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Abstract

The objective of this paper is to consider the theory of regularity of systems of partial
differential equations with Neumann boundary conditions. It complements previous works of
the authors for the Dirichlet case. This type of problem is motivated by stochastic differential
games. The Neumann case corresponds to stochastic differential equations with reflection on
boundary of the domain.
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¢1. Introduction

We consider here a system of nonlinear P.D.E. with Neumann boundary conditions. It is
the counterpart of the Dirichlet problem considered by the authors in several publications
(see in particular the book [1]). Although a natural counterpart of the Dirichlet case, the
results of this paper are presented here in a simplified and self-contained manner.

§2. Setting of the Problem

2.1. Notation and Assumptions

We consider a smooth, bounded domain € of R™. In particular, the boundary will be
representable by local charts, so that in a sense the Neumann problem can be reduced to
the Dirichlet problem. We consider the operator

A= —divaD, (2.1)
where a(z) = a;;(z) satisfies
aij(z) = aji(x) is Lipschitz continuous on Q,

aji(2)&i&; > aolél*, V€€ R", a9 > 0. (2.2)
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We now consider “Hamiltonians”, namely functions H, (z,p),v =1,--- N, p=p1, -+ , DN,
with p, € R"™, with the following properties
H,(x,p) are Caratheodory functions, (2.3)
2
E:HALmZ—A—AﬂE:m : (2.4)
HV(x7p) S )\y + >\(13|pl/‘2a
H,(2,p) = Q(z,p)p, + H)(,p), (2.6)
with
|Q(z,p)| < k+ Klpl, (2.7)
[HY (2, p)| <k + Ko > [l (2.8)
usv
Let a be a positive constant, we are interested in the system
Au, + au,, = H,(z, Du),
Ouy,
N — (2.9)
a’l’LA 90
which is written in the variational form
/ aDu, Dvdx + a/ uyvdr = / H,(z, Du)vdz, Yv e H(Q)NL®(N). (2.10)
Q Q Q

2.2. Statement of the Main Result

Theorem 2.1. We assume (2.2) to (2.8). Then there exists a solution of (2.10) which
belongs to (WQ*S(Q))N V2 <'s < oo.

Remark 2.1. The assumptions are subject to some flexibility, in the sense that we
can combine in a linear manner the equations, to achieve the desired structure (see [1] for

details).
Remark 2.2. The assumptions (2.6), (2.7) and (2.8) are restrictive only for v =
1,-+,N — 1. A general quadratic growth can be assumed by Hy(z,p), and it is always

possible to define HY (z,p) by the relation

and (2.8) will be verified.

§3. The H'(2) n L*>°(Q2) Theory

3.1. Approximation

The problem (2.10) makes sense for solutions in H'(Q) N L®°(£2). This is what we are
looking for to begin with. We consider as an approximation the problem with Hamiltonians

H,(z,p)
1 +¢e|H(z,p)|’
where H(x,p) stands for the vector Hy,--- , Hy. Note that all the assumptions (2.3)—(2.8)
are satisfied for the hamiltonian HE(z,p) with the same constants, provided we define

Hy(x,p) = (3.1)

. _ Qz,p)
Q*(z,p) = ma (3.2)
lﬁﬁmm—glﬁgfL— (3.3)

- l+elH(z,p)|
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Morevover one has
1

)| < 2, Ve (3.4)

Therefore, by application of Schauder’s fixed point theorem, one can obtain the existence of
a solution uf = (u$) in (Wst(Q))N of the problem

/ aDu;, Dvdz + a/ ugvdyr = / HE(x, Duf)vde, Yo € HY(Q) N L®(). (3.5)
Q Q Q

3.2. L°° Estimate
Since the estimate are exactly the same for (3.5) and (2.10), we shall to simplify the
notation consider only (2.10), with a priori estimates, assuming a solution in (WQ‘S(Q))
exists. Let us write
=)
v

and summing up (2.10), we get

/anLl,Dvdx—l—a/ﬁl,vdx:/ZHl,(x,Du)vdx. (3.6)
Q Q (*h

Consider the function
E=expy(a+1L)", (3.7)

where v, L > 0 will be defined later. We test (3.6) with v = 1 — E, which is a negative
function in H!' N L>. We get

v/gaDﬂ.DdEl{ﬂJrL@}dx + a/Qﬂ(l — E)dz = /QZHl,(x,u)(l — E)dx
and using the assumption (2.4), together with the fact that 1 — E' < 0, yields
< /Q(fx A\ Da*(1 — E)da.
Therefore, also using (2.2) we get

aw/ |Da|2E1{ﬂ+L<0}dm+a/(ﬂ+L)(1—E)dm
Q Q

< /(aL - A)(1 - E)dx + )\0/ |Dul* Bl <opda.
Q Q

Choosing

)0
"’/:7’ L:

A
(7)) «

yields

/(a +L)(1 - E)dz < 0.
Q

Since clearly (@ + L)(1 — E) > 0, we deduce
(t+L)(1—FE)=0 ae,hence 4+L>0 ae.

