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BOUNDARY REGULARITY
FOR WEAK HEAT FLOWS**
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Abstract

The partial regularity of the weak heat flow of harmonic maps from a Riemannian manifold
M with boundary into general compact Riemannian manifold N without boundary is consid-
ered. It is shown that the singular set Sing(u) of the weak heat flow satisfies H} (Sing(u)) = 0,
with n = dimensionM. Here Hg is Hausdorff measure with respect to parabolic metric

p((@,1), (y, 8)) = max{|z — y|, /|t — s]}.

Keywords weak heat flow of harmonic maps, Hardy-BMO duality, partial regularity
2000 MR Subject Classification 58E20, 58J35

Chinese Library Classification 0176.3, 0192 Document Code A
Article ID 0252-9599(2001)04-0119-18

¢1. Introduction

Let (M, g) be a compact smooth Riemannian manifold of dimension n with C? boundary
OM, and (N, h) be a smooth compact Riemannian manifolds of dimension k. Assume that
(N, h) without boundary is isometrically embedded into the Euclidean space (R™, (.,.)).

We assume that Sobolev space

HY(M,N) = {u € H'(M;R™)|u(z) € N for a.e.x € M}
and for every u € H'(M; N), define the energy of u,

E(u) = / |Vul*do, (1.1)
M
where in local coordinate |Vu|? = g*# g;‘a g;f;, dv = y/det(gag)dx! ---da™ and (g*F) =
(9ap) ™!, and (gap) is the metric of M. Here and in the following, repeated indices mean to
sum.

A map u € HY(M,N) is called a weakly harmonic map if it satisfies Euler-Lagrange
equations for the energy E(u)
—Apu = A(u)(Vu, Vu) (1.2)

in weak sense, where A(u)(Vu, Vu) denotes the second fundamental form of N in R™ at
the point u.
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We will consider in this note the corresponding evolution problem with boundary condi-
tion for this equation:

0w — Au = A(u)(Vu,Vu) in M x (0,00), (1.3)
u|t:0 = ’LLO(ZL') in M7
u=f, O,u=0 ondM, t>0,

where f € C2(OM;N), ug € H(M; N), and ug|ors = f-
Define the space

Wli)f(M X R+;N) = {U € Hlloc(M X R+;N) | U € LQ(M X R+;Rm)7
Vu € LE (Ry; L*(M; P™™))},

where P™*™ is the space of n X m matrices.

The global existence of weak solutions to the heat flow of harmonic maps between compact
Riemannian manifold was first shown by Chen-Struwel”). Chen-Lin[®! then generalized this
to the case with Dirichlet boundary condition, where M has a C? boundary, i.e. the problem
(1.3)-(1.5) has a global weak solution.

In our previous articlel?”! we have considered interior regularity in the case that the
target IV is a general compact manifold. In this note we will consider the partial regularity
at boundary. The main difficulties are to estimate energy decay. And for the reason of
boundary, we must modify the energy at boundary, this turns out more complicated to
estimate. This energy modifying was used in [21] (see also [1]). In the argument of blow up,
it is essential that C? norm of boundary function is bounded.

Our main result is the following theorem.

Theorem 1.1. Let (M™, g)and (N*, h) be two smooth compact Riemannian manifolds, M
with C? boundary, while N without boundary. Assume that u € I/VliCQ(M x Ry; N) is a global
weak solution of (3)-(5) with ug € H*(M; N) which satisfies the monotonicity inequality (10)
and the energy inequality (22). Then there exists a closed subset Sing(u) C M x (0,00) such
that H}!(Sing(u)) = 0 and u € C*°(M x (0,00)\Sing(u); N), if f € C>°(0M;N). Here H'
is n-dimensional Hausdorff measure with respect to the parabolic metric p((x,t), (y,s)) =
max([z — . /=31

This paper is organized as follows: In Section 2, the monotonicity inequality and the
energy inequality at boundary is given. In Section 3 we prove energy decay lemma, thus we
can complete the proof of Theorem 1.1.

For the sake of simplicity, we will assume that M is flat, g is the standard metric of R™,

M =R"% ={z=(x1, - ,z,) € R"|z, > 0}. So the problem (1.3)-(1.5) is of the form:
Ou — Au = A(u)(Vu, Vu) in R? x (0, 00),
uli—o = up(r) on R,

T, =0 :f(.’I}/,O)7 t>0,$/: (xla"' 7xn—1)'

u

§2. Monotonicity inequality and Energy inequality

For the regularity of weak heat flow of harmonic maps, the monotonicity inequality is
very important. Struwel2627 found it out firstly in the studying of heat flow.

