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BOUNDARY REGULARITY
FOR WEAK HEAT FLOWS**

LIU XIANGAO*

Abstract

The partial regularity of the weak heat flow of harmonic maps from a Riemannian manifold
M with boundary into general compact Riemannian manifold N without boundary is consid-

ered. It is shown that the singular set Sing(u) of the weak heat flow satisfies Hn
ρ (Sing(u)) = 0,

with n = dimensionM . Here Hn
ρ is Hausdorff measure with respect to parabolic metric

ρ((x, t), (y, s)) = max{|x− y|,
√

|t− s|}.
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§1. Introduction

Let (M, g) be a compact smooth Riemannian manifold of dimension n with C2 boundary
∂M , and (N,h) be a smooth compact Riemannian manifolds of dimension k. Assume that
(N,h) without boundary is isometrically embedded into the Euclidean space (Rm, ⟨., .⟩).

We assume that Sobolev space

H1(M,N) = {u ∈ H1(M ;Rm)|u(x) ∈ N for a.e.x ∈ M}
and for every u ∈ H1(M ;N), define the energy of u,

E(u) =

∫
M

|∇u|2dv, (1.1)

where in local coordinate |∇u|2 = gαβ ∂ui

∂xα
∂ui

∂xβ , dv =
√
det(gαβ)dx

1 · · · dxn and (gαβ) =

(gαβ)
−1, and (gαβ) is the metric of M . Here and in the following, repeated indices mean to

sum.
A map u ∈ H1(M,N) is called a weakly harmonic map if it satisfies Euler-Lagrange

equations for the energy E(u)

−∆Mu = A(u)(∇u,∇u) (1.2)

in weak sense, where A(u)(∇u,∇u) denotes the second fundamental form of N in Rm at
the point u.
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We will consider in this note the corresponding evolution problem with boundary condi-
tion for this equation:

∂tu−∆u = A(u)(∇u,∇u) in M × (0,∞), (1.3)

u|t=0 = u0(x) in M, (1.4)

u = f, ∂νu = 0 on ∂M, t > 0, (1.5)

where f ∈ C2(∂M ;N), u0 ∈ H1(M ;N), and u0|∂M = f .
Define the space

W 1,2
loc (M ×R+;N) = {u ∈ H1

loc(M ×R+;N) | ut ∈ L2(M ×R+;R
m),

∇u ∈ L2
loc(R+;L

2(M ;Pn×m))},

where Pn×m is the space of n×m matrices.
The global existence of weak solutions to the heat flow of harmonic maps between compact

Riemannian manifold was first shown by Chen-Struwe[7]. Chen-Lin[5] then generalized this
to the case with Dirichlet boundary condition, where M has a C2 boundary, i.e. the problem
(1.3)-(1.5) has a global weak solution.

In our previous article[20] we have considered interior regularity in the case that the
target N is a general compact manifold. In this note we will consider the partial regularity
at boundary. The main difficulties are to estimate energy decay. And for the reason of
boundary, we must modify the energy at boundary, this turns out more complicated to
estimate. This energy modifying was used in [21] (see also [1]). In the argument of blow up,
it is essential that C2 norm of boundary function is bounded.

Our main result is the following theorem.
Theorem 1.1. Let (Mn, g)and (Nk, h) be two smooth compact Riemannian manifolds, M

with C2 boundary, while N without boundary. Assume that u ∈ W 1,2
loc (M×R+;N) is a global

weak solution of (3)-(5) with u0 ∈ H1(M ;N) which satisfies the monotonicity inequality (10)
and the energy inequality (22). Then there exists a closed subset Sing(u) ⊂ M × (0,∞) such
that Hn

ρ (Sing(u)) = 0 and u ∈ C∞(M × (0,∞)\Sing(u);N), if f ∈ C∞(∂M ;N). Here Hn
ρ

is n-dimensional Hausdorff measure with respect to the parabolic metric ρ((x, t), (y, s)) =

max{|x− y|,
√
|t− s|}.

This paper is organized as follows: In Section 2, the monotonicity inequality and the
energy inequality at boundary is given. In Section 3 we prove energy decay lemma, thus we
can complete the proof of Theorem 1.1.

For the sake of simplicity, we will assume that M is flat, g is the standard metric of Rn,
M = Rn

+ = {x = (x1, · · · , xn) ∈ Rn|xn ≥ 0}. So the problem (1.3)-(1.5) is of the form:

∂tu−∆u = A(u)(∇u,∇u) in Rn
+ × (0,∞), (1.6)

u|t=0 = u0(x) on Rn
+, (1.7)

u|xn=0 = f(x′, 0), t > 0, x′ = (x1, · · · , xn−1). (1.8)

§2. Monotonicity inequality and Energy inequality

For the regularity of weak heat flow of harmonic maps, the monotonicity inequality is
very important. Struwe[26,27] found it out firstly in the studying of heat flow.

In the following we adopt the same notations as those in [27] and [6]. Let z = (x, t) ∈
Rn ×R. For z0 = (x0, t0) and r > 0, write

Br(x0) = {x ∈ Rn||x0 − x| < r},
Pr(z0) = {z = (x, t) ∈ Rn ×R||x− x0| < r, |t− t0| < r2},
Tr(z0) = {z = (x, t) ∈ Rn ×R|t0 − 4r2 < t < t0 − r2}.
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The fundamental solution of the backward heat equation

Gz0 =
1

[4π(t0 − t)]n/2
exp

(
− |x− x0|2

4(t0 − t)

)
, t < t0.

Let G(z) = G(0,0)(z), Tr = Tr(0, 0), Pr = Pr(0, 0), Br = Br(0), and write B+
r (x0) =

Br(x0) ∩Rn
+, P

+
r (z0) = Pr(z0) ∩Rn

+, T
+
r (z0) = Tr(z0) ∩Rn

+.
For z0 ∈ ∂Rn

+ ×R+, we define

Ψ+
β (R, u, z) =

1

2

∫
T+
βR(z)

|∇u|2Gzφ
2
β , (2.1)

where φβ(x) = φ(x−x0

φ ), and φ ∈ C∞
0 (B1/2(0)) is a cut-off function such that 0 ≤ φ ≤ 1

and φ = 0 on B1/4, and β > 0 is any fixed constant.
We have
Lemma 2.1 (Monotonicity inequality). There exists a c(n, ∥f∥C2) such that for any

z0 = (x0, t0) ∈ ∂Rn
+ ×R+ and any 0 < R1 < R2 ≤ min

(√
t0

2β , 1
4

)
Ψ+

β (R1, u, z0) ≤ exp(c(R2−R1))Ψ
+
β (R2, u, z0)+c(R2−R1)