Therefore we have shown

<
vV
|
Q>
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We next consider in (2.10) the test function F, — 1, with

E, =expy,(u, —1,)"

for convenient positve constants 7,,1,. Note that £, —1 > 0. Making use of the assumption
(2.5), it follows that

’y,,/ aDuVEyl{uDlu}dx—!—a/ u, (E, — 1)dx
Q Q

S//\V(Eu—l)d:c+/\2/ |Duy *Ey 1y, 51,y de.
Q Q

Thus taking

>

v v
T = —) l, = 3

we deduce again

which implies
U, < —. (3.9)

Continuing (3.8) and (3.9) we obtain

wy, > i (3.10)
[0
So we have proven
G 1
y o< 2 = =M (AV,A A 3.11
s floo 22 = ~Max(A, A+ Y M) (3.11)

wFV

Remark 3.1. The estimate (3.11) is the same as for the solution of the Dirichlet problem.
This is due to the presence of the zero order term au,, and to the fact that for the Dirichlet
as well as for the Neumann problem, the maximum and the minimum of the function u, do
not take place at the boundary of the domain.

3.3. H' Estimate

The H' estimate is done by using the special structure (2.6), (2.7), (2.8). Recall that

luy (2)] < % (3.12)

We introduce the function
N
B(s)=e¢"—s—1, F= H exp B(Vouy),
v=1

where 7, is a positive constant to be defined later. We test (2.10) with v = Fy, 8/ (y,u,) €
H' N L*®. So we get (as in the Dirichlet case)

DF.DF
Z/vgaDuV.Duye'Y”“”Fdx—i-/ a————dx
—~ Ja Q F

= /QQDFda: + /Q ZV:%(HB(Du) —au,)F(e7" — 1)dx,
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hence also

Z/ *ygaDu,,.Duye%“”Fda:
— Ja

-1
< /QFa f'QdCE + /Q ;%(HB(Du) — o, )F (™" — 1)dx. (3.13)

Introduce next the function

N
X = H exp B(yuy) + exp B(—vuy)) (3.14)
v=1

and the related quantities

e exp B(yuy) + e " exp B(—yuy)
exp B(yuw) + exp B(—yuy)
5 _ @ = Dexpflyu) = (" — 1) exp S(=ywn)
Y exp B(pun) + exp B(—vuy)

X, =X

)

(3.15)

and we have the inequalities

v

véu
N <X <X, < Xe'

X, < X,

Applying the relation (3.13) with 7, changed into —v,, and summing up the 2% relations
obtained in this way, we get the inequality

—1 ~
Z/ v2aDu, Du, X, dx < x4 4Q'Qda: +/ Z’YV(HB(DU) —ou,)X,dr  (3.16)
o Q Q5
and using the assumption (2.8) yields

1
g/X#dwz/%<ku+<,,+Ku|Duy|2)Xudx

+Z/ |Duy >~ 5 K X uda.

u>v

Use (2.7) to note that

—1
# Qi(k2+K2|Du| ),

hence it follows from (3.16) also

1
aOZ/ V§|Dul/|2X,,dx§/ —kQX—FZ%(kV—i—C,,)X,, dx
—~ Jo a \ 200
/ZIDW2 (X + KX+ KX, )d ,