In the following we adopt the same notations as those in [27] and [6]. Let z = (z,t) €
R"™ X R. For zg = (xo,tp) and r > 0, write

B (zg) = {x € R"||zg — x| <},
P.(20) = {z = (z,t) € R" x R||x — xo| < 7, |t — to] < r?},
Ty (20) = {2z = (x,t) € R" x Rl|tg — 4r* <t <ty —r?}.
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The fundamental solution of the backward heat equation
1 |z — xol?
[r(to — )]2/2 P ( T4t —1)
Let G(z) = G0 (2), Tr = T.(0,0), P, = P.(0,0), B, = B,(0), and write B () =
B, (zo) N RY, P+( 0) = Pr(z0) N RY, T (20) = Ty (20) N R
For zp € OR"} x Ry, we define

1
UE(R,u,2) = 5/+ [Vul*G.¢3, (2.1)
TBR(Z)
where @g(z) = p(*%), and ¢ € C§°(B1/2(0)) is a cut-off function such that 0 < ¢ <1
and ¢ = 0 on By 4, and B > 0 is any fixed constant.
We have
Lemma 2.1 (Monotonicity inequality). There ezists a c(n, ||f||c2) such that for any

29 = (z0,t0) € OR} x Ry and any 0 < Ry < Ry < min (‘2/—,?, i)

Gz(): ), t < to.

U5 (Ry,u, 20) < exp(c(Re — R1)) 5 (Ry, u, Zo)+c(R2—R1)(62—|-ﬁ / |Vu|2). (2.2)

2 > (20)
Remark. Our monotonicity inequality at boundary differs from that in [3].
Proof of Lemma 2.1. We may assume 2 = (0,0). Defining ug(z,t) = u(Rz, R*t), we
have UF (R, u,0) = ¥J(1,ug,0). As in [3] we have

AU (R, u,0) du
f)’ ) Y _ R B 2
—R /T+ VURV(TR 'V f(R2, O))G(pﬂ

+/ VukV(z'Vx/f(Rx',O))Ggp%—l—/ |Vuk\2Gng(Rx)v¢(@>f
T+ T B /B

=T+ II+1II. (2.3)

1

We have that

1= [, (s xzzﬂx%—w/vmffmmeo»ewz

dUR Edul / / 2
/T+ 2t ‘ /; 2t dR (2'Var f(Re ’O))Ggoﬁ
- / Alur) (Vug, Vug)(@'Va f(R, 0)) G

Ty
dup Rx\ R
_9 et il i Bl
- Vur IR G(pg(Rx)Vgo( 3 )ﬁ
Rx\ 2R
+2/T;r VuRchg(Rx)ch(?) 3 (2'V f(R2',0))
=L +1L+ I3+ 14+ 15, (2.4)

I <

S oy

+c/ 2|t‘|xv f(Ra',0)|Ge3

+c/4ﬁ2 /|m | W PIVAR O G|t| (2.5)

2R

IN
Sy
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Since
a2
[ wRvses 0P
—4p2 J|z|< 5 ||
—ﬁQ s |$|2
cnlfle) [ [ e (-
—42 \z\g% ( 4‘t|)
a2 B
< c/ /m\m exp(—r?)r" Tt < ¢4, (2.6)
,4ﬂ2 0
we have
I
I < gl + c(n, [| fllc2) 8%, (2.7)

I<e / [VunGla|[V fIRe} < / /  IVurPGl| VIR
I<sm

Similarly we may obtain

1> —c\Il+ —cB*—cp” / |Vul?, (2.9)
[1/2
IT < Uk 42, (2.10)
IIT < Uk +cf~ / |Vul?, (2.11)
Py
so that

cl\I/+

ﬁ > —c\IIJr —cf% — B / |Vul?, (2.12)

where we use the fact I; > 0. This easily finishes the proof of the lemma.

Set Ey (r,u,z) = - fP+(z) |Vul?

Lemma 2.2. There exists a constant K > 0, depending only on n, such that

Ef (r,u,2) < KES (r1,u, 21). (2.13)

For z € Pat1
1/2.

Proof. When we have the monotonicity inequality (2.2), the proof of (2.13) is easy (see
Lemma 2.2 in [6]).

The following lemma is an energy inequality at boundary.

Lemma 2.3 (Energy inequality). For any zy € OR!} x R} and ¢ € Cg°(R") and
0 <t <ty < o0, it is true that

Loyl ([ omur)e < ([ awar)osaf - puivor
ix[tl,tz] 1><[t1,t2]
(2.14)

(z1) and 0 < r < bry, where a and b are positive constants satisfying a + 2b <

Proof. Since u; € T, N and A(u)(Vu, Vu) LT, N, we have

/ /nutout(b — Aueup? =0,
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but
to to 1 to
—/ Au o up? = / / —0|Vul|?*¢* + 2Vu @ Vous g — / O uud?
t1 JRY t1 i 2 ti JORY
1 1
<2 2 1 2
_2(/R1|Vu|)<t2> 2(/1w|)<t1>
v [ upe) ([ vaPieep)”
R% X[t1,t2] T X [t1,t2]