(
β2+β−n

∫
P+

β
2

(z0)

|∇u|2
)
. (2.2)

Remark. Our monotonicity inequality at boundary differs from that in [3].
Proof of Lemma 2.1. We may assume z0 = (0, 0). Defining uR(x, t) = u(Rx,R2t), we

have Ψ+
β (R, u, 0) = Ψ+

β (1, uR, 0). As in [3] we have

dΨ+
β (R, u, 0)

dR
=

∫
T+
β

∇uR∇
(duR

dR
− x′∇x′f(Rx′, 0)

)
Gφ2

β

+

∫
T+
1

∇uk∇(x′∇x′f(Rx′, 0))Gφ2
β +

∫
T+
β

|∇uk|2Gφβ(Rx)∇φ
(Rx

β

)x
β

= I + II + III. (2.3)

We have that

I = −
∫
T+
β

(
∆uR +

x∇uR

2t

)(duR

dR
− x′∇x′f(Rx′, 0)

)
Gφ2

β

=

∫
T+
β

−R

2t

∣∣∣duR

dR

∣∣∣2Gφ2
β +

∫
T+
β

R

2t

duR

dR
(x′∇x′f(Rx′, 0))Gφ2

β

−
∫
T+
β

A(uR)(∇uR,∇uR)(x
′∇x′f(Rx′, 0))Gφ2

β

− 2

∫
T+
β

∇uR
duR

dR
Gφβ(Rx)∇φ

(Rx

β

)R
β

+ 2

∫
T+
β

∇uRGφβ(Rx)∇φ
(Rx

β

)2R
β

(x′∇x′f(Rx′, 0))

= I1 + I2 + I3 + I4 + I5, (2.4)

I2 ≤ I1
5

+ c

∫
T+
β

R

2|t|
|x′∇x′f(Rx′, 0)|Gφ2

β

≤ I1
5

+ c

∫ −β2

−4β2

∫
|x|≤ β

2R

|x′|2|∇f(Rx′, 0)|2GR2

|t|
. (2.5)
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Since ∫ −β2

−4β2

∫
|x|≤ β

2R

|x′|2|∇f(Rx′, 0)|2GR2

|t|

≤ c(n, ∥f∥C2)

∫ −β2

−4β2

|t|−
n+2
2

∫
|x|≤ β

2R

|x′|2 exp
(
− |x|2

4|t|

)
≤ c

∫ −β2

−4β2

∫ β

4R
√

|t|

0

exp(−r2)rn+1 ≤ cβ2, (2.6)

we have

I2 ≤ I1
5

+ c(n, ∥f∥C2)β2, (2.7)

I3 ≤ c

∫
T+
β

|∇uR|2G|x∥∇f |Rφ2
β ≤

∫ −β2

−4β2

∫
|x|≤ β

2R

|∇uR|2G|x∥∇f |R

≤ c(n,N, ∥f∥C2)βΨ+
β . (2.8)

Similarly we may obtain

I ≥ −cΨ+
β − cβ2 − cβ−n

∫
P+

β/2

|∇u|2, (2.9)

II ≤ Ψ+
β + cβ2, (2.10)

III ≤ Ψ+
β + cβ−n

∫
P+

β/2

|∇u|2, (2.11)

so that

dΨ+
β

dR
≥ −cΨ+

β − cβ2 − cβ−n

∫
P+

β/2

|∇u|2, (2.12)

where we use the fact I1 ≥ 0. This easily finishes the proof of the lemma.

Set E+
0 (r, u, z) = 1

rn

∫
P+

r (z)
|∇u|2.

Lemma 2.2. There exists a constant K > 0, depending only on n, such that

E+
0 (r, u, z) ≤ KE+

0 (r1, u, z1). (2.13)

For z ∈ P+
ar1(z1) and 0 < r < br1, where a and b are positive constants satisfying a+ 2b <

1/2.
Proof. When we have the monotonicity inequality (2.2), the proof of (2.13) is easy (see

Lemma 2.2 in [6]).
The following lemma is an energy inequality at boundary.
Lemma 2.3 (Energy inequality). For any z0 ∈ ∂Rn

+ × R+ and ϕ ∈ C∞
0 (Rn) and

0 ≤ t1 ≤ t2 < ∞, it is true that∫
Rn

+×[t1,t2]

|ut|2ϕ2 +
(∫

Rn
+

ϕ2|∇u|2
)
(t2) ≤

(∫
Rn

+

ϕ2|∇u|2
)
(t1) + 4

∫
Rn

+×[t1,t2]

|Du|2|∇ϕ|2.

(2.14)
Proof. Since ut ∈ TuN and A(u)(∇u,∇u)⊥TuN , we have∫ t2

t1

∫
Rn

+

ut • utϕ
2 −∆u • utϕ

2 = 0,
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but

−
∫ t2

t1

∫
Rn

+

∆u • utϕ
2 =

∫ t2

t1

∫
Rn

+

1

2
∂t|∇u|2ϕ2 + 2∇u • ∇ϕutϕ−

∫ t2

t1

∫
∂Rn

+

∂νuutϕ
2

≤ 1

2

(∫
Rn

+

|∇u|2
)
(t2)−

1

2

(∫
Rn

+

|∇u|2
)
(t1)

+ 2
(∫

Rn
+×[t1,t2]

|ut|2ϕ2
) 1

2
(∫

Rn
+×[t1,t2]

|∇u|2|∇ϕ|2
) 1

2

.
(2.15)

From the energy inequality above we can get
Lemma 2.4. There exists a constant c(n) such that

r2
∫
P+

r
2
(z)

|∂tu|2 ≤ c(n)

∫
P+

r (z)

|∇u|2, (2.16)

for z = (x, t) ∈ ∂Rn
+ ×R+, 0 < r ≤

√
t.

Proof. Via Fubini’s theorem we have∫
P+

r (z)

|∇u|2 =

∫
B+

r (x)

∫ t+r2

t−r2
|∇u|2 ≥

∫
B+

r (x)

∫ t−( 3
4 r)

2

t−( 1
2 r)

2

|∇u|2

≥
(∫

B+
r (x)

|∇u|2
)
(t− α2r2)r2

5

16
,

where α ∈
(

1
2 ,

3
4

)
. Choose a smooth cut-off function ϕ ∈ C∞

0 (Rn) such that ϕ = 1 in

Bαr(x), and ϕ = 0 in outside Br(x), and 0 ≤ ϕ ≤ 1, and |∇ϕ| ≤ c
r . From energy inequality

we obtain∫
P+

r
2
(z)

|∂tu|2 ≤
∫
P+

αr(z)

|∂tu|2ϕ2 ≤
∫ t+(αr)2

t−(αr)2

∫
Rn

+

|ut|2ϕ2

≤
(∫

Rn
+

|∇u|2
)
(t− (αr)2) + 4

∫ t+(αr)2

t−(αr)2

∫
Rn

+

|ut|2|∇ϕ|2 ≤ c

r2

∫
P+

r (z)

|∇u|2.

