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Abstract

The authors investigate the stability of a steady ideal plane flow in an arbitrary domain in
terms of the L2 norm of the vorticity. Linear stability implies nonlinear instability provided the
growth rate of the linearized system exceeds the Liapunov exponent of the flow. In contrast,
a maximizer of the entropy subject to constant energy and mass is stable. This implies the
stability of certain solutions of the mean field equation.
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§1. Introduction

We consider solutions u = (u1(x1, x2, t), u2(x1, x2, t)) of the incompressible two-dimen-
sional Euler equation in a bounded domain Ω ⊂ IR2 with a smooth impermeable boundary
∂Ω :

∂tu+ u · ∇u = −∇p in IRt × Ω, u · n⃗ = 0 on IRt × ∂Ω . (1.1)

n⃗ denotes the outward normal to the boundary. The vorticity

ω = ∇∧ u ≡ ∂x1u2 − ∂x2u1

is then transported by the flow according to the equation

∂tω + u · ∇ω = 0 in IRt × Ω . (1.2)

We define the operator curl−1 by the formula

curl−1ω = ∇∧Ψ, with −∆Ψ = ω in Ω , Ψ = 0 on ∂Ω. (1.3)
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If the domain Ω is simply connected, then u = curl−1ω . If it is not simply connected, but
u = curl−1ω at time t = 0, then u = curl−1ω at all times. This is the only case that we

consider and therefore the Euler equation is equivalent to the equation

∂tω + curl−1(ω) · ∇ω = 0 . (1.4)

If u0(x) is a stationary solution of the Euler equation (1.4), then the vorticity ω0(x)
satisfies the equation

0 = u0 · ∇ω0 = ∇Ψ0 ∧∇ω0 , (1.5)

which says that the level lines of Ψ0 and Ω0 coincide. This condition is satisfied in particular
for any solution of the nonlinear elliptic equation

−∆Ψ = f(Ψ) in Ω, Ψ = 0 on ∂Ω . (1.6)

The present article is composed of two parts. The first concerns the stability of solutions
of the mean field equation which was introduced to the subject by Onsager[15]:

−∆Ψ = Ce−βΨ in Ω , C > 0 . (1.7)

The convexity of the entropy functional

S(ω) =

∫
Ω

ω logωdx (1.8)

is used in conjunction with the tools developed in [3] and [4]. In a standard normalization, the
stability is proven for β > −8π , extending previous results obtained by Arnold’s method[1]

for β negative but small in absolute value. The case of −β large corresponds to large energy
and seems to be the relevant one in the formation of coherent structures.

Our first stability theorem is as follows.

Theorem 1.1. Consider the variational problem

S(A,E) = inf
ω

∫
Ω

ω logωdx (1.9)

subject to the mass and energy constraints

ω ≥ 0 ,

∫
Ω

ωdx = A ,
1

2

∫
Ω

|curl−1ω|2dx = E. (1.10)

Assume that the minimizer µ, which satisfies∫
Ω

µ logµdx = S(A,E) (1.11)

and always exists[3], is unique. Consider the family F of initial data defined as the nonneg-
ative functions that belong to a Holder space C0,α for some α > 0. Then for all ϵ > 0 there
exists δ > 0 such that, for the solutions ω(t) of the Euler equation (1.4) with ω(0) ∈ F , the

implication

||ω(0)− µ||L2(Ω) ≤ δ ⇒ sup
t∈R

||ω(t)− µ||L2(Ω) ≤ ϵ (1.12)

holds.

The proof of this theorem and some variants to handle the case where the minimizer is
not unique will be given in Section 2.

In Section 3 it is shown how to deduce nonlinear instability from linearized instability. The
method follows closely the program initiated by the second and third authors of this paper

(in collaboration with others)[6,7,10], where it was observed that the notion of instability is a
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robust property. In particular, using a perturbation method, nonlinear instabilities can be
deduced from instabilities of the linearized operator.

In the present situation the linearized equation is

(∂t + u0 · ∇)ω̃ + ũ · ∇ω0 = 0 . (1.13)

Solutions of (1.13) are described by the group of operators etA0 with generator

A0ω̃ = −u0 · ∇ω̃ − curl−1ω · ∇ω0 . (1.14)

This generator is the sum of an advection term which generates an isometry group in any
Lp(Ω) (1 ≤ p < ∞), denoted by e−tu0·∇, and a compact perturbation. It follows that the

part Σ(A0) of the spectrum of A0 outside the imaginary axis is purely discrete and that if
Σ(A0) ̸= ∅, the type Λ of the semi group e−tA0 in any Lp space is given by

Λ = sup
λ∈Σ(A0)

Reλ . (1.15)

Linear instability corresponds to the case when Λ > 0 (that is, Σ(A0) ̸= ∅ ). We denote by
σ the Liapunov exponent of the autonomous flow associated to u0. Our instability theorem

is as follows.

