove that the IBVP (1.2), (1.5) and (1.6) has global smooth solutions and analyze
their large-time behavior in this section.

Assume ṽ0 ∈ H3 and ṽ0(x) > 0. Let v̂c(x) = ṽce
1
γ s(x)

( ∫ 1

0
e

1
γ s(x)dx

)−1

.

We have, corresponding to Theorems 2.1–2.3, the following theorems.
Theorem 3.1. Assume that ui ∈ H3 and fi ∈ L1 (i = 1, 2). Then, there is a δ3 > 0

such that if ∥ṽ0 − ṽc∥+ ∥(s− γ ln ṽ0)x∥2 + |(f1, f2)|L1 + µ0 ≤ δ3, a global solution (ṽ, ũ) to
(1.2), (1.5) and (1.6)1 exists and satisfies, for some c1 > 0, that

(∥(ṽ − ṽc)(·, t)∥23 + ∥ũ(·, t)∥22) ∼ C{e−c1t +A1(t)} → 0, as t → +∞.

Theorem 3.2. Assume that u1 ∈ H3, f1 ∈ L1, and (p2 − p) ∈ H3. Then, there is
a δ4 > 0 such that if ∥ṽ0 − ṽ1∥ + ∥(s − γ ln ṽ0)x∥2 + µ1 ≤ δ4, a global solution (ṽ, ũ) to
(1.2), (1.5) and (1.6)2 exists and satisfies, for some c1 > 0, that

(∥(ṽ − v̂1)(·, t)∥23 + ∥ũ(·, t)∥22) ∼ C{e−c1t +A2(t)} → 0, as t → +∞,

where v̂1(x) is given by (1.14).
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Theorem 3.3. Assume that (pi − p) ∈ H3(i = 1, 2). Then, there is a δ5 > 0 such that
if ∥ṽ0 − ṽ1∥ + ∥(s − γ ln ṽ0)x∥2 + µ2 ≤ δ5, a global solution (ṽ, ũ) to (1.2), (1.5) and (1.6)3
exists and satisfies, for some c1 > 0, that

(∥(ṽ − v̂1)(·, t)∥23 + ∥ũ(·, t)∥22) ∼ C{e−c1t +A3(t)} → 0, as t → +∞, (3.1)

where v̂1(x) is given by (1.14).
Remark 3.1. It is easy to verify that for the IBVP (1.2), (1.5) and (1.6) it holds that

as t → +∞,
∫ x

0
(ṽ(y, t)− vd(y))dy → 0 for any x ∈ [0, 1], where vd(x) = ṽc(x) or ṽ1(x).

Moreover, for IBVP (1.2), (1.5) and (1.6), it holds that Ai(t) ∼ e−η4t (i = 1, 2, 3) under
the same assumptions in Remark 2.1.

The proof of Theorems 3.1–3.3 is similar to that of Theorems 2.1–2.3, we omit the details
here.

With the help of Theorems 2.1–2.3 and Theorems 3.1–3.3, we can compare the asymptotic
behavior of the IBVP problems for (1.1) and (1.2).

Theorem 3.4. Let (v, u) and (ṽ, ũ) be the smooth solutions to IBVP (1.1), (1.3) and
(1.4) and IBVP (1.2), (1.5) and (1.6) respectively. Assume that (1.11) holds. Then, there is

a ε > 0 such that if
5∑

i=0

δi ≤ ε, it holds that

(∥(v − ṽ)(·, t)∥22 + ∥(u− ũ)(·, t)∥22) ∼ C{e−c3t +R(t)} → 0, as t → +∞,

where c3 is a given positive constant, and R(t) = A1(t), A2(t), or A3(t), corresponding to
different kinds of boundary conditions.

Remark 3.2. Theorem 3.4 shows that the IBVP problem (1.2), (1.3)–(1.4) can be
well approximated by the IBVP (1.2), (1.5) and (1.6). The convergence rate between their
smooth solutions is affected by the boundary effects, i.e., R(t).

§4. Remarks to Cauchy Problem

Consider the Cauchy problems for (1.1) and (1.2) with initial data given by

(v, u)(x, 0) = (v3, u3)(x), u3(±∞) = u±, v3(±∞) = v±, x ∈ R, (5.1)

ṽ(x, 0) = ṽ3(x), ṽ3(±∞) = v±, x ∈ R, (5.2)

respectively.
The Cauchy problems for (1.1) and (1.2) with initial data given by (5.1) and (5.2) re-

spectively were considered in [5], where the large-time behavior of global smooth solutions
and their relation are analysed under the assumption that (s(x)−s) has a compact support.
Now, Based on the idea to introduce the new variable p, we can investigate the case of
s(−∞) ̸= s(+∞).

Assume s(x) ∈ C3(R) with s(±∞) = s± and s+ ̸= s−. Set p± = p(v±, s±) and

v̂3(x) = v−e
1
γ (s(x)−s−), x ∈ R,

z0(x) =

∫ x

−∞

(
p

1
γ

3 (y)− p
1
γ

−

)
dy, z̃0(x) =

∫ x

−∞

(
p̃

1
γ

3 (y)− p
1
γ

−

)
dy, (5.3)

where p3(x) = p(v3, s)(x) > 0 and p̃3(x) = p(ṽ3, s)(x) > 0.
We have the following theorem.
Theorem 4.1. Assume that p− = p+, (z0, z̃0, u3x) ∈ H1, (v3− v̂3) ∈ H2, and (ṽ3− v̂3) ∈

H3. Then, there is a δ6 > 0 such that if

∥(z0, z̃0)∥1 + ∥(u3x, (s− γ ln v3)x)∥1 + ∥(s− γ ln ṽ3)x∥2 ≤ δ6,

the global smooth solution (v, u) of (1.1) and (5.1), and the global smooth solution (ṽ, ũ) of
(1.2) and (5.2) exist respectively and satisfy

(∥(v − ṽ)(·, t)∥22 + ∥(u− ũ)(·, t)∥22) → 0, as t → +∞. (5.4)
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Theorem 4.1 can be proved by a method similar to that used in Theorem 3.4. However,
it can also be proved based on the orginal idea in [3] to obtain a “wave” equation for new
variable p. We omit the details.

Remark 4.1. (1) The variable w is only useful in dealing with the IBVP (1.1), (1.3) and
(1.4)i and the IBVP (1.2), (1.5) and (1.6)i for i = 1, 2. It is not used for the IBVP (1.1),
(1.3) and (1.4)3 and the IBVP (1.2), (1.5) and (1.6)3 since the term (u(0, t) + ∂tu(0, t)),
t ≥ 0, in reformulating the IBVP problems for (1.1) and (1.2), is not known.

(2) It is interesting to investigate the time-decay rate in (5.4) by the methods in [2, 3,
18].
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