n>v

but also
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hence
2 . K? RILY
Z |Du, |°X, | v, — — — WK, — Z YK e dx
Q 20{0
v n>v
1
< — kX (ky + G)X, | da. 3.17
_/Q<2ao # Sk +6) ) (317)
Choosing the constants 7, so that
2 K2 RITIYN
gy, — g WK, — Z’yuKﬂe a >0, W (3.18)
pu>v
and recalling that X, > 2V, we obtain
/ |Dul?dz < Ko. (3.19)
Q
3.4. Convergence
Since the preceding estimates hold for u®, we have also
| v [loo <€, (3.20)
Il v | (mr )y < K. (3.21)
So we can extract a subsequence, still denoted by u®, such that
uS, — u, in H'(Q) weakly and L>(Q) weak star, also a.e. (3.22)
We want to prove that
uS, — u, in H'(Q) strongly. (3.23)
We perform a calculation close to that of Section 3.3, with this time
N
F= H exp B (uy, — uw)),
v=1
and test (3.5) with v = Fv, /5 (7, (uS — u,)). We obtain
E DF.DF
Z/ Y2aD(uS — uy,).D(uS — uy,)e? (" =%) Py —|—/ a dx
o Ja Q F
= / (Q6 — yyaDu,, (e —uw) — 1)) DFdx
Q
+/ F(H)® — cul, + Q°Du,) vy (e W) 1) dg
Q
- / FaDuy,.D(uS — uy, )y2e? =) dy
Q
=I1+1II+1IIL (3.24)
Introduce the function
(3.25)

his) =Y (e —1)%,

where s represents the vector (s1,---,sny). Note
la(x)] < M, |Q°| <k+ K|Du|+ K|Du® — Dul.
Moreover

N
DF — Fz,yy(e%(ui—u,,) —1)D(u — u,),

v=1
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hence
|DF| < F|D(uf — u)|RY?(uf — u). (3.26)
Therefore considering the integrals on the right hand side of (3.24), we have

1] < /(K|Dua — Du| + M|Du|h*?(u® — u))|DF|dx
Q

+ / Pk + K| Dul)| D(uf — w)|hY2(uf — u)da, (3.27)
Q
SO
/ DF.DFd
a X
Q F
K? 1 M2
>1- / FK— + 7)|D(u€ — )| + h(uE — ) (k2 YK+ 7) |Du\2}dx,
o a2 2a0 (3.28)

Z/ v2aD(us — w,)er M) Py
—Ja

< /QF[(;Z + %)u:)(ue —w)?
+ (e — ) <k2 + (K2 + gf:)) |Du\2)}dx L4 IIL (3.29)

Introducing the quantities analogous to (3.14), (3.15), namely

N
X =] (exp By (v — ) + exp B(—y (45, — w,))) , (3.30)

v=1

() exp Bl (g, — ) + €5 oxp B, — )
exp B (uf — u,)) + exp B~y (ug — u,))

oo o ) 1) exp B = ) — (e — 1) exp B 1, — )

X, =X

v

3

v exp B(v, (uS —uy)) +exp B(—y (ug — uy)) (3.’31)
we have of course
oV < XT < XE< X2, X< X, (3.32)
and also
|X2| < (el lwmuw)l 1) xe, (3.33)

From (3.30), we deduce, writing the 2%V inequalities corresponding to all changes of 7, into
— Vv

Z/ Y2aD(us — u, ) D(uf, — u, ) XEdx
—~ Ja

< /QXE [(QKQZ + %) ID(uf — )2 + h(uf — u) (k2 + (K2 + ;\4%2))|Du|2)}dx

+ Z / (H%® — cus + Q°Du, )y, Xodx — Z/ V2XED(u, — u,)Du,dx

=1+ 1 + 11T, (3.34)
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We first check that
|HY = cus| < ky + (, + 2K, | Dul® + 2K, Y [D(u, — u,)|?,

usv

hence using (3.33) and (3.34) we have
| S(HY = eut )X

< X (ky + Gy + 2K, [Duf?) (el (e =u)l 1) 4 28,7, X5 3 [D(u, — u,) 2

n<v

gXEhl/Q(uE—u)((Z(k ‘) )1 +2(ZK2) /2|Du|2)

+2Zk,,%X5|D(u — ) |2+2Z|Du —u)P D YK Xy

u>v
and
‘ 3" Q°Du,y, X| < X6 (k + K|Duf )| Dulh '/ (u® - w).
Collecting results, we deduce from (3.36)
K? G
Z |D(us, — u,,)|2<04073 “9a 3 2K, v, — 2 Z YK€ S )Xﬁdﬂc
Q
v u>v

< /QXEh(uE —u) (k2 + (K2 + 2£>|Du|2)dx
[ (St ) e Sie) o)
+/9th1/2( )| Dul(k + K|Duf|) dx—2/72x D(uf — w,)Du, dzx .