Theorem 1.2 (From Linear to Nonlinear Instability). Given a steady flow u0 ∈
C3(Ω), consider the linearized equation

∂tω̃ + u0 · ∇ω̃ + curl−1ω̃ · ∇ω0 = 0 . (1.16)

Assume that the type Λ of the semigroup and the Liapunov exponent σ of the flow generated
by the vector field u0 satisfy the inequality

Λ > σ. (1.17)

Then for any p > 2 there exist positive constants C, ϵ0, δ0 and a family of solutions of the
nonlinear Euler equation {ωδ , 0 < δ ≤ δ0} which satisfy both

||ωδ(0)− ω0||W 1,p ≤ δ (1.18)

and

sup
0<t≤C| log δ|

||ωδ(t)− ω0||L2 ≥ ϵ0. (1.19)

In two space variables the use of the vorticity equation forces the discreteness of the
spectrum of A0 off the imaginary axis. In contrast, Friedlander and Vishik[5] consider a

different linearized operator. They linearize the Euler equation for the velocity to get the
operator

B0ũ = −(u0 · ∇)ũ− (ũ · ∇)u0 −∇q

on the space {ũ : ũ ∈ L2(Ω),∇ · ũ = 0}. They prove[5,18] that the essential spectral radius
of etB0 is equal to the maximal growth rate of the bicharacteristic-amplitude equations

ẋ = u0(x), ξ̇ = −(∂xu0)
T ξ,

ḃ = −(∂xu0)b+ 2(ξ · ∂xu0)b ξ/|ξ|2.
Thus the essential spectra of A0 and B0 are quite different.

In [6], it is proven that certain flows are nonlinearly unstable in Hs for s > 2, by making
use of the point spectrum of B0. In [8], Grenier proves similar results in the space {u ∈ L2}.
Here we prove the same kind of theorem for the L2 norm of the vorticity. This is the very

norm for which we obtain stability results. Furthermore, in contrast to [6] and [8], our
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results are valid (i) with no geometric hypothesis on the shape of the domain Ω and (ii) with
less regularity assumed on the steady flow.

Two basic examples are shear flow and simple rotating flow. In both cases, the exponent
σ vanishes. Indeed, shear flow is

u0 =

(
u(x2)
0

)
with X0(t, x1, x2) =

(
u(x2)t+ x1

x2

)
.

Since the flow grows only linearly in time, σ = 0. Simple rotating flow in a disk is

u0 =

(
u(r) sin θ
−u(r) cos θ

)
with X0(t, x1, x2) =

(
r cos(θ − tu(r)/r)
r sin(θ − tu(r)/r)

)
for which σ is also clearly equal to 0 .

There exist classical examples[6] of shear or rotating flows going back to Rayleigh for

which the linearized instability is proven. The previous comments imply that for these cases
the hypothesis (1.17) is satisfied.

§2. Stability of Solutions of the Mean Field Equation

The solutions of the mean field equation

−∆Ψ = A
e−βΨ∫

Ω
e−βΨdx

(2.1)

are invariant under the Euler flow. They are also closely related to the minimization of the

functional

S(ω) =

∫
ω

H(ω)dx with H(ω) = ω lnω (2.2)

subject to the constraints

ω ≥ 0, A =

∫
ωdx, E =

1

2

∫
Ω

|curl−1ω|2dx. (2.3)

The constants A and E are positive while β is the Lagrange multiplier of the energy con-

straint. More precisely, starting from the convexity of the function ω → H(ω) ≥ e−1 the
following facts are proven in [3, 4, 11] and are restated in the next two theorems.

Theorem 2.1. (i) Denote

P (E,A) =
{
ω ≥ 0 a.e. in Ω ,

∫
Ω

ω(x)dx = 1,
1

2

∫
Ω

|curl−1ω|2dx = E
}
. (2.4)

Then for any pair (E,A) of positive constants there is at least one ωmin which solves the
Microcanonical Variation Principle

S(E,A) ≡ inf
ω∈P (E,A)

S(ω) = S(ωmin) . (2.5)

Furthermore, any nonnegative solution ω of (2.5) is strictly positive and there exists at least

one β such that ω = −∆Ψ with Ψ solving the corresponding β-mean field equation (2.1).

(ii) Conversely, any solution of the β-mean field equation (2.1) is a solution of (2.5) with
a given mass and energy E(β).

With appropriate scalings, the following renormalizations are assumed for the domain Ω

and for the solution of the mean field equation:

|Ω| = meas Ω = 1 and A =

∫
Ω

ω(x)dx = 1 . (2.6)
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The set of minimizers in (2.5) is denoted by M(E,A). In particular, M(E, 1), P (E, 1) and
S(E, 1) are denoted by M(E), P (E) and S(E).

Theorem 2.2. (i) For any β > −8π there is at least one solution of (2.1); this solution
is always unique for β > 0.

(ii) This solution is also unique for β > −8π if the domain Ω is simply connected. In this

setting the mapping β 7→ E(β) is well defined. It is also strictly decreasing and is onto from
the interval (−8π,∞) to the interval (0, Ec), where

Ec = lim
β>−8π,β→−8π

E(β).

(iii) For starshaped domains there exists a number βc ≤ −8π such that the mean field

equation has no solution for β < βc. In particular if Ω is a disk, Ec = ∞ and βc = −8π.
In fact, the situation of the disk corresponds to the ideal case where for any energy

E ∈ (0,∞) any minimizer corresponds to a unique temperature β ∈ (−8π,∞). As a

consequence, the minimizer is uniquely defined. In general, the situation turns out to be
more complicated, either when the domain is not simply connected (no uniqueness of the
solution of the mean field equation for given β), or when Ec < ∞ and βc < −8π in which

case several values of β may correspond to the same energy.
For our purposes observe that for a simply connected domain a solution of the mean field

equation

−∆Ψβ =
e−βΨ∫

Ω
e−βΨβdx

, β − 8π (2.7)

provides a minimizer of S(ωβ) with the constraint E(ω) = E(β) ∈ (0, Ec). Furthermore if

ωβ′ is another minimizer with the same energy,

either β′ = β or β′ < −8π . (2.8)