From the energy inequality above we can get
Lemma 2.4. There exists a constant c¢(n) such that

7’2/ |0ul? < c(n)/ |Vul|?, (2.16)
P (2) P (2)
2

for z = (z,t) €ORY x Ry, 0 <r </t
Proof. Via Fubini’s theorem we have

t4r? t—(3r)?
/ |Vul? / / |Vul? > / / |Vul?
P (2) B (z) Jt B (z) Jt—(3r)2

5
> 2 2.2y.2 9
> (/Bj(x)|Vu| )( a’r?)r 6

where « € (% %) Choose a smooth cut-off function ¢ € C§°(R™) such that ¢ = 1 in
Bar(x), and ¢ = 0 in outside B,(x), and 0 < ¢ < 1, and [V¢| < £. From energy inequality

(2.15)

we obtain
t+(ar
[, 10wp < / P < [ [ jupe?
P%r(z) Plh.(z t—(ar)? 4

g(/ V)t — (an)? +4/t”/ [ PIVoP < /j Vul,

The lemma is proved.

§3. Energy Decay and Compactness Lemma

As the usual blow-up argument, the key part for the proof of Theorem 1.1 is the following
small energy decay lemma. Set E*(r,u,z) = = fP+(Z |Vul? + r. We have

Lemma 3.1. There exist constants 0 < ey, T < 1 such that if ET(r,u,z) < €, then
1
Et(r,u,z) < §E+(r,u,z), (3.1)

for any z € R X Ry and 0 < 1 < /1.
Proof. We argue by contradiction. Fixed 7 € (0,1), were (3.1) false, there would exist
{z1} CORY x Ry and 0 < r, < \/tj, such that

Et(rp,u,2) = )\i — 0, (3.2)

whereas

1
Et(rry,u, 21,) > 5)\% (3.3)
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We rescale our variables to the unit parabolic half ball Pt C R% x R as follows. If
z = (x,t) € P, write
vz, t) = w, (3.4)
Ak
where uy(z,t) = u(y,s) = u(zr + rez, ty + rit), fr = f,0) = f(z} + rra’,0), and
Y = T + 11T, s:tk—i—r,%t.

Since
1 1
Vg = —(Vury — Vi f(y',0)ry), Oor, = —sury,
Ak Ak
we see that
271
vt sl [ wus e
Ak P (1) P (20)
<3 ()\ + (|l flle2)r) < ellflle2), (3.5)

Ay
where we use the fact that 1% < 1, rx < 1. And since ug(0,t) — fx(0,0) = 0, we have

[ ( x,t) — fe(2,0)| < rp|Vau| 4+ 72 |0sul + ri|V f],

so that
21
Lownl g [ 9 ol < el (36
AT SR ()
1/2 k 1,
where we use Lemma 2.4. Similarly we obtain
/ |0vk|? < c(n). (3.7)
12
But
1 1 1
= [overz o [ Jivae-vsp
T Jpt Ay (T7) P2, (20) 2
Lo fl2e(m)® 1 7 1
Sk Mlee TR - L = 3.8
> 4 2)\% )\2 =4 2 ||fHC2 =12’ ( )
where we assume 7 < o < + for some g such that 2 + o[/ f[|2. < 75. Hence there exists
a subsequence such that
vp — v strongly in L*(P[, 12 R™), (3.9)
Vup — Vo weakly in L?( 1/Z,P"XM), (3.10)
O, — Opv  weakly in L*(P}, 12 R™). (3.11)

Since vy is a weak solution of the equation on P1 20

Oy, — Avy, = /\kA(uk)(VUk, V”Uk) + 27’kA(uk)(V’Uk, Vf)

,,,2 r2
3 Alr) (VA V) + AT,
k

”k‘P;f/zmaRn =0.

Combining (3.4)-(3.10) and letting f\ <1, rx — 0 one can get that v is a weak and smooth
solution of the following equation
Ow—Av=0 inPl, vlp: (opn =0. (3.12)

1/2
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Moreover
< Z<e .
vaumwm)_c/+\vu <e (3.13)
1/2
Thus we have that for 7 sufficient small
1 1
— Vo2 <er? < —. (3.14)
™ Jp+ 12
If we can prove
Lemma 3.2 (Compactness).
Vur — Vv in L*(P{), (3.15)
8

then from (3.15) and (3.3) we get a contradiction with (3.14).

In a way similar to [20] we can prove the compactness lemma. For the reader’s convenience
we give a complete proof in Appendix B.

Finally using Lemma 3.1 and interior partial regularity (see [20]), we can finish the proof
of Theorem 1.1 by the standard method as in [14] or [6].