The lemma is proved.

§3. Energy Decay and Compactness Lemma

As the usual blow-up argument, the key part for the proof of Theorem 1.1 is the following
small energy decay lemma. Set E+(r, u, z) = 1

rn

∫
P+

r (z)
|∇u|2 + r. We have

Lemma 3.1. There exist constants 0 < ϵ0, τ < 1 such that if E+(r, u, z) ≤ ϵ20, then

E+(r, u, z) ≤ 1

2
E+(r, u, z), (3.1)

for any z ∈ Rn
+ ×R+ and 0 < r <

√
t.

Proof. We argue by contradiction. Fixed τ ∈ (0, 1), were (3.1) false, there would exist
{zk} ⊂ ∂Rn

+ ×R+ and 0 < rk <
√
tk such that

E+(rk, u, zk) = λ2
k → 0, (3.2)

whereas

E+(τrk, u, zk) >
1

2
λ2
k. (3.3)
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We rescale our variables to the unit parabolic half ball P+
1 ⊂ Rn

+ × R as follows. If

z = (x, t) ∈ P+
1 , write

vk(x, t) ≡
uk(x, t)− fk

λk
, (3.4)

where uk(x, t) = u(y, s) = u(xk + rkx, tk + r2kt), fk = f(y′, 0) = f(x′
k + rkx

′, 0), and
y = xk + rkx, s = tk + r2kt.

Since

∇vk =
1

λk
(∇urk −∇yf(y

′, 0)rk), ∂tvk =
1

λk
∂surk,

we see that ∫
P+

1

|∇vk|2 ≤ 2

λ2
k

[ 1

rnk

∫
P+

rk
(zk)

|∇u|+
∫
P+

rk
(zk)

|∇f |2
]

≤ 2

λ2
k

(λ2
k + c(∥f∥C2)r2k) ≤ c(∥f∥C2), (3.5)

where we use the fact that rk
λ2
k
≤ 1, rk ≤ 1. And since uk(0, t)− fk(0, 0) = 0, we have

|uk(x, t)− fk(x
′, 0)| ≤ rk|∇u|+ r2k|∂su|+ rk|∇f |,

so that ∫
P+

1/2

|∇vk|2 ≤ 2

λ2
k

1

rnk

∫
P+

1
2
rk

(zk)

|∇u|2 + |∇f |2 + r2k|∂su|2 ≤ c(∥f∥C2), (3.6)

where we use Lemma 2.4. Similarly we obtain∫
P+

1/2

|∂tvk|2 ≤ c(n). (3.7)

But
1

τn

∫
P+

τ

|∇vk|2 ≥ 1

λ2
k

1

(τrk)n

∫
P+

τrk
(zk)

1

2
|∇u|2 − |∇f |2

>
1

4
− τrk

2λ2
k

−
∥f∥2C2(τrk)

2

λ2
k

≥ 1

4
− τ

2
− τ2∥f∥2C2 ≥ 1

12
, (3.8)

where we assume τ ≤ α0 ≤ 1
4 for some α0 such that α0

2 +α2
0∥f∥2C2 ≤ 1

16 . Hence there exists
a subsequence such that

vk → v strongly in L2(P+
1/2;R

m), (3.9)

∇vk ⇀ ∇v weakly in L2(P+
1/2;P

n×m), (3.10)

∂tvk ⇀ ∂tv weakly in L2(P+
1/2;R

m). (3.11)

Since vk is a weak solution of the equation on P+
1/2,

∂tvk −∆vk = λkA(uk)(∇vk,∇vk) + 2rkA(uk)(∇vk,∇f)

+
r2k
λk

A(uk)(∇f,∇f) +
r2k
λk

∆f,

vk|P+
1/2

∩∂Rn
+
= 0.

Combining (3.4)-(3.10) and letting rk
λ2
k
≤ 1, rk → 0 one can get that v is a weak and smooth

solution of the following equation

∂tv −∆v = 0 in P+
1/2, v|P+

1/2
∩∂Rn

+
= 0. (3.12)



No.1 LIU, X. G. BOUNDARY REGULARITY FOR WEAK HEAT FLOWS 125

Moreover

∥∇v∥L∞(P+
1/4

) ≤ c

∫
P+

1/2

|∇v|2 ≤ c. (3.13)

Thus we have that for τ sufficient small
1

τn

∫
P+

τ

|∇v|2 ≤ cτ2 <
1

12
. (3.14)

If we can prove
Lemma 3.2 (Compactness).

∇vk → ∇v in L2(P+
1
8

), (3.15)

then from (3.15) and (3.3) we get a contradiction with (3.14).
In a way similar to [20] we can prove the compactness lemma. For the reader’s convenience

we give a complete proof in Appendix B.
Finally using Lemma 3.1 and interior partial regularity (see [20]), we can finish the proof

of Theorem 1.1 by the standard method as in [14] or [6].

Appendix A

In this appendix, we introduce the parabolic Hardy space.
Definition A.1. Let Ω be an open set of Rn+1 and f ∈ L1

loc(Ω;R
m). We call that f

belongs to the local Hardy space H1
loc(Ω;R

m) if for any compact subset K ⊂⊂ Ω there exists
an ϵ > 0 such that

∫
K

sup
0<r<ϵ

sup
ϕ∈Λ

|ϕr ∗ f | < ∞, where

Λ =
{
ϕ ∈ C∞

0 (Rn+1) : supp(ϕ) ⊂ P1,

∫
Rn+1

ϕ = 1
}
,

and for ϕ ∈ Λ, ϕr(z) ≡ r−(n+2)ϕ
(

x−y
r , t

r2

)
for r > 0, z = (x, t) ∈ Rn ×R.

Because ϕr ∗ f is well defined, and supp(ϕ ∗ f) ⊂ Ω for all r < ρ(z, ∂Ω), we associate for
each K ⊂⊂ Ω

∥f∥H1(K) =

∫
K

sup
0<r<ϵ<ρ(z,∂Ω)

sup
ϕ∈Λ

|ϕr ∗ f |. (A.1)

When Ω = Rn+1, ϵ can be taken to be infinity, then the parabolic Hardy space

H1(Rn+1;Rm) =
{
f ∈ L1

loc(R
n+1) : ∥f∗∥L1 < ∞

}
,

where f∗(z) = sup
0<r<∞

sup
ϕ∈Λ

|ϕr ∗ f |(z).