Now we prove the stability theorem stated in the introduction.
Proof of Theorem 1.1. The hypothesis ω(0) ∈ F implies (cf. [20, 21]) that the

corresponding solution is well defined and smooth. In particular one has for ω(t) and u(t) =

curl−1ω(t) the invariance

E(t) =
1

2

∫
Ω

|u(x, t)|2dx =
1

2

∫
Ω

|u(x, 0)|2dx = E(0), (2.9)

and for any continuous function f∫
Ω

f(ω(x, t))dx =

∫
Ω

f(ω(x, 0))dx . (2.10)

By contradiction, it is easy to see that the statement of the theorem is equivalent to the

following one. For any sequence of initial data ωn(0) ∈ F and for any sequence of times tn ,
the limit

lim
n→∞

||ωn(0)− µ||L2(Ω) = 0 (2.11)

implies the existence of a subsequence nj such that

lim
n→∞

||ωnj (tnj )− µ||L2(Ω) = 0 . (2.12)

So we assume (2.11).
We claim that

lim
n→∞

∫
Ω

H(ωn(x, 0))dx =

∫
Ω

H(µ)dx ≡ S(µ) . (2.13)
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To prove (2.13), the strict positivity of µ as stated in Theorem 2.1 is used and a positive
constant η0 such that µ(x) ≥ 2η0 in Ω is introduced. Let 0 ≤ η ≤ min(η0, e

−1) and observe

the inclusion {x ∈ Ω\|ωn(x, 0)| < η} ⊂ {x ∈ Ω\|ωn(x, 0)− µ(x)| > η} . Then we have∣∣∣ ∫
Ω

H(ω(x, 0)dx− S(µ))
∣∣∣

≤
∫
Ω∩{ωn(x,0)≥η}

|H(ωn(x, 0)−H(µ(x))|dx+

∫
Ω∩{ωn(x,0)<η}

(|H(ωn(x, 0)|+ |H(µ(x))|)dx

≤ 2

η

∫
|ωn(x, 0)dx− µ(x))|dx+ η| log η|+ ||H(µ)||L∞(Ω)

∫
|ωn(x,0)−µ(x)|≥η

dx . (2.14)

To complete the proof of the claim, choose η to make η| log η| less than ϵ/2 and then choose

n large enough to ensure, with the strong L2 convergence of ωn(0) to µ , that the sum of
the two other terms is less than ϵ/2.

Then there exists a subsequence nj denoted below by n such that ωn(tn) converges weakly

in L2(Ω) to a function ν(x). With the notation un(tn) = curl−1ωn(tn), uν = curl−1ν, the

relations (2.9), (2.10) and the “entropic convergence lemma” (Proposition 3.1 of [2]) one
has, for ν ∈ L2(Ω), ν ≥ 0 , the following properties:∫

Ω

ν(x)dx = lim

∫
Ω

ωn(x, tn)dx = lim

∫
Ω

ωn(x, 0)dx = 1 , (2.15)

1

2

∫
Ω

|uν(x)|2dx = lim

∫
Ω

|un(x, tn)|2dx = E , (2.16)∫
Ω

H(ν(x))dx ≤ lim

∫
Ω

H(ωn(x, tn)dx = H(µ) . (2.17)

Thus ν is a minimizer. The hypothesis concerning the uniqueness of the minimizer implies
the relation ν = µ and the strong L2(Ω) convergence because∫

Ω

|ν(x)|2dx ≤ lim

∫
Ω

|ωn(x, tn)|2dx = lim

∫
Ω

|ωn(x, 0)|2dx

=

∫
Ω

|µ(x)|2dx =

∫
Ω

|ν(x)|2dx . (2.18)

This proves Theorem 1.1.

Since the minimizer may not be unique, we consider several extensions of the above
theorem. We have the following variant.

Theorem 2.3. No assumption is made on the uniqueness of the minimizer. On the
other hand, consider for a given energy E, a minimizer µ ∈ P (E). Let F ′ ⊂ F be the subset
of initial data uniformly bounded in L∞(Ω) by a fixed constant k . Then for all ϵ > 0 there

exists δ > 0 such that, for the solutions ω(t) of the Euler equation (1.4) with ω(0) ∈ F ′, the
assertion

||ω(0)− µ||L2(Ω) ≤ δ ⇒ sup
t∈R

inf
ν∈M(E)

||ω(t)− ν||L2(Ω) ≤ ϵ (2.19)

holds.

Proof. The proof follows the preceding one and leads with no major modification to
the extraction of a subsequence such that ωn(tn) converges weakly in L2(Ω) to a minimizer
ν ∈ M(E). Since the uniqueness of this minimizer is not assumed, the relation (2.18) is

no longer valid and the convexity of the entropy H (with the uniform boundedness) is used
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instead. In fact, by a Taylor expansion we have∫
Ω

(
H(ωn(x, tn)−H(ν(x, t)

)
dx

=

∫
Ω

(1 + log ν(x, t))
(
ωn(x, tn)− ν(x, t)

)
dx+

∫
Ω

1

2(ω(x, t))

(
ωn(x, tn)− ν(x, t)

)2
dx
(2.20)

with ω(x, t) between ωn(x, tn) and ν(x). Using the uniform boundedness of ωn(x, 0) and the
weak L2 convergence of ωn(tn) , we have for 0 < α small enough the inequality

α lim

∫
Ω

(
ωn(x, tn)− ν(x, t)

)2
dx ≤ lim

∫
Ω

(
H(ωn(x, tn)−H(ν(x, t)

)
dx = 0, (2.21)

which proves the strong convergence.