Appendix A

In this appendix, we introduce the parabolic Hardy space.
Definition A.1. Let Q be an open set of R*™* and f € LL (Q; R™). We call that f

loc

belongs to the local Hardy space Hi, .(Q; R™) if for any compact subset K CC Q there ewists

loc
an € > 0 such that fK sup sup |¢, x f| < oo, where
0<r<e peA

A={secgrm ) e [ o=}
and for ¢ € A, ¢.(z) = r*"‘”%(%, T%) forr >0, z=(x,t) € R" X R.

Because ¢,  f is well defined, and supp(¢ x f) C Q for all 7 < p(z,9Q), we associate for
each K CC Q)

1l ey = / sup  supldy * I (A1)
K 0<r<e<p(z,002) p€A

When Q = R"!, € can be taken to be infinity, then the parabolic Hardy space
HURSR™) = { € Lio(R™) 2|11 < oo,

where f*(z) = sup sup |¢, * f](2).
0<r<oo peA

Definition A.2. For f € Li,(R" ' R™), set
1
f*(z):supi |f7(f)z,r|'
r>0 | Pr(2)] Jp(2)
We call that f belongs to BMO,(R"'; R™) if f.(z) € L=(R""') and define the BMO norm
of f; IfIByo = [ f«llLoe (rn+1), where

o —

P e

|P-(2)] is (n + 1)-dimensional Lebesgue measure of P.(z).
Fefferman’s duality theorem claims:

H)(R™1)* = BMO,(R"). (A.2)

|f - (f)277“|5
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Now let Q C R" and 0 < T < oo, and write Qr = Q x [0,7]. Let f,g € L?>(R'; HY(R™)),
and write

{f7g}’ij = (f(xat)g(xvt)xi)xj - (f(x’t)g(x7t>xj)xi
= f(l'vt)a:jg(xvt)a:"' - f(xvt)aﬂg(xvt)a:j' (A3)

Then {f, g}i; € L*(R; L'(R™)), and thanks to its divergence structure, we have the following
lemma.

Lemma A.1. Let g € L*(0,T; HY(Q, R™)), f € H*(Q7; R™). Then
{f,9}ij € Hioe(Qr, R™)
and for every K CC Qr, it is true that
N\ 1/2 ) N\ 1/2
[Fabislaco < et ( [ [9oP) ([ 1wiRriasR) " A
Qrp Qrp
Proof. For any ¢ € A, z = (z,t) € K and r > 0, we have
¢+ {f,9}ii(2)
_(n r—y t—T
=0 [ (DY (g7 — ()97 s

r 72

— p—(nt+1) /I%n+1(f — ()2 )(gyi by — gyi yi )y, T)dydT

ca ([ =) (fwar)”

< CT?MH)(/P o |V9\pl>i [(/P . |Vf|p*>p% + (/P . rp*|8tf|p*>’%*}

= C(/P,.<Z> vol”)” K/P() Vi) (/P,,.(Z) o), (A.5)

1
3 . s . 1 1 * _ _p(n+2)
where we have used Sobolev-Poincaré inequality, and 1 < p < 2, St = 1, p* = CE=

Now we introduce Hardy-Littlewood and generalized Hardy-Littlewood maximal functions

1 / o
= sup [fly, Ms(f) = sup /1y
P (2)CQr { |P-(2)] P.(2) } P (2)CQr { |P-(2)] P,(2) }
From Theorem 3 in [22] or [23] we have that

M(f)(z)

. 1 1 4
IMs(Plles < elfllos, 1<l h =7 — (4.6)
Hence using (3.15) we obtain from (2.14)
[ swswle )
K 0<r<e<p(z,00Qr) pEA
) / M(IVglp')?[M(\Vflp*)?* + My (1017
w[( [ w(vary? )"
L p* q /q
/ M(|Vg[P')¥ / M- (|0, fIP) 7 ) } (A7)
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Nowtakingl<%<p’<2 so 1 < p* <2, we have
2
TP = [ MVl <eliwar 1 < [ 1veR (A
T
2 l 2
IV, = [ Vs )* o< [ v )
LP LP Qr
Choosing ¢’ such that l % land ¢ > p/, k = ]% > | = %, furthermore
p<q<2("+2)7q <2,p 1,1 > 1, we obtain
s 4 %
HM(|V9|p)||pq/ < df||Vgl” HZ; <oK['F / |Vg| (A.10)

p*l

1M (

%y <o [ o) Fe( [T e
Lp* K
<) [ 1ause)” (A11)

Therefore the lemma is proved by virtue of (2.16)-(A.11).

In the end of the section, we introduce the relation of Hj,. and H. The following charac-
terization of function f € H (P) is essentially due to Semmes!?4.