Definition A.2. For f ∈ Lloc(R
n+1;Rm), set

f∗(z) = sup
r>0

1

|Pr(z)|

∫
Pr(z)

|f − (f)z,r|.

We call that f belongs to BMOρ(R
n+1;Rm) if f∗(z) ∈ L∞(Rn+1) and define the BMO norm

of f , ∥f∥BMO ≡ ∥f∗∥L∞(Rn+1), where

(f)z,r =
1

|Pr(z)|

∫
Pr(z)

|f − (f)z,r|,

|Pr(z)| is (n+ 1)-dimensional Lebesgue measure of Pr(z).
Fefferman’s duality theorem claims:

H1
ρ(R

n+1)∗ = BMOρ(R
n+1). (A.2)
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Now let Ω ⊂ Rn and 0 < T < ∞, and write ΩT = Ω × [0, T ]. Let f, g ∈ L2(R1;H1(Rn)),
and write

{f, g}ij ≡ (f(x, t)g(x, t)xi)xj − (f(x, t)g(x, t)xj )xi

= f(x, t)xjg(x, t)xi − f(x, t)xig(x, t)xj . (A.3)

Then {f, g}ij ∈ L1(R;L1(Rn)), and thanks to its divergence structure, we have the following
lemma.

Lemma A.1. Let g ∈ L2(0, T ;H1(Ω, Rm)), f ∈ H1(ΩT ;R
m). Then

{f, g}ij ∈ H1
loc(ΩT , R

m)

and for every K ⊂⊂ ΩT , it is true that

∥{f, g}ij∥H1(K) ≤ c(K,n)
(∫

ΩT

|∇g|2
)1/2(∫

ΩT

|∇f |2 + |∂tf |2
)1/2

. (A.4)

Proof. For any ϕ ∈ Λ, z = (x, t) ∈ K and r > 0, we have

ϕr ∗ {f, g}ij(z)

= r−(n+2)

∫
Rn+1

ϕ
(x− y

r
,
t− τ

r2

)
((f(y, τ)g(y, τ)yi)yj − (f(y, τ)g(y, τ)yj )yi)dydτ

= r−(n+1)

∫
Rn+1

(f − (f)z,r)(gyjϕyi − gyiϕyj )(y, τ)dydτ

≤ cr−(n+3)
(∫

Pr(z)

|f − (f)z,r|p
) 1

p
(∫

Pr(z)

|∇g|p
′
) 1

p′

≤ cr−(n+3)
(∫

Pr(z)

|∇g|p
′
) 1

p′
[( ∫

Pr(z)

|∇f |p
∗
) 1

p∗
+
(∫

Pr(z)

rp
∗
|∂tf |p

∗
) 1

p∗
]

≤ c
(∫

Pr(z)

|∇g|p
′
) 1

p′
[( ∫

Pr(z)

|∇f |p
∗
) 1

p∗
+
(∫

Pr(z)

rp
∗
|∂tf |p

∗
) 1

p∗
]
, (A.5)

where we have used Sobolev-Poincaré inequality, and 1 < p < 2, 1
p + 1

p′ = 1, p∗ = p(n+2)
(n+2)+p .

Now we introduce Hardy-Littlewood and generalized Hardy-Littlewood maximal functions

M(f)(z) = sup
Pr(z)⊂ΩT

{ 1

|Pr(z)|

∫
Pr(z)

|f |
}
, Mδ(f) = sup

Pr(z)⊂ΩT

{ rδ

|Pr(z)|

∫
Pr(z)

|f |
}
.

From Theorem 3 in [22] or [23] we have that

∥Mδ(f)∥Lk ≤ c∥f∥Ll , if 1 < l ≤ k,
1

k
=

1

l
− δ

n+ 2
. (A.6)

Hence using (3.15) we obtain from (2.14)∫
K

sup
0<r<ϵ<ρ(z,∂ΩT )

sup
ϕ∈Λ

|ϕr ∗ f |(z)

≤ c(n)

∫
K

M(|∇g|p
′
)

1
p′ [M(|∇f |p

∗
)

1
p∗ +Mp∗(|∂tf |p

∗
)

1
p∗ ]

≤ c(n)
[( ∫

K

M(|∇g|p
′
)

2
p′
)1/2(∫

K

M(|∇f |p
∗
)

2
p∗
)1/2

+
(∫

K

M(|∇g|p
′
)

q′
p′
)1/q′(∫

K

Mp∗(|∂tf |p
∗
)

q
p∗
)1/q]

. (A.7)
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Now taking 1 < 2(n+2)
(n+2)+2 < p′ < 2, so 1 < p∗ < 2, we have

∥M(|∇g|p
′
)∥

2
p′

L
2
p′

=

∫
K

M(|∇g|p
′
)

2
p′ ≤ c∥|∇g|p

′
∥

2
p′

L
2
P ′

≤
∫
ΩT

|∇g|2, (A.8)

∥M(|∇f |p
∗
)∥

2
p∗

L
2

P∗
=

∫
K

M(|∇f |p
∗
)

2
p∗ ≤ c∥|∇f |p

∗
∥

2
p∗

L
2

P∗
≤

∫
ΩT

|∇f |2. (A.9)

Choosing q′ such that 1
q + 1

q′ = 1 and q′ > p′, k = q
p∗ > l = q(n+2+p)

p(n+2+q) , furthermore

p < q < 2(n+2)
n , q′ < 2, q

p∗ > 1, l > 1 , we obtain

∥M(|∇g|p
′
)∥

q′
p′

L
q′
p

≤ c∥|∇g|p
′
∥

q′
p′
q′
p′

≤ c|K|1−
q′
2

(∫
K

|∇g|2
) q′

2

, (A.10)

∥Mp∗(|∂tf |p
∗
)∥

q
p∗

L
q
p∗

≤ c
(∫

K

|∂tf |p
∗l
) q

p∗l ≤ c
(∫

K

|∂tf |2
) q

p∗l
p∗l
2 |K|(1−

p∗l
2 ) q

lp∗

≤ c(K)
(∫

K

|∂tf |2
) q

2

. (A.11)

Therefore the lemma is proved by virtue of (2.16)-(A.11).
In the end of the section, we introduce the relation of Hloc and H. The following charac-

terization of function f ∈ H1
loc(P ) is essentially due to Semmes[24].