If the domain is simply connected, there is, as recalled above in Theorem 2.2, a one-to-

one correspondence between the solutions of the mean field equation for β > −8π and the
minimizers with energy E > Ec. This does not seem to exclude in general the existence of
other minimizers for the same energy which solve a mean field equation with β < −8π . In

accordance with this observation we give the following theorem.

Theorem 2.4. Assume that the open set Ω is simply connected and consider a solution
Ψ∗ of the mean field equation

−∆Ψ∗ =
e−βΨ∗∫

Ω
e−βΨ∗dx

, Ψ∗ = 0 on ∂Ω. (2.22)

Denote by µ = −∆Ψ∗ the corresponding vorticity with energy E(µ) and consider the same

set of initial data F ′ as in Theorem 2.3. Then for all ϵ > 0 there exists δ > 0 such that, for
the solutions ω(t) of the Euler equation (1.4) with ω(0) ∈ F ′, the assertion

||ω(0)− µ||L2(Ω) ≤ δ ⇒ sup
t∈R

||ω(t)− µ||L2(Ω) ≤ ϵ (2.23)

holds.

Proof. According to Theorem 3.2 ii) of [4], one has

M(E(µ)) = {µ} ∪M∗, (2.24)

where any element ν ∈ M∗ is a solution of the mean field equation with a temperature
β(ν) < −8π. Observe by contradiction that the L2(Ω)-distance d between µ and M∗ is

strictly positive. By Theorem 2.3, for all ϵ > 0 there exists δ > 0 such that the relation

||ω(0)− µ||L2(Ω) ≤ δ (2.25)

implies the relation

sup
t∈R

inf
ν∈M(E(µ))

||ω(t)− ν||L2(Ω) ≤ ϵ . (2.26)

We observe that for ω(0) ∈ F ′ we have ω(.) ∈ C(IRt;L
2(Ω)) . Choosing ϵ < d

2 and δ < d
2

and using the triangle inequality, we conclude that

sup
t∈R

inf
ν∈M(E(µ))

||ω(t)− ν||L2(Ω) = sup
t∈R

||ω(t)− µ||L2(Ω). (2.27)

This completes the proof.

The previous stability results involve, as in most of the contributions in the subject (cf.
for instance [1, 13, 19]), the L2 norm of the vorticity. Finally we conclude this section by

proving, using the notion of entropic convergence, a weaker result under a weaker hypothesis.
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Theorem 2.5. The family of initial data F is defined as in Theorem 1.1. For some
p > 1, Fp ⊂ F denotes the subset of initial data uniformly bounded in Lp(Ω); that is, there

exists k < ∞ such that

∀ω(0) ∈ Fp ,

∫
Ω

|ω(0, x)|pdx ≤ k. (2.28)

Then for all (A,E) and ϵ > 0 there exists δ > 0 such that∣∣∣ ∫
Ω

ω(0, x)dx−A
∣∣∣+ ∣∣∣1

2

∫
Ω

|(curl−1ω(0))(x)|2dx− E
∣∣∣+ ∣∣∣ ∫

Ω

H(ω(0, x))dx− S(A,E)
∣∣∣ ≤ δ

(2.29)
implies

sup
t∈R

inf
ν∈M(A,E)

||curl−1ω(t)− curl−1ν||L2(Ω) ≤ ϵ . (2.30)

Proof. By (2.25) we extract from any sequence ωn(tn) a subsequence, still denoted by
ωn(tn), which converges weakly in Lp(Ω) to a function ν ∈ Lp(Ω). The inequality (2.29)

and the compactness of the Sobolev imbedding W 1,p(Ω) ⊂ L2(Ω) imply the following limits:

A = lim

∫
Ω

ωn(tn, x)dx =

∫
Ω

ν(x)dx , (2.31)

E = lim
1

2

∫
Ω

|(curl−1ωn(tn))(x)|2dx =
1

2

∫
Ω

|curl−1ν|2dx . (2.32)

Then by the entropic convergence we have∫
Ω

H(ν)dx ≤ lim inf

∫
Ω

H(ωn(tn))dx = lim

∫
Ω

H(ωn(0))dx = S(A,E) . (2.33)

Therefore ν is a minimizer, the equality (2.32) implies the L2(Ω) strong convergence of the

sequence curl−1ωn(tn)) , and the proof is complete.

§3. From Linear to Nonlinear Instability

This section is devoted to the proof of Theorem 1.2. First we recall some facts about the
Liapunov exponent. The classical Liapunov exponent σ for the flow X0(t, x) induced by u0,

∂X0

∂t
= u0(X0), X0(0, x) = x , (3.1)

is defined by

σ = sup
x

lim
t→∞

1

t
log

∣∣∣∂X0

∂x

∣∣∣, (3.2)

where ∂X0

∂x denotes the 2× 2 matrix (∂Xi
0/∂x

j).
Proposition 3.1. The Liapunov exponent can also be defined as

σ = lim
t→∞

1

t
sup
x

log
∣∣∣∂X0

∂x

∣∣∣ . (3.3)

This fact might exist in the theory of dynamical systems but in the absence of a reference
a short proof is given. Clearly

lim
t→∞

1

t
sup
x

log
∣∣∣∂X0

∂x

∣∣∣ ≥ sup
x

lim
t→∞

1

t
log

∣∣∣∂X0

∂x

∣∣∣ . (3.4)

To prove the converse we follow the argument of [7]. By definition of σ , for every pair ϵ > 0

and x ∈ Ω , there exists a “time” T [x] > 0 such that

t ≥ T [x] ⇒
∣∣∣∂X0(t, x)

∂x

∣∣∣ < et(σ+ϵ) .
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By the continuity of ∂xX0 and the boundary condition, for all x ∈ Ω there is a neighborhood
Bx ⊂ Ω such that ∣∣∣(∂X0

∂x

)
(T [x], x)

∣∣∣ < eT [x](σ+ϵ) .