Lemma A.2. Let P be an open set in R"T'. Then f € H] .(P) if and only if for every
n € C(P) with [n#0, n(f —v) € HY(R™) and

1n(f =¥l ey < (B + [[fllaer )
Inf

where v = fnnf, and K = spt(n).

Appendix B

In this appendix we give the proof of Lemma 3.2.

Since vg,v = 0 on the boundary P/, N OR™!, we may extend the v, and v in Py /5 by
zero; the functions extended are denoted yet by vg and v.

let ¢ be a smooth function from R"*! to R, such that ( = 1 on Py, 0 < ¢ <1,
¢ € Cg°(Py/2). For every [, let wi(uz) be the 1-form defined on P, /5 by

wy(ug) = e; Ad(vg — v),

and w; (uy) be the 1-form on R"*1 defined by w;(ux) = e; A d({(vx — v)). On Py 4, Wy = wy.
We use the Hodge decomposition (see [18] or [20])

wy(ug) = dog +d* B,  d*agp, = dpy. = 0, (B.1)
where the differential forms ay, € L?(R : HY(R"; A%)) and By, € L*(R; HY(R"; A?)) and
”alkHL?(R;Hl(R";AO)) + ||ﬂlk||L2(R;H1(R";A2)) < C(n)||17’l(uk)||L2(R;L2(Rn;Al))~ (B.2)
Clearly we have
lwi(ur)| = [(V(vk —v), en)| < e(|[Vouk| + [VBi|) in Pyg. (B.3)

Since dw; = dd*§;, the coeflicients 5;;1 of B in the standard basis satisfy the equation

B = {er, C(ve — v)}4j, (B.4)
where we use the notation {f, g}ij = flx,t)pig(x,t) s — f(x,t)pig(x,t),:. We have the
following lemma from [6]

Lemma B.1. The sequence {Cvy} is bounded in BMO(R™ 1),
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Thus we obtain firstly
Lemma B.2. There is a constant ¢, independent of k, such that

/ VB < e (B.5)
Rn+1

Proof. Multiplying (B.4) by ;7 and integrating on R"*!, we get
/ Vi = - / {e, ¢ (vx = v)}is Bl = / {en, B} (v = v).
Rn+1 Rn+1 Rn+1

From Lemma A.1 we know that {/\;lel, ll,jc} € Hlloc(P7/16) and
J

g

B i i\ 1/2 1/2
10 e Bl <e( [ 198EE) ([ 1ol + [vuif)
Pr/16 Pr/16

o\ 1/2
SC/ \CAR
(Pm| i

where we use that |V, e;| < cAp|V,vk|. From Semmes theorem (see Lemma A.2) we have

/R”+1 VB = Ak /Rn+1 C({)\Elez,ﬁfi}” — )¢ (v —v) + /\k/ Vi (ve — v)

Rnt+1

< /\kHC({)\;l@lyﬁ%} — vl (mri )y 1€ (v — v) lBMO((RR1) + )\k/’

17 Rn+

o\ 1/2
|V[3”J€|2) /R+1C2|vk—v|

vk | v — vl
1

< X1+ I{AT e B Py 00) + e ( /

P7/16
<en(1+ (/P Vi 2)1/2).

7/16

Now from Hélder inequality we easily complete the proof.

Secondly we estimate the .

Step 1. For any 2 € P7/16 and 0 < r < 1/64 there exists a constant ¢;,independent of £,
such that

/ VB < errm. (B.6)
PT(ZO)

We have in fact that klim e VB[ = 0 implies that |[V3;7|? has the equicontinuous
—00

integral, i.e., for every 7 > 0, there exists 6(r) > 0 such that [, |Vﬂfi|2 < r", if the measure

of E |E| < 6, and that there exists a subsequence such that |Vﬁli,z|2 — 0 a.e. Consequently,
for this d(r) > 0, there exists a closed subset D C Pj/, such that |P;,;\D| < ¢ and

IVBi|? < 1in D, by Yegonoft’ theorem. So

/ VB = (/ +/ VIVBHE < P (20) 0 D] 417 < ™2 1™ < e
P,(z0) P, (z0)ND P,.(z0)\D

Since [Vau| < ¢(|V(vk — v)| + [VBL]) on Py, taking z; = (0,0), 7y = 1, and u = uy,
a="7/16, b=1/32 in Lemma 2.2, we obtain

1 c g
T [Vay|* < —n/ V(v —)|? + VB2
" JPr(20) " Py (20)
¢ 2 2 ij |2 9
= [Vug| + [Vo]® + |vﬂlk| <cK [Vog|* +c+ e <eg,

P,- (Zo) P1
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where we use (B.6).