Lemma A.2. Let P be an open set in Rn+1. Then f ∈ H1
loc(P ) if and only if for every

η ∈ C∞
0 (P ) with

∫
η ̸= 0, η(f − ν) ∈ H1(Rn+1) and

∥η(f − ν)∥H1(Rn+1) ≤ c(K)(1 + ∥f∥H1(K)),

where ν =
∫
ηf∫
η
, and K = spt(η).

Appendix B

In this appendix we give the proof of Lemma 3.2.
Since vk, v = 0 on the boundary P1/2 ∩ ∂Rn+1, we may extend the vk and v in P1/2 by

zero; the functions extended are denoted yet by vk and v.
let ζ be a smooth function from Rn+1 to R+ such that ζ = 1 on P1/4, 0 ≤ ζ ≤ 1,

ζ ∈ C∞
0 (P1/2). For every l, let wl(uk) be the 1-form defined on P1/2 by

wl(uk) = el ∧ d(vk − v),

and w̃l(uk) be the 1-form on Rn+1 defined by w̃l(uk) = el ∧ d(ζ(vk − v)). On P1/4, w̃l = wl.
We use the Hodge decomposition (see [18] or [20])

w̃l(uk) = dαlk + d∗βlk, d∗αlk = dβlk = 0, (B.1)

where the differential forms αlk ∈ L2(R : H1(Rn; Λ0)) and βlk ∈ L2(R;H1(Rn; Λ2)) and

∥αlk∥L2(R;H1(Rn;Λ0)) + ∥βlk∥L2(R;H1(Rn;Λ2)) ≤ c(n)∥w̃l(uk)∥L2(R;L2(Rn;Λl)). (B.2)

Clearly we have

|wl(uk)| = |⟨∇(vk − v), el⟩| ≤ c(|∇αlk|+ |∇βlk|) in P1/4. (B.3)

Since dw̃l = dd∗βl, the coefficients βij
lk of βlk in the standard basis satisfy the equation

∆βij
lk = {el, ζ(vk − v)}ij , (B.4)

where we use the notation {f, g}ij ≡ f(x, t)xig(x, t)xj − f(x, t)xjg(x, t)xi . We have the
following lemma from [6]

Lemma B.1. The sequence {ζvk} is bounded in BMO(Rn+1).
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Thus we obtain firstly
Lemma B.2. There is a constant c, independent of k, such that∫

Rn+1

|∇βij
lk|

2 ≤ cλk. (B.5)

Proof. Multiplying (B.4) by βij
lk and integrating on Rn+1, we get∫

Rn+1

|∇βij
lk| = −

∫
Rn+1

{el, ζ2(vk − v)}ijβij
lk =

∫
Rn+1

{el, βij
lk}ζ

2(vk − v).

From Lemma A.1 we know that
{
λ−1
k el, β

ij
lk

}
ij
∈ H1

loc(P7/16) and

∥{λ−1
k el, β

ij
lk}ij∥H1

loc(P7/16)
≤ c

(∫
P7/16

|∇βij
lk|

2
)1/2(∫

P7/16

|∂tvk|2 + |∇vk|2
)1/2

≤ c
(∫

P7/16

|∇βij
lk|

2
)1/2

,

where we use that |∇zel| ≤ cλk|∇zvk|. From Semmes theorem (see Lemma A.2) we have∫
Rn+1

|∇βij
lk|

2 = λk

∫
Rn+1

ζ(
{
λ−1
k el, β

ij
lk

}
ij
− νlk)ζ(vk − v) + λk

∫
Rn+1

νlkζ
2(vk − v)

≤ λk∥ζ(
{
λ−1
k el, β

ij
lk

}
ij
− νlk)∥H1(Rn+1)∥ζ(vk − v)∥BMO(Rn+1) + λk

∫
Rn+1

|νlk|ζ2|vk − v|

≤ cλk(1 + ∥
{
λ−1
k el, β

ij
lk

}
∥H1(P7/16)) + cλk

(∫
P7/16

|∇βij
lk|

2
)1/2

∫
Rn+1

ζ2|vk − v|

≤ cλk

(
1 +

(∫
P7/16

|∇βij
lk|

2
)1/2)

.

Now from Hölder inequality we easily complete the proof.
Secondly we estimate the αlk.
Step 1. For any z0 ∈ P7/16 and 0 < r < 1/64 there exists a constant c1,independent of k,

such that ∫
Pr(z0)

|∇βij
lk|

2 ≤ c1r
n. (B.6)

We have in fact that lim
k→∞

∫
Rn+1 |∇βij

lk|2 = 0 implies that |∇βij
lk|2 has the equicontinuous

integral, i.e., for every r > 0, there exists δ(r) > 0 such that
∫
E
|∇βij

lk|2 < rn, if the measure

of E |E| < δ, and that there exists a subsequence such that |∇βij
lk|2 → 0 a.e. Consequently,

for this δ(r) > 0, there exists a closed subset D ⊂ P1/2 such that |P1/2\D| < δ and

|∇βij
lk|2 ≤ 1 in D, by Yegonoff’ theorem. So∫

Pr(z0)

|∇βij
lk|

2 =
(∫

Pr(z0)∩D

+

∫
Pr(z0)\D

)
|∇βij

lk|
2 ≤ |Pr(z0) ∩D|+ rn ≤ crn+2 + rn ≤ c1r

n.

Since |∇αlk| ≤ c(|∇(vk − v)| + |∇βij
lk|) on P1/4, taking z1 = (0, 0), r1 = 1, and u = uk,

a = 7/16, b = 1/32 in Lemma 2.2, we obtain

1

rn

∫
Pr(z0)

|∇αlk|2 ≤ c

rn

∫
Pr(z0)

|∇(vk − v)|2 + |∇βij
lk|

2

≤ c

rn

∫
Pr(z0)

|∇vk|2 + |∇v|2 + |∇βij
lk|

2 ≤ cK

∫
P1

|∇vk|2 + c+ c1 ≤ c,
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where we use (B.6).

Thus

1

|Pr(z0)|

∫
Pr(z0)

|αlk − (αlk)Pr(z0)| ≤
( 1

|Pr(z0)|

∫
Pr(z0)

|αlk − (αlk)Pr(z0)|
2
)1/2

≤
( 1

|Pr(z0)|

∫
Pr(z0)

|αlk − (αlk)Br(x0)|
2
)1/2

≤ c
( 1

rn

∫
Pr(z0)

|∇αlk|2
)1/2

≤ c,

where (f)E = 1
E

∫
E
f .