We introduce a finite covering of Ω by such open sets: Ω = Bx1 ∪ Bx2 ∪ . . . ∪ BxN with
N < ∞ . Denote Bi = Bxi , Ti = T [xi] for 1 ≤ i ≤ N . Given x ∈ Ω , choose i1 such that
x ∈ Bi1 and then choose the sequence

y1 = X0(Ti1 , x) ∈ Bi2 ,

y2 = X0(Ti1 + Ti2 , x) ∈ Bi3 ,

· · · · · ·
y1 = X0(Ti1 + . . .+ Tik , x) ∈ Bik+1

(1 ≤ k < ∞) .

Now

y2 = X0(Ti1 + Ti2 , x) = X0(Ti2 , y1) = X0(Ti2 , X0(Ti1 , x)) . (3.5)

Therefore
∂y2
∂x

=
(∂X0

∂x

)
(Ti2 , y1) ·

(∂X0

∂x

)
(Ti1 , x), (3.6)

so that ∣∣∣∂[X0(Ti1+i2 , x)]

∂x

∣∣∣ ≤ e[Ti1+Ti2 ](σ+ϵ) . (3.7)

Similarly for any x and k we have the inequality∣∣∣∂[X0(Ti1+...+ik , x)]

∂x

∣∣∣ ≤ e[Ti1+...+Tik
](σ+ϵ) . (3.8)

Now, given t and x , we choose

Sk = Ti1 + . . .+ Tik ≤ t < Ti1 + . . .+ Tik + Tik+1 , (3.9)

and denote by X ′
0 the derivative of

X0(t, x) = X0(t− Sk, X0(Sk, x))

with respect to x. By the chain rule and estimate (3.8) we obtain, for any pair (t, x) ∈
[0,∞)× Ω, ∣∣∣∂[X0(t, x)]

∂x

∣∣∣ ≤ sup
y∈Ω

|X ′
0(t− Sk, y)| · |X ′

0(Sk, x)|

≤
[

sup
y∈Ω, 0≤s≤maxi Ti

|X ′
0(s, y)|

]
· e(σ+ϵ)Sk

≤ Ce(σ+ϵ)Sk ≤ C ′e(σ+ϵ)t, (3.10)

which implies (3.3).
The following key lemma states that if a velocity field v(t, x) is close enough to u0(x)

in C1, then their corresponding flows are close together in a sufficiently short time interval
where ηe(t−s)µ is small.

Lemma 3.1. Let u0(x) be a steady C1 solution. Let X0(t, s, x) = X0(t − s, x) be its

classical flow with Liapunov exponent σ. Let v(t, x) ∈ C1 be another vector field defined on
IRt × Ω̄ that is incompressible and tangent to the boundary

∇ · v = 0 in Ω and v · n⃗ = 0 on ∂Ω . (3.11)
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Denote by X(t, s, x) its flow

∂X

∂t
= v(t,X), X(s, s, x) = x.

Let 0 < ϵ and µ > σ+ϵ . Then there exist positive constants C1 , C2 and θ0 with the following
property.

For any positive constant η the estimate

||v(t, ·)− u0(·)||C1(Ω) ≤ ηe(t−s)µ (3.12)

for s ≤ t ≤ s+ Sη with

Sη ≡ 1

µ
ln

θ0
η

(3.13)

implies for s ≤ t ≤ s+ Sη the a priori estimates

|X(t, s, x)−X0(t, s, x)| ≤ C1ηe
(t−s)µ, (3.14)∣∣∣∂(X(t, s, x)−X0(t, s, x))

∂x

∣∣∣ ≤ C2θ0e
(t−s)(σ+ϵ). (3.15)

Proof. When there is no risk of confusion, the arguments (t, s, x) in X and X0 will be

omitted. The difference X −X0 satisfies

∂(X −X0)

∂t
= v(t,X)− u0(X0); (X −X0)(s, s, x) = 0.

Thus [ ∂

∂t
− ∂u0

∂X
(X0)

]
(X −X0)

=
[
− ∂u0

∂X
(X0)

]
(X −X0) + [u0(X)− u0(X0)] + [v(t,X)− u0(X)] ≡ g.

(3.16)

By the Taylor expansion and (3.12), we have

|g| ≤ 1

2

∣∣∣− ∂2u0

∂X2
(X̄)(X −X0)

2
∣∣∣+ ηe(t−s)µ ≤ C|X −X0|2 + ηe(t−s)µ.

Let

T ∗ = sup{t1 : |X(t1)−X0(t1)| ≤ C1ηe
(t1−s)µ} (3.17)

with C1 to be determined. In the interval [s, T ∗], we have from (3.2) and (3.16) the estimate

|X(t)−X0(t)| ≤ Cϵ

∫ t

s

e(σ+ϵ)(t−τ)[C1ηe
(τ−s)µ]2dτ + C ′

ϵη

∫ t

s

e(σ+ϵ)(t−τ)e(τ−s)µdτ

≤ Cϵe
(σ+ϵ)(t−s)C2

1η
2

∫ t−s

0

e(σ+ϵ)ρe2µρdρ+ C ′′
ϵ ηe

µ(t−s)

≤ C2
1C

′
ϵ[ηe

µ(t−s)]2 + C ′′
ϵ [ηe

µ(t−s)].