as € — 0, h(u® — u) — 0 pointwise, X — 2V X — 2V In view of the weak convergence
in L? of DuS to Du,, and the L> bounds, it is easy to convince oneself that the right hand
side of (3.37) tends to 0. Choosing the 7, so that

1 2
04071,—7—7—2[(,,%—227,1[@6 o >0

and recalling the X¢ > 2V we deduce immediately from (3.37) that
/ |D(uf — u)|*dx — 0.
Q

Hence we have proven (3.23). We may assume that
Du® — Du a.e.,
thus
H(z,Du®) — H,(x,Du) a.e.
Moreover since
|HE (2, Du#)| < C(1 + | D ?),
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the convergence of Duf in L? implies the equi-integrability of HE(x, Duf). Hence from
Vitali’s theorem

HE(xz, Duf) — H,(x,Du) in L'.
Therefore we can pass to the limit in (3.5), showing that u is an H'(Q) N L>(2) solution
of (2.10).
¢4. Regularity
4.1. An Inequality
We associate to u, a constant ¢, which is arbitrary, provided that

1/<*, 41
o] < 2 (4.1)

and consider as in Section 3.3, the function

N
F= H exp ﬁ(’yu(uu - Cy)).

v=1
Let ¢ be in C1(Q),9 > 0, and test (2.10) with

v = F/YV/B/(PYV(UV - CV))’(/J'
We obtain
DF.DF

wdx—l—/ aDF.Dydx
Q

Z/ 'yl%aDuVDul,e"’”("”_c”)Fz/de—F a
—Ja Q

= / Q.DFdx + Z/ Yo (HO(Du) — au, ) F (e =) —1)yde,
Q o Ja
hence instead of (3.13)

Z/vgaDuyDuye'y"(“"_“”)Fwdx—|—/ aDF.Dydx
v Q Q

-1
g/QF“ f'dex—l—zV:/Q%(HS(Du)—au,,)F(e"’”(“”_c“)—1)¢dx. (4.2)

Introduce the function

N
X = H (exp B(vw (uy — c)) +exp B(—Yw (uy — ¢v))) (4.3)

v=1

and the related quantities

¥ Xe'y"(“"fc") exp B(v(uy — ) + e~ —c) exp B(—=vu(uy, — ¢))
! exp BV (u, — ¢)) +exp B(—v (uy — ¢,)) '
T () 1) exp Bl () — (740 — 1) exp B, — )

N exp B(y, (uy — ) + exp B(—y (uy — ) (4.4)

v =

again with 2V relations with the possible choices of v, and —7,, and adding up, we get

> / v2aDuy, Du, X, d + / aDX.Dydx
~Ja Q

iQ.Q -
< /Q A DY /Q Yo (HY(Du) — o)) X, .
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Performing as in Section 3.3 for all terms where 1 arises, and picking the constants -, as
there, we obtain

ko [ |Dul*vdx + / aDX.Dypdx < Ky | de. (4.5)
Q Q Q
Note that
DX =Y 4,X,Du, (4.6)
and thus
DX < Clu— || Dul, (4.7)
where ¢ stands for the vector of constants (ci,- - ,cn).

4.2. WP Regularity for 2 < p<p-+e
Consider balls Br(x) of center xy and radius R, such that |2 N Br(zg)| > 0. By the
smoothness of the boundary, we have (denote I' = 92)

|Q n BR(£E0)| > coR" ‘(Rn — Q) N BR(ZL'O)| >cR" ifxg el (48)
To the function u, and to a ball B — R(x) we associate the constant
@ fBzsz) uydz, if Bag(wo) C Q,
R _ : n
€ =\ el JBan(aynn e, if Bar(zo) N (B" = Q) #10, (4.9)

where zj, € I' N Bagr(zp).

We shall use the Poincaré’s inequality

N 5 n(%—l)-&-l %
(/ lu, — ul?| d;v) <cR ! (/ |Du,,\“dac> (4.10)
QﬂBQR(.’I)o) QQBGR(QI[))
with \,u > 1,n (% — i) +1 > 0. Let 7 be a cut off function

L 1 on B1(0),
~ 1 0 outside By(0)

and 0 <7 < 1,7 € C*. We denote

Tr(Z) = T(x ;%xo).