The John-Nirenberg inequality implies that

{αlk} is bounded in Lp(P7/16), 1 ≤ p < ∞. (B.7)

Step 2. Fix 1/8 ≤ τ < s ≤ 1/4. Assume that η ∈ C∞
0 (Ps), η = 1 in Pτ , |∇zη| ≤ c

s−τ .
Then

∥ηαlk∥BMO(Rn+1) ≤
c

s− τ
. (B.8)

If zo ∈ Ps+ϵτ , r < ϵτ/2, 0 < ϵ < 1/9, then Pr(z0) ⊂ P7/16. We have

1

|Pr(z0)|

∫
Pr(z0)

|ηαlk − (ηαlk)Pr(z0)|

≤ 1

|Pr(z0)|

∫
Pr(z0)

η|αlk − (αlk)Pr(z0)|+
1

|Pr(z0)|

∫
Pr(z0)

|(ηαlk)Pr(z0) − η(αlk)Pr(z0)|

≤ 1

|Pr(z0)|

∫
Pr(z0)

|αlk − (αlk)Pr(z0)|+
∫
Pr(z0)

∫
Pr(z0)

|η(z)− η(z′)∥αlk(z)|

≤ c+
cr

s− τ

∫
Pr(z0)

|αlk| ≤ c+
c

rn+1

(∫
Pr(z0)

|αlk|n+2
)1/(n+2)

r(n+2)(1−1/(n+2))

≤ c+
c

s− τ
≤ c

s− τ
,

where we use (B.7) with p = n+ 2.

Since η = 0 outside of Ps, the same inequality holds for z0 ∈ Rn+2\Ps+ϵτ and 0 < r <
ϵτ/2. Step 3. We prove that for some 1 < q < 2

∫
P1/8

|∇αlk|2 ≤ c

∫
P1/4

|αlk − (αlk)P1/4
|2 + c

(∫
P1/4

|∂t(vk − v)|q
)1/q

+ cλk. (B.9)

Similar to the case of interior estimate[20], there are the orthonormal frame {e1, · · · , em}
on TN and 2-form ωlm ∈ L2((0,∞);H1(B+

r (x); Λ2)) such that for any x ∈ ∂Rn
+, r > 0, on
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B+
r (x)×R+ it holds that

d∗ωlm = el ∧ dem = el • dem, (B.10)∫
B+

r

|∇el|2 ≤
∫
B+

r

∣∣∣ ∂ui

∂xk
∇eiel

∣∣∣2 ≤ c

∫
B+

r

|∇u|2, (B.11)∫ ∞

0

∫
B+

r

|∇ωlm|2 ≤ c

∫ ∞

0

∫
B+

r

|∇u|2, (B.12)

⟨∇u,∇el⟩ = ⟨∇u • em,∇el • em⟩ = ⟨du • em, d∗ωlm⟩
= ⟨d∗ωlm, du⟩ • em, (B.13)

⟨d∗ωlm, du⟩ = − ∗ ⟨d(∗ωlm) ∧ du⟩ = (−1)n+1
∑
i<j

{
ωij
lm, u

}
ij
,

(B.14)

⟨∂tu, el⟩ − div⟨∇u, el⟩ = (−1)n
∑
m

∑
i<j

{
ωij
lm, u

}
ij
• em. (B.15)

Thus we can get that on B+
rk
(xk)×R+ for every k,

⟨∂tu, el(u)⟩ − div⟨∇u, el(u)⟩ = −⟨∇u,∇el(u)⟩, (B.16)∫
P+

rk
(zk)

|∇el(u)|2 ≤ c(n)

∫
P+

rk
(zk)

|∇u|2, (B.17)∫
P+

rk
(xk,tk)

|∇ωlm|2(y, s)dyds ≤ c(n)

∫
P+

rk
(xk,tk)

|∇u|2(y, s)dyds. (B.18)

Equivalently on P+
1/2

⟨∂tvk, el(uk)⟩ − div⟨∇vk, el(uk)⟩ = −⟨∇vk,∇el(uk)⟩+
r2k
λk

⟨∆f, el(uk)⟩, (B.19)

∫
P+

1

|∇el(uk)|2 ≤ c(n)

∫
P+

1

|∇uk|2

≤ c(n)λ2
k

∫
P+

1

|∇vk|2 + r2k|∇f |2

≤ c(n, ∥f∥C2)λ2
k

∫
P+

1

(|∇vk|+ 1)2, (B.20)

where we use that rk
λ2
k
≤ 1. And

∫
P+

1

|∇ωk,lm|2 ≤ c(n)

∫
P+

1

|∇uk|2 ≤ c(n, ∥f∥C2)λ2
k

∫
P+

1

(|∇vk|+ 1)2, (B.21)

where ωij
k,lm(x, t) = ωij

lm(xk + rkx, tk + r2kt). Furthermore, noticing that

∇uk = λk∇vk +∇fk,
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from (2.5) and (2.6) we have

⟨∇vk(x, t),∇el[uk(x, t)]⟩ =
r2k
λk

[⟨∇u,∇el(u)⟩ − ⟨∇f,∇el(u)⟩]

=
1

λk
[(−1)n+1

∑
m

∑
i<j

{
ωij
k,lm, uk

}
ij
• em(x, t)− r2k

λk
⟨∇f,∇el(u)⟩ (B.22)

= (−1)n+1
∑
m

∑
i<j

{
ωij
k,lm, vk

}
ij
• em(x, t)− r2k

λk
⟨∇f,∇el(u)⟩

+
1

λk
(−1)n+1

∑
m

∑
i<j

{
ωij
k,lm, fk

}
ij
• em(x, t). (B.23)

Thus on P+
1/2 it holds that

⟨∂tvk, el(uk)⟩ − div⟨∇vk, el(uk)⟩

= (−1)n
∑
m

∑
i<j

{
ωij
k,lm, vk

}
ij
• em(x, t)

+
1

λk
(−1)n

∑
m

∑
i<j

{
ωij
k,lm, fk

}
ij
• em(x, t)

+
r2k
λk

⟨∇f,∇el(u)⟩+
r2k
λk

⟨∆f, el(uk)⟩. (B.24)

Equivalently from (3.12)

⟨∂t(vk − v), el(uk)⟩ − div⟨∇(vk − v), el(uk)⟩

= (−1)n
∑
m

∑
i<j

{
ωij
k,lm, vk

}
ij
• em(x, t)

+
1

λk
(−1)n

∑
m

∑
i<j

{
ωij
k,lm, fk

}
ij
• em(x, t) +

r2k
λk

⟨∇f,∇el(u)⟩

+
r2k
λk

⟨∆f, el(uk)⟩+ ⟨∇v,∇el(uk)⟩. (B.25)

Now

d∗w̃l(uk) = d∗dαlk = ∆αlk.