Putting t = T ∗, we have from (3.17)

C1[ηe
µ(T∗−s)] = |X(T ∗)−X0(T

∗)| ≤ C2
1C

′
ϵ[ηe

µ(T∗−s)]2 + C ′′
ϵ [ηe

µ(T∗−s)].

Hence

ηeµ(T
∗−s) ≥ 1

C1C ′
ϵ

− C ′′
ϵ

C2
1C

′
ϵ

> θ0

if we choose

C1 = 2C ′′
ϵ and 0 < θ0 <

1

4C ′
1C

′′
ϵ

.
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By (3.13) we have

Sη < T ∗ − s

and we deduce from (3.17) that (3.14) is valid.

Next we define Y = ∂
∂x (X −X0), where

∂
∂x = ∂

∂x1
or ∂

∂x2
. It satisfies

∂Y

∂t
=

∂

∂x
[v(t,X(t, s, x))− u0(X0(t, s, x))] =

∂v

∂X

∂X

∂x
− ∂u0

∂X

∂X0

∂x

=
∂u0

∂X
Y +

∂[v − u0]

∂X

{∂X0

∂x
+ Y

}
≡ ∂u0

∂X
Y + h. (3.18)

By assumption (3.12) and (3.14), for 0 ≤ t− s ≤ Sη,

∂[v − u0]

∂X
=

∂v(t,X)

∂X
− ∂u0(X0)

∂X

=

{
∂v(t,X)

∂X
− ∂u0(X)

∂X

}
+

{
∂u0(X)

∂X
− ∂u0(X0)

∂X

}
= O(θ0).

Therefore by (3.13) we have

|h| ≤ Cθ0[1 + |Y |].
By (3.18) we can now estimate

|Y (t)| ≤ C

∫ t

s

e(t−τ)(σ+ϵ/2)|h(τ)|dτ ≤ Cθ0

∫ t

s

e(t−τ)(σ+ϵ/2)[1 + |Y (τ)|]dτ

≤ Cθ0e
(t−s)(σ+ϵ/2){1 +

∫ t

s

e(s−τ)(σ+ϵ/2)|Y (τ)|dτ}.

It thus follows, for t− s ≤ Sη and θ0 sufficiently small, that

|Y (t)| ≤ Cθ0e
(t−s)(σ+ϵ).

Lemma 3.2. Given u0 and v as in Lemma 3.1, let ω̃ solve the linear equation

(∂t + v · ∇)ω̃ = 0.

Then for any 1 ≤ p ≤ ∞ and

0 ≤ t ≤ Sη =
1

µ
log

θ0
η

(3.19)

(0 ≤ t < ∞ if v ≡ u0), we have

||ω̃(t)||W 1,p ≤ Cϵe
(σ+ϵ)t||ω̃(0)||W 1,p .

Proof. Denoting Γ(x) = ω̃(0, x), we have

ω̃(t, x) = Γ(X(t, 0, x)).

Clearly ||ω̃(t)||Lp = ||Γ||Lp and∣∣∣∂ω̃
∂x

∣∣∣ = ∣∣∣ ∂Γ
∂X

· ∂X
∂x

∣∣∣ ≤ Ce(σ+ϵ)t
∣∣∣ ∂Γ
∂X

∣∣∣
by Lemma 3.1. Hence ∫

Ω

∣∣∣∂ω̃
∂x

∣∣∣pdx ≤ Cep(σ+ϵ)t

∫
Ω

∣∣∣ ∂Γ
∂X

∣∣∣pdx
since the Jacobian equals one. This proves the desired estimate on the first derivatives.

Now we prove that the eigenfunctions are smooth.
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Lemma 3.3. Any eigenfunction ϕλ ∈ L2(Ω) corresponding to an eigenvalue λ with
Reλ > σ belongs to W 1,p(Ω) for all p < ∞.

Proof. The eigenfunction satisfies

(λ+ u0 · ∇)ϕλ + curl−1ϕλ · ∇ω0 = 0, (3.20)

from which we deduce the relation

ϕλ =

∫ ∞

0

e−λτe−τu0·∇
(
curl−1ϕλ · ∇ω0

)
dτ. (3.21)

By assumption, ϕλ is in L2(Ω) so that curl−1ϕλ · ∇ω0 is in H1(Ω). By Lemma 3.1 in the
simple case v = u0 and 0 ≤ t < ∞, we have

e−tu0·∇ : W 1,p(Ω) → W 1,p(Ω)

with norm O(e(σ+ϵ)t) for any ϵ > 0. Therefore the assumption Reλ > σ implies that ϕλ is
in H1(Ω). Now this implies that curl−1ϕλ · ∇ω0 belongs to H2(Ω) ⊂ W 1,p(Ω) for p < ∞.

Using once again the estimate

||e−tu0·∇||W 1,p ≤ O(e(σ+ϵ)t) and Reλ > σ, (3.22)

we conclude the proof of the lemma.