Thus

[ e awnl < (o s — (@) el?)
— ale — (k) e (z0)l S\ 57— aip — (Quk) P, (2
|Pr(20)] J P, (20) (z0) |Pr(20)| J P, (20) (0)

1 1/2 1 1/2
< (7 lawe — (uk) B, (x \2) < C(*/ |V041k|2> <cg,
|Pr(20)| J P, (20) (wo) " JPo(z0)

where (f)g = %fEf

The John-Nirenberg inequality implies that

{aur} is bounded in LP(P;/16), 1 <p < oo. (B.7)

Step 2. Fix 1/8 < 7 < s < 1/4. Assume that n € C5°(Ps), n = 1 in Pr,|V,n| <
Then

c

Incur Mo (rr+1y < P (B.8)
If 2o € Poyer,7 < €7/2,0 < € < 1/9, then P,(20) C Pr/16. We have
1
Inour — (maur) p, (z0)|
1P (20)] Jp, (20)
. otk = (@) py o) + o | |(7ae) 0w (o)
Nk — k)P, (2 NAIE) P, (20) — T\QUE) P, (2
= 1Pe(20)] Jp, o0) P (z0)] b (a0 =0 (=)
1
< an— wrcol+ [ (")l (2)|
1P,(20)] Jp, (=) Py (z0) J P» (Zo)
cr a2\ D)oy (1-1/(n42)
<c+ lou| < ¢+ n+1( | ) r
8§ =T JPy(20) Pr(z0)

C C
<c+ < )
S—T S—T

where we use (B.7) with p =n + 2.

Since n = 0 outside of Py, the same inequality holds for 2y € R"*?\ Py, and 0 < 7 <
eT/2. Step 3. We prove that for some 1 < ¢ < 2

1/q
/ Veurl® < c/ . — (), +c(/ Dok =0)|7) T+ ex (BY)
Py/g P14 Py
Similar to the case of interior estimatel?®!| there are the orthonormal frame {e1, -, em}

on TN and 2-form w;, € L?((0,00); H' (B} (x); A?)) such that for any x € OR",r > 0, on
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B;F(z) x Ry it holds that

d*wim = e; N dey, = e @ dey,, (B.10)

i 2
/ Ve |? / %Veiel‘ Sc/+|Vu|2, (B.11)
Br
//|wm| //|vu|2 (B.12)
B+

(Vu,Ve)) = (Vuee,, Ve oey,) = (due ey, d wyy)

IA

| /\

= (d" Wi, du) ® €, (B.13)
(d*wim, du) = — * {d(xwim) A du) I Wy
| | LA
(Oru, €1) — div(Vu, e;) = (— Z Z {wlm, } €m- (B.15)

Thus we can get that on B} (z3) x Ry for every k,

(Oru, e1(u)) — div(Vu, e;(u)) = —(Vu, Ve (u)), (B.16)
/ Ve (u)]? < c(n)/ |Vul?, (B.17)
P (z1) P (zr)
/ |Vwim|?(y, s)dyds < c(n)/ \Vul?(y, s)dyds. (B.18)
(Ek,tk) (Ilmtk)

Equivalently on P;r/z

(Opvg, er(ug)) — div(Vog, e (ug)) = —(Vog, Vey(ug)) + :\E@f, er(ur)), (B.19)

/ Ver(u)|? < e(n) / Vi ?
P P

1
< (A2 / Vo2 + 72|V P2
P

< clm Iflcf [ (Ful + 17, (1.20)
Pl
where we use that {5 <1. And
k
/ Veoriml? < efn) / Vil < c(n, || fllc2) A2 / (IVoel + 1)7, (B.21)
P P P

where w,?lm(x, t) = wllfn(xk + 7,2, ty + rit). Furthermore, noticing that

Vur = AV, + V fp,
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from (2.5) and (2.6) we have
2

(Vg (z,t), Ve [ug(z, t)]) = r—’“[(Vu,Ve;(u)) —(Vf, Ve (u))]

Ak
r2
= =™ ZZ {wk Imo> U }Z ecp(z,t) — i(vf, Ve (u)) (B.22)
m i<j
= "“ZZ{w o} eem(x ) - TE (v 1, Verw)
m 1<j . lm? i e Ak ’ !
5 e 22 {wk lm,fk} o em(,t). (B.23)
m i<j
Thus on PJ72 it holds that

(atvk, er(ug))y — div(Vug, e;(ux))

ZZ {wk lm?vk} e en(z,t)

Z Z {Wk Im? fk} o (x,t)
+ I\i(Vf, Vei(u)) + )\—i (Af, er(ug)). (B.24)
k

Equivalently from (3.12)
<5‘t(vk —v),er(ug)) — div(V (v — v), e;(ug))

ZZ {Wk tm> ¥ } *em(,1)

D03 (ke £} ¢ enl@t) + (V1. Ver(w)
+ ;E(Aﬁ el(ur)) + (Vo, Ve (up)). (B.25)

Now
d*ﬁl(uk) = d*dozlk = Aalk.