Since vk, v ≡ 0 in the P−
1/2, we may assume the equation above holds in P1/2 for the sake of

simplicity. In view of the equation above it holds in P1/4 that

−∆αlk = −div⟨∇(vk − v), el⟩
= −⟨∂t(vk − v), el(uk)⟩+ ⟨∇v,∇el⟩

+ (−1)n+1
∑
m

∑
i<j

{
ωij
k,lm, vk

}
ij
• em

+
1

λk
(−1)n

∑
m

∑
i<j

{
ωij
k,lm, fk

}
ij
• em(x, t) +

r2k
λk

⟨∇f,∇el(u)⟩

+
r2k
λk

⟨∆f, el(uk)⟩. (B.26)



132 CHIN. ANN. OF MATH. Vol.23 Ser.B

Multiplying (B.26) by η2(αlk − (αlk)Ps), we obtain

∫
Ps

η2|∇αlk|2 = −2

∫
Ps\Pτ

η∇η∇αlk(αlk − (αlk)Ps)

−
∫
Ps

⟨∂t(vk − v), el⟩η2(αlk − (αlk)Ps)

−
∫
Ps

⟨∇v,∇el⟩η2(αlk − (αlk)Ps)

+

∫
Ps

(−1)n+1
∑
m

∑
i<j

{
ωij
k,lm, vk

}
ij
• emη2(αlk − (αlk)Ps)

+

∫
Ps

1

λk
(−1)n

∑
m

∑
i<j

{
ωij
k,lm, fk

}
ij
• em(x, t)η2(αlk − (αlk)Ps)

+

∫
Ps

+
r2k
λk

⟨∇f,∇el(u)⟩η2(αlk − (αlk)Ps)

+

∫
Ps

r2k
λk

⟨∆f, el(uk)⟩η2(αlk − (αlk)Ps)

= I1 + I2 + I3 + I4 + I5 + I6 + I7. (B.27)

For I1, we have from Hölder inequality that

I1 ≤ c

∫
Ps\Pτ

|∇αlk|2 +
c

(s− τ)2

∫
Ps

|αlk − (αlk)Ps |2.

For I2 and I3, using Hölder inequality and (B.7) we have

I2 ≤
(∫

Ps

|∂t(vk − v)|2
)1/2(∫

Ps

|αlk − (αlk)Ps |2
)1/2

≤ c
[ ∫

P1/4

|∂tvk|2 + 1
]1/2(∫

P1/4

|αlk − (αlk)P1/4
|2
)1/2

≤ c
[ ∫

P1/2

|∇vk|2 + 1
]1/2(∫

P1/4

|αlk − (αlk)P1/4
|2
)1/2

≤ c
(∫

P1/4

|αlk − (αlk)P1/4
|2
)1/2

,

I3 ≤ cλk

∫
Ps

|∇vk∥αlk − (αlk)Ps | ≤ cλk.

For I4,and I5, in a way similar to the procedure of proving Lemma B.2, by using Lemma
A.1 and (B.8) we obtain I4 + I5 ≤ cλk/(s− τ). Here we use that

|∇fk| = rk|∇f | ≤ crk∥f∥C2 ≤ cλk.
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For I6 and I7, using rk ≤ λk we have I6 + I7 ≤ cλk. Thus we get

∫
Pτ

|∇αlk|2 ≤ c

∫
Ps\Pτ

|∇αlk|2 +
c

(s− τ)2

∫
Ps

|αlk − (αlk)Ps |2

+ c
(∫

P1/4

|αlk − (αlk)P1/4
|2
)1/2

+ cλk + c
λk

s− τ

≤ c

∫
Ps\Pτ

|∇αlk|2 +
c

(s− τ)2

∫
P1/4

|αlk − (αlk)P1/4
|2

+ c
(∫

P1/4

|αlk − (αlk)P1/4
|2
)1/2

+
cλk

s− τ
.

Now filling the hole we get

∫
Pτ

|∇αlk|2 ≤ θ

∫
Ps

|∇αlk|2 +
c

(s− τ)2

∫
P1/4

|∇αlk − (αlk)P1/4
|2

+ c
(∫

P1/4

|αlk − (αlk|2
)1/2

+
cλk

s− τ
,

where θ = c
1+c . Using the Lemma 3.1 of Giaquinta[15] and (B.7), we have

∫
P1/8

|∇αlk|2 ≤ c

∫
P1/4

|αlk − (αlk)P1/4
|2 + c

(∫
P1/4

|αlk − (αlk)P1/4
|2
)1/2

+ cλk

≤ c
(∫

P1/4

|αlk − (αlk)P1/4
|2
)1/2

+ cλk. (B.28)

Step 4. There exists a constant c, independent of k, such that for some 1 < q < 2

∫
P1/4

|αlk − (αlk)P1/4
|2 ≤ c

∫
P1/4

|∇(vk − v)|q)1/q + cλk. (B.29)

Since αlk ∈ L2(R;W 1,2(Rn)), it follows from Sobolev embedding theorem with q = 2n
n+2

for a.e. t that∫
B1/4

|αlk − (αlk)B1/4
|2 ≤ c

(∫
B1/4

|∇αlk|q
)2/q

≤ c
(∫

B1/4

|∇(vk − v)|q + |∇βij
lk|

q
)2/q

≤ c
(∫

B1/4

|∇(vk − v)|q
)2/q

+
(∫

B1/4

|∇βij
lk|

q
)2/q

.
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Write a = −1/16, b = 1/16. Then using Hölder inequality we get∫
P1/4

|αlk − (αlk)P1/4
|2 ≤

∫
P1/4

|αlk − (αlk)B1/4
|2 ≤ c

(∫
P1/4

|∇αlk|q
)1/q

≤ c

∫ b

a

(∫
B1/4

|∇vk −∇v|q
)2/q

+

∫ b

a

( ∫
B1/4

|∇βij
lk|

q
)2/q

≤ c
(∫ b

a

∫
B1/4

|∇vk −∇v|q
)1/q(∫ b

a

(∫
B1/4

|∇vk −∇v|q
)1/(q−1))(q−1)/q

+

∫
P1/4

|∇βij
lk|

2

= II1 + II2

Since II2 ≤ cλk by (B.5), we only estimate II1.
In the energy inequality, taking ϕ ∈ C∞

0 (Brk(xk)), 0 ≤ ϕ ≤ 1, ϕ = 1 on Brk/2(xk),

|∇ϕ| ≤ c/rk, and letting |ti − tk| ≤ r2k, i = 1, 2, with t1 ≤ t2, we get∫
Brk/2

|∇u|2(t2) ≤
∫
Brk

|∇u|2(t1) +
c

r2k

∫ t2

t1

∫
Brk

(xk)

|∇u|2

≤
∫
Brk

|∇u|2(t1) +
c

r2k

∫
Prk

(zk)

|∇u|2.