The main ingredient in the proof of instability is a bootstrap lemma (Theorem 3.2).
Before giving this lemma it is worthwhile to compare it with classical results on the 2D
Euler equation. It is known that for smooth initial data the solution of the Euler equation

remains as smooth as the data. For instance, for any W 1,p norm we have the crude estimate

||ω(t)||W 1,p ≤ ||ω(0)||W 1,p exp
(
C

∫ t

0

||∇u(s)||L∞(Ω)ds
)
. (3.23)

However due to the fact that curl−1 is not continuous from L∞ to W 1,∞, time dependent

estimates on ||∇u(t)||L∞(Ω) are subtle[20]. The same observation applies to the difference
ω̃(t) = ω(t) − ω0 where ω0 is a stationary solution and ω(t) a perturbation. The equation
for ω̃ is

∂tω̃ + u∇ω̃ + curl−1(ω̃) · ∇ω0 = 0 . (3.24)

Applying the operator D (derivative with respect to the first or the second spatial variable)
to the equation (3.24), multiplying this equation by (Dω̃)p−1, integrating over Ω and using

the Gronwall lemma, we deduce for ω̃ the inequality

||ω̃(t)||W 1,p ≤ ||ω̃(0)||W 1,p exp
(
C

∫ t

0

(
||∇ũ(s)||L∞(Ω) + 1

)
ds
)
. (3.25)

By the same argument involving a nonlinear Gronwall lemma,

||∇ũ(t)||L∞(Ω)

can be estimated, but only for a short time which depends on the initial data. More precisely,
for

eCt||ω̃(0)||W 1,p ≤ D, (3.26)

we have

||∇ũ(t)||L∞(Ω) ≤
E||ω̃(0)||W 1,p

D − eCt||ω̃(0)||W 1,p

(3.27)

with convenient constants C , D and E. Combining the formulas (3.25) and (3.27), we easily

obtain the following result.
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Theorem 3.1. Given any stationary solution ω0 of the 2D Euler equation in a bounded
domain Ω, there exist positive constants C,C ′ and θ which depend only on Ω and ω0 such

that for any perturbation

ω̃(t) = ω(t)− ω0

we have the implication

|t| ≤ 1

C
log

( θ

||ω̃(0)||W 1,p

)
⇒ ||ω̃(t)||W 1,p ≤ ||ω̃(0)||W 1,peC

′t . (3.28)

In contrast to the sharp, but global, Wolibner estimate[20], the above estimates are only

local in time and the constants are not “sharp”. The bootstrap lemma states that under
convenient hypotheses we can sharpen the constants in (3.28).

Theorem 3.2 (Bootstrap Lemma). Denote by u0 a steady flow with classical Liapunov

exponent σ as in (3.2). Let µ be any real number strictly greater than σ. Let T > 0 and
p > 2. Then there exist positive constants θ, C1, C2, and C3 with the following property. Let
ω(t, x) ∈ C(IRt;W

1,p) be any solution of the nonlinear Euler equation which satisfies the

initial estimate

||ω(0)− ω0||W 1,p(Ω) ≤ C1δ (3.29)

and the L2 estimate

||ω(t)− ω0||L2(Ω) ≤ C2δe
µt in [0, T ]. (3.30)

Let

Tδ =
1

µ
log

θ

δ
.

Then in the time interval 0 ≤ t ≤ min{T, Tδ} , the solution also satisfies the W 1,p estimate

||ω(t)− ω0||W 1,p(Ω) ≤ C3δe
µt. (3.31)

Proof. Introduce the notation

ω̃(t) = ω(t)− ω0 and ũ(t) = u(t)− u0 = curl−1ω̃(t) .

Given η > 0, let

Sη =
1

µ
log

θ0
η

and S = sup{t : ||ũ(t)||C1 ≤ ηeµt}. (3.32)

Observe that (ω̃, ũ) solves the equation

(∂t + u · ∇)ω̃ = −ũ · ∇ω0 (3.33)

with initial data

||ω̃(0)||W 1,p(Ω) ≤ C1δ . (3.34)

By the Duhamel Principle and Lemma 3.2, this implies, for 0 ≤ t ≤ min{T, Sη, S}, the
estimate

||ω̃(t)||W 1,p ≤ Cδe(σ+ϵ)t + C

∫ t

0

e(σ+ϵ)(t−τ)||ũ(τ) · ∇ω0||W 1,pdτ. (3.35)

The norm on the right is estimated by

||ũ(τ) · ∇ω0||W 1,p ≤ C||ũ||W 1,p ≤ C||ω̃||Lp ≤ γ||ω̃||W 1,p + Cγ ||ω̃||L2 ≤ γ||ω̃||W 1,p + Cγδe
µτ

by (3.30), where γ is arbitrarily small. This is placed into the integral inequality (3.35) as

||ω̃(t)||W 1,p ≤ Cδe(σ+ϵt + Cγδe
µt + Cγ

∫ t

0

e(σ+ϵ)(t−τ)||ω̃(τ)||W 1,p dτ.
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Multiplying by e−µt, we obtain

e−µt||ω̃(t)||W 1,p ≤ Cδ + Cγ{ sup
0≤τ≤t

e−µτ ||ω̃(τ)||W 1,p}
∫ t

0

e(σ+ϵ−µ)sds

≤ Cδ + Cγ{ sup
0≤τ≤t

e−µτ ||ω̃(τ)||W 1,p}.

Hence for γ = 1/2C and for 0 ≤ t ≤ min{T, Sη, S}, we have

e−µt||ω̃(t)||W 1,p ≤ 2Cδ. (3.36)

Thus, since p > 2, we have for 0≤ t ≤ min{T, Sη, S},

||ũ(t)||C1 ≤ C||ũ(t)||W 2,p ≤ C||ω̃(t)||W 1,p ≤ C0δe
µt (3.37)

for some constant C0. Now we choose η =2C0δ, and θ = θ0/2C0. It follows from the definition

of S that S > Sη. Hence

||ω̃(t)||W 1,p ≤ 2Cδeµt (3.38)

for 0≤ t ≤ min{T, Sη}. Noticing that Sη = Tδ, we deduce (3.31).