Since vg,v = 0 in the P, /) We may assume the equation above holds in P/, for the sake of

simplicity. In view of the equation above it holds in P; /4 that
—Aay, = —div(V(vg —v),e;)
—<8 (v —v), e (ug)) + (Vu, Vey)

—1)n*t ZZ {wk lm?vk} eey,

m i<j

T2
0ty {wk > }_j o em(z,t) + )\—:(Vf, Ve (u))

m 1<j

%(Af, er(ug)). (B.26)
k
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Multiplying (B.26) by n?(ay, — (cux)p, ), we obtain

/ | Vour|* = —2/ nVnVaug (o — (k) p,)
P PS\PT

- / (O (ox — ), en)n (ke — (ur)p,)
;

s

/(Vv Ver)n (azk*(azk)Ps)

+/ 1)nH ZZ {Wk lm’vk} o e (cur — (Qur)p,)
/ )\j (Vf, Ver(u)n*(car — (auw)p,)

2
/ )\*’“ Af, er(ur))n® (o — (aur)p,)
=h+L+3+1s+ I+ I+ I7. (B.27)

For I, we have from Holder inequality that

c
I < c/ |Va1k|2 + 72/ loax — (ouk)p
PP, (s—1) Jp,

For Iy and I3, using Holder inequality and (B.7) we have

< ([ o= 0R) ([ tow= e )"
L, oot (o tean )

) 1/2 N\ 1/2
< C[/ |V +1} (/ ok — (k) p, | )
Py/o Py
1/2
< C(/ |y — (azk)P1/4|2) )
Py

I3 < C>\k/ |Vuglloar — (cur) p,| < cAg.

s

IA
o

For Iy,and I5, in a way similar to the procedure of proving Lemma B.2, by using Lemma
A.1 and (B.8) we obtain Iy + Is < ¢\ /(s — 7). Here we use that

IVl =rel VI < crill fllez < e
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For I and I, using rp < A\, we have I + I7 < cAg. Thus we get

c

/P |Va|* < C/P - |Va|> + m/ laur, — (cur) p, |2

1/2
+ C(/ | — (alk)P1/4|2) +ch +c
Py

C
< c/ [Vau|® + 7/ |lur — (cur) p, 41
P\P; (s—1)2 Pi4 e

12 ),
+ c(/ | — (alk)P1/4|2) + .
Pij4 S—T

Ak
s—T

Now filling the hole we get

C
/ [Vag|? < 9/ |V041k|2+72/ \Vour — (aur)py . °
P. P, (s—1) P4

172 )
+c(/ |alk—(azk|2) .
P14 S—T

where 6 = +£-. Using the Lemma 3.1 of Giaquintal’ and (B.7), we have

Py

1/2
< C(/ |k — (Oélk)Pl/4|2> + Ak (B.28)
Py

1/2
/ |Vage|* < C/ |y — (Oélk)Pl/4\2 + C(/ |y — (Oélk)Pl/4\2> + ek
Py/g Py

Step 4. There exists a constant ¢, independent of k, such that for some 1 < g < 2

/ |alk — (alk)P1/4|2 < C/ |V(Uk — ,U>|q>1/q + cAg. (B.29)
Py Py

2n

Since ay, € L*(R; WH2(R™)), it follows from Sobolev embedding theorem with ¢ = =
for a.e. t that

2/q
/ laur — (aur) B, |* < C(/ |V04zk|q)
By

By

<c([ V-0l +|vae)
By

o, woo) e, e

2/q

IN
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Write a = —1/16,b = 1/16. Then using Hoélder inequality we get

1/q
/ lau — () py ) < / laur — () B, . ° < C(/ |Valk\q>
Py Py Py

Sc/b(/B |Vvk—Vv|q)2/q+/b(/B V3 q>2/q
a v ) g
= c(/ab /31/4 [Vor — Vvq>1/q(/ab (/31/4 Vg, — Vv|q)1/(‘1‘1))(q—1)/q

[ v
Py
=11+ 1
Since II; < ¢\ by (B.5), we only estimate IT;.
In the energy inequality, taking ¢ € C§°(B,, (zx)), 0 < ¢ < 1, ¢ = 1 on B,, jao(x),
|V¢| < ¢/rk, and letting |t; — tx| <73, i = 1,2, with t; < s, we get

ta
/ Vul?(t2) < / Vul () + 5 / / Vu?
Brk/2 B"'k Tk t1 B"'k (mk)

g/ |vu|2(t1)+%/ V.
B Tk J Py (21)

Tk
Set y =x +rpx, t=1tg+ 7‘]%7'. Then
/ Vou(72) < / Vo2 () + c/ Voul?, (B.30)
B2 B: Py
with —1 S 1 S T2 S 1.
Since [p, |[Vug|* = 1, we have the following lemma.