Set y = xk + rkx, t = tk + r2kτ. Then∫
B1/2

|∇vk|2(τ2) ≤
∫
B1

|∇vk|2(τ1) + c

∫
P1

|∇vk|2, (B.30)

with −1 ≤ τ1 ≤ τ2 ≤ 1.
Since

∫
P1

|∇vk|2 = 1, we have the following lemma.

Lemma B.3. There exist a constant c2, independent of k, and τk ∈ [−1,−1/16] such
that

∫
B1

|∇vk|2(τk) ≤ c2.

Proof. Write

ak =

∫ −1/16

−1

gk(τ), gk(τ) =
(∫

B1

|∇vk|2
)1/2

.

Then

ak ≤ c
(∫

P1

|∇vk|2
)1/2

≤ c3,

where c3 is independent of k. So there exists a subsequence such that ak → a.
If a = 0, this shows that gk → 0 in L1. We assume that gk → 0 a.e.. Thus by

Yegonoff theorem, for any ϵ > 0 there exists a closed subset D ⊂ [−1,−1/16] such that
|[−1,−1/16]\D| < ϵ, and |gk(τ)| ≤ c, for some constant c independent of k. Thus we take
tk ∈ D, then gk(tk) ≤ c.

If a > 0, then for any measurable subset E ⊂ [−1,−1/16], we have∫
E

gk ≤
(∫

E

g2k

)1/2

|E|1/2 ≤ c|E|1/2,

so that for any k,
∫
E
gk ≤ a/3, if |E| ≤ a2

9c2 ≡ δ0. For any N , write

ENk ≡
{
τ ; gk(τ) ≥ N

}
∩ [−1,−1/16], Ec

Nk = [−1,−1/16]\ENk.
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Since

N |ENk| ≤
∫
ENk

gk ≤ ak ≤ c3,

i.e., |ENk| ≤ c3/N , we can take N0 large enough, so that |EN0k| ≤ δ0.
On the other hand, since ak → a, there exists a k0 such that ak > 2a/3 for k ≥ k0. So

we have that ∫
Ec

N0k

gk = ak −
∫
EN0k

gk ≥ 2a/3− a/3 = a/3.

This implies that |Ec
N0k

| > 0 for k ≥ k0. Then we can take tk ∈ Ec
N0k

⊂ [−1,−1/16] such
that gk(tk) ≤ N0. Thus we complete the proof.

Combining (B.30) with Lemma 3.5 we get∫
B1/2

|∇vk|2(τ) ≤
∫
B1

|∇vk|2(τk) + c

∫
P1

|∇vk|2 ≤ c2 + c = c4, (B.31)

where 1 ≥ τ ≥ −1/16 ≥ τk and c4 is independent of k..
We can estimate II1 as follows:

II1 ≤ c
(∫ b

a

∫
B1/4

|∇vk −∇v|q
)1/q(∫ b

a

(∫
B1/4

|∇vk −∇v|q
)1/(q−1))(q−1)/q

≤ c
(∫

P1/4

|∇vk −∇v|q
)1/q(∫ b

a

(∫
B1/4

|∇vk −∇v|2
)q/(2(q−1))

)(q−1)/q

≤ c(c
(2−q)/(2q)
2 + 1)

(∫
P1/4

|∇vk −∇v|q
)1/q(∫

P1/4

|∇vk −∇v|2
)(q−1)/q

≤ c
(∫

P1/4

|∇vk −∇v|q
)1/q

.

Thus we prove (B.29).
Now we have from (B.3), (B.5), (B.28) and (B.29) that for some 1 < q < 2∫

P1/8

⟨∇(vk − v), el⟩2 ≤ c

∫
P1/8

|∇αlk|2 + |∇βij
lk|

2

≤ c
(∫

P1/4

|αlk − (αlk)P1/4
|2
)1/2

+ cλk

≤ c
((∫

P1/4

|∇(vk − v)|q
)1/q

+ λk

)1/2

+ cλk.
(B.32)

Assume that {eα(uk)} is the normal frame of N at uk(x, t). Since

⟨∂tv, eα(uk)⟩ − div⟨∇v, eα(uk)⟩ = −⟨∇v,∇eα⟩ on P1/2,

multiplying it by ⟨v − vk, eα⟩ζ2, where ζ ∈ C∞
0 (P1/2), ζ = 1 on P1/4, we have∫

P1/2

⟨∇v, eα(uk)⟩2ζ2 =

∫
P1/2

⟨∂tv, eα⟩⟨vk − v, eα⟩ζ2 +
∫
P1/2

⟨∇v, eα⟩⟨vk − v,∇(eαζ
2)⟩

+

∫
P1/2

⟨∇v,∇eα⟩⟨vk − v, eα⟩ζ2.

Here we use that ∇vk⊥eα(uk). Using (3.6)-(3.8) and (3.10) we get∫
P1/4

⟨∇v, eα⟩2 = o(1) as k → ∞. (B.33)
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Finally We have the following compact lemma.
Lemma B.4. Suppose that {vk}∞k=1 are bounded in L∞((0, T );W 1,p(M ;Rm)), {∂tvk}∞k=1

are bounded in L2((0, T );L2(M ;Rn+1)), and {gk}∞k=1 are bounded in L1((0, T );L1(M ;Rm)),
and suppose that {vk} satisfy the following equations in the sense of distribution

∂tvk − 1√
det(g)

∂

∂xα
(|∇vk|p−2gαβ

√
det(g)

∂vk
∂xβ

) = gk, (t, x) ∈ (0, T )×M. (B.34)

Here (M, g) is a compact Riemannian manifold.
Then {vk}∞k=1 are precompact in Lq((0, T );W 1,q(M ;Rn+1)) for every 1 ≤ q < p.
Its proof can be found in [4] for p ≥ 2 and in [19] for 1 < p ≤ 2.
In view of (B.31)-(B.33) and Lemma B.4 with M = P1/4 and p = 2 and

gk = λkA(uk)(∇vk,∇vk) + 2rkA(uk)(∇vk,∇f) +
r2k
λk

A(uk)(∇f,∇f) +
r2k
λk

∆f,

there exists a subsequence such that

lim
k→∞

∫
P1/8

|∇(vk − v)|2 = lim
k→∞

∫
P1/8

∑
l

⟨∇(vk − v), el⟩2 +
∑
α

⟨∇v, eα⟩2 = 0. (B.35)

This completes the proof of Lemma 3.2.
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