Proof of the Instability Theorem 1.2. We now return to the nonlinear equation

(∂t + u0 · ∇)ω̃ + (ũ · ∇)ω0 = −(ũ · ∇)ω̃ (3.39)

satisfied by the perturbation ω̃ = ω − ω0. It takes the Duhamel form

ω̃(t) = etA0 ω̃(0)−
∫ t

0

e(t−τ)A0(ũ · ∇)ω̃(τ)dτ . (3.40)

Assuming that Λ > σ, by compactness (see (1.15)) there is at least one eigenvalue λ such

that Reλ = Λ . If λ = Λ is a real eigenvalue, we can choose ω̃(0, x) = δϕλ(x), where δ is
small and ϕλ is the eigenfunction

A0ϕλ = λϕλ. (3.41)

However for the sake of generality the case where Λ is not an eigenvalue is considered below
and then we choose for initial data the function ω̃(0, x) = δImϕλ(x) . Taking the L2 norm

in (3.40) gives

||ω̃(t)− δetA0Imϕλ||L2 ≤ Cν

∫ t

0

e(t−τ)ν ||(ũ · ∇)ω̃||L2dτ (3.42)

for any Λ < ν < 2Λ. Define

T = sup
{
s : ||ω̃(t)− δetA0Imϕλ||L2 ≤ δ

2
||etA0Imϕλ||L2 , ∀t ∈ [0, s]

}
. (3.43)

Then for 0 ≤ t ≤ T we have

||ω̃(t)||L2 ≤ C2δe
µt, (3.44)

where µ = Reλ = Λ. Hence from Theorem 3.2 with µ = Λ > σ, we crudely estimate the

nonlinear term as

||(ũ · ∇)ω̃||L2 ≤ ||ũ||L∞ ||∇ω̃||L2 ≤ C||ω̃||2W 1,p ≤ C{C3δe
µt}2 (3.45)

provided t ≤ min{Tδ, T}. We shall prove that Tδ ≤ T for δ small. If not, notice that

||etA0δImϕλ||L2 ≥ c0δe
µt. (3.46)
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Therefore we have for 0 ≤ t ≤ min{Tδ, T} the estimate

||ω̃(t)− δetA0Imϕλ||L2 ≤ C

∫ t

0

e(t−τ)νC3{δeµτ}2dτ ≤ C{δeµt}2

≤
{C

c0
δeµt

}
||δetA0Imϕλ||L2 ≤ C ′θ||δetA0Imϕλ||L2

≤ δ

4
||etA0Imϕλ||L2 (3.47)

by choosing θ small. If T < Tδ, we choose t = T above to obtain

||ω̃(T )− δeTA0Imϕλ||L2 ≤ δ

4
||etA0Imϕλ||L2 , (3.48)

which contradicts the definition of T . Therefore Tδ ≤ T and we can put t = Tδ to obtain

||ω̃(Tδ)||L2 ≥ 3

4
||eTδA0δ Imϕλ||L2 ≥ 3

4
c0θ ≡ ϵ0 > 0. (3.49)

§4. Conclusion and Acknowledgments

It has become increasingly apparent that the notions of stability and instability are de-

pendent on the norms. Therefore our purpose has been to analyze both of them in the same
norm.

The analysis of the stability could be also done for other types of minimizers. Consider
a convex function ω → G(ω) and the minimizer of the functional∫

ω

G(ω)dx

under the constraints of mass equal to 1 and energy given. Formally such a minimizer is a

solution of a generalized mean field equation

−∆Ψ = C (G′)−1(−βΨ), (4.1)

which ought to be studied in the same way as the standard mean field equation. In this
direction some related stability results can be found in [19].

However it is the mean field equation itself or its generalization given in [16, 14, 12] which
seems really pertinent for the description of coherent structures. While the result of Section
2 may explain why these structures persist, it does not explain why they appear in the first

place. In fact, these stability results are time-reversible, so that in order to come close to a
solution of the mean field equation one has to start close to this solution. The stationary
solutions do not behave like attractors but like centers of a dynamical system. However,

justification of their frequent appearance could be found in one of the following possibilities.

• These solutions should be the most probable ones in terms of a convenient probability
measure to be defined on the configuration space.

• They might be produced by the conjunction of several circumstances, such as the fact

that the initial vorticity is bounded in L∞ and a family of solutions converges merely weakly
to a nontrivial Young measure, the fact that in mean time the solutions are limits of solutions
of the Navier-Stokes equations with viscosity tending to zero, and the fact that only the ω

limit set for t → ∞ is important.

This contribution is part of a research program which was initiated during the visit of C.
Bardos to Brown University in the spring of 2000 and he wishes to thank Brown University

for its support and warm hospitality during this period.
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Any specialist of the field reading this paper will guess that we had the chance to benefit
from some helpful discussions with several colleagues, including S. Friedlander, G. Haller,

M. Kiessling, M. Vishik and G. Wolansky and we would like to thank all of them.
And finally we would like to thank Professor Li Ta-tsien who gave us the opportunity

to publish this article in this special issue dedicated to the memory of Jacques-Louis Lions.

He played a fundamental role in the scientific training of two of us, having been the thesis
advisor of the first author and one of the first collaborators of the third author during his
postdoctoral year in Paris.
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