Lemma B.3. There exist a constant ca, independent of k, and 1, € [—1,—1/16] such
that fBl |Vor|?(11) < ca.

Proof. Write
71/16 ) 1/2
ak:/ gi(7), gkm:(/ wuef?)
—1 Bq

1/2
ay < C( |V'Uk|2) <ecs,
P

Then

where c3 is independent of k. So there exists a subsequence such that ay — a.

If a = 0, this shows that g, — 0 in L'. We assume that g, — 0 a.e.. Thus by
Yegonoff theorem, for any € > 0 there exists a closed subset D C [—1,—1/16] such that
[[-1,-1/16]\D| < €, and |gx(7)| < ¢, for some constant ¢ independent of k. Thus we take
tx € D, then gi(tx) < c.

If @ > 0, then for any measurable subset E C [—1,—1/16], we have

1/2
/gk < (/ gi) |E|1/2 < C|E|1/2,
E E

so that for any k, [, gr < a/3, if |E| < o = dg. For any N, write

9c2 —

Enig = {m;91(1) > N} N[-1,-1/16], Ef; =[-1,—1/16]\Enz.
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Since

N|ENk|S/ gr < a < cs,

Eng
ie., |Enk| < c3/N, we can take Ny large enough, so that |En,x| < do.
On the other hand, since a; — a, there exists a ko such that a; > 2a/3 for k > ko. So
we have that

/ gk:ak—/ gr > 2a/3—a/3 =a/3.
¢ E

Nok Nok
This implies that |Ef, ;| > 0 for k > ko. Then we can take t; € EY, ; C [-1,—1/16] such
that gi(tx) < Ng. Thus we complete the proof.
Combining (B.30) with Lemma 3.5 we get

/ Vurl2(r) < / Vo 2(m) + / Voul? < s+ e = e, (B.31)
B2 By Py

where 1 > 7> —1/16 > 7 and ¢4 is independent of k..
We can estimate I1; as follows:

1L < c(/ab /31/4 |V, — VU|q) 1/q(/ab (/Bl/4 Vo — vUlq)1/(qfl))(q,1)/q
< c(/Pl/4 Vo, — Vv|q)1/q(/ab (/Bl/4 Vo VU|2)q/(2(q71))>(q—1)/q

_ 1/q (¢—1)/q
(/) 1)(/ oy~ Vo) (/ Vi~ Vo)
Py Py

< c(/Pl/4 |V, — Vv|q)1/q.

Thus we prove (B.29).
Now we have from (B.3), (B.5), (B.28) and (B.29) that for some 1 < ¢ < 2

/ (V(wk — ), en)? < e / Vol + V8P
P1/s

Pyg

IN

N 1/2
< C(/ lou — (auk) Py 4 ) + A
Py

< c((/Pl/4 |V (v — v)|‘1)1/q + )\k)l/z + cAg.

Assume that {e,(ux)} is the normal frame of N at uy(x,t). Since
(0rv, eq(ur)) — div(Vu, eq(ur)) = —(Vv,Ves) on Py,
multiplying it by (v — vk, eq)¢?, where ¢ € C§°(Py/2),{ =1 on Py 4, we have
[ caw)?@ = [ @wean v+ [ (Tocadon v, Tieat?)
Pyjo Pyo

Pys

(B.32)

+/ (Vv, Ve ) (v, — v, eq)C2.
Pyo
Here we use that Vouy Le, (ug). Using (3.6)-(3.8) and (3.10) we get
/ (Vv,eq)? =o(1) as k — oco. (B.33)
Py
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Finally We have the following compact lemma.

Lemma B.4. Suppose that {vy, }$2, are bounded in L°°((0,T); WHP(M; R™)), {Opvr }52,
are bounded in L*((0,T); L*(M; R™*1)), and {gx }32, are bounded in L*((0,T); L*(M; R™)),
and suppose that {v} satisfy the following equations in the sense of distribution

0
P=2008. Jdet(g) k) = g, (t,x) € (0,T) x M.  (B.34)

1 0 |
——(|Vv
Vdet(g) 33% g dxp
Here (M, g) is a compact Riemannian manifold.
Then {vg}32, are precompact in L4((0,T); WH4(M; R"T1)) for every 1 < g < p.
Its proof can be found in [4] for p > 2 and in [19] for 1 < p < 2.
In view of (B.31)-(B.33) and Lemma B.4 with M = P, 4 and p = 2 and

Oyvp —

2 2
9k = Mo Aur) (Yo, Vor) + 2 A(u) (Yo, V) + 2k A(u ) (Vf, V) + :—’;Af,

Ak
there exists a subsequence such that
lim V(v —v)|* = lim / (vk — v), €)% + Vv, eq)? = 0. (B.35)
k—oo P1/8 k*)OO PI/S Z Z

This completes the proof of Lemma 3.2.
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