We take in (4.5) 1 = 74, and ¢, = ¢ff. So from (4.7) we have
|IDX| < Clu — c®||Du|
and thus we deduce from (4.7) the inequality

/ |Dul*dz < C | Du|
BR(aio)ﬁQ BzR(aio)ﬁQ

From Hélder’s inequality and Poincaré’s inequality, we have
ntl n—1

—cht C n n n n
/ |Du||u ¢ ‘dx < 7(/ |Du‘n2+1 dl‘) ’ (/ |u—cR‘n2—1dI> ’
BorN R R BarNQ2 BorN

n41
< g(/ |Du\n27+1dx) -
R BgrN

So set z = |Du\%lg, then we have the inequality

nt1 ot
szdz < C’(/zdm) "+, (4.12)
Br

Bsr

|u— |

dx + CR". (4.11)
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f_ 1
Br |BRr| /5,

This is the reverse Holder’s inequality, implying Gehring’s result, namely z
grable for some positive €, hence u € WHP(Q), for 2 <p <p+¢'.

where

nt
™

1 . .
+ € 1s inte-

4.3. Interior C° Regularity -
Let €1 be an open subdomain of 2, with 27 C €. We want first to prove the following
estimate

/ |Dul?|x — o[> "dx < Cq,, Vaxo € Q. (4.13)
We consider the Green function G = G*°, solution of

—div(a(z)DG™) = §(z — x0),

G|, =0 (4.14)

Note that
G™ e LI NWIT(Q), 1<qg< ) 1<r<-—"_. 4.15
ELUQNWLT(0), 1<g< o 1<r< (415)

Moreover
colr — 20> < G*O < ey|z —xo)*T", Vo € Qy, (4.16)

where the constants cg, ¢; depend only on Q1. We just take in (4.5) ¢ = G*°!, and from the
definition of the Green function, one has

/ aDX.DG*dx = X (x9) > 0,
Q
hence

kzo/ |Dul?G*dx < Ko/ Gdx < C.
Q Q

Using (4.16), the estimate (4.13) follows immediately. We want to prove C? regularity in
Q1. We shall use Morrey’s result, namely

1/2
2
Ju(e) - uly)| Sty 1 Dul?dz
— T (C _— . 4.17
m?g;h z—y? = I:"elgl Rn—2+26 (4.17)
TH#y Br(zo)CQ
So we want to show that
/ |Dul?dz < KR"™**2° Wz € Oy, Br(zo) C Qu; (4.18)
Br(zo0)

of course, the constant K will depend on 2. To check (4.18), we shall prove the inequality

/ |Dul?|x — xo|* "dx < C/ |Dul?|z — 20> "dz + CR? (4.19)
Br(zo) Bor(z0)—Br(20)

with 0 > 2,8 > 0,Bsr(zo) C Q1. If (4.19) holds, then we can rely on the hole filling
technique of Widman!?. Filling the hole, we deduce from (4.19)

/ |Dul?|z — 20|> "dx < 9/ |Dul?|z — xo|* "dx + CR® (4.20)
Br(zo) Bsr(z0)

IThis is formal, since G®0 is not in C''. One proceeds first with an approximation of the Green function.
We skip this step
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with 6 < 1. Set (zg being fixed in ), choosing 26 < 3,
B fBR(a:o) |Dul?|x — xo|> "dx

R26 ’

QD(R) R S ROa

where
Ry =sup{R | Br(zo) C 1},
we may write from (4.20)
R
p(R) < pp(oR) +C, R< 2,
with g = 602 < 1. Since p(Ry) < 00, as a consequence of (4.13), we get ¢(R) < C,VR < Ry.
So we have shown that

/ |Du|?|z — x| "dz < KR*, Vo € Qy, Br(zo) C Q,
Br(zo)
which implies (4.18).
Proof of (4.13). We apply (4.5) with
’L/J = GxOTIQ;z, o € Ql, BQR(!E()) C Ql, (421)
1
R
C=¢, = U, da. (4.22)
|Bar = Bry2l J By (20)— Br o (o)
We obtain first

ko/ |Dul>?G®or3 > c/ |Duf?|x — xo|* "du, (4.23)
Q Br(zo)
K | G™71% < CR7%. (4.24)
Q
Next
Dt = DG*° 1% 4+ 2G™ 1R DTR.
Consider

1= 2/ aDXDtrG" trdzx,
Q

we have from (4.7)

_ R
1| < / Dul = o gy
B2r—Br R
2 2 lu — CR|2 2
<C |Du|*|x — xo|*""dz + C 5T — @07 "dx.
Bar—Br Bar—Br R
But, using Poincaré’s inequality we have
_ R|2 C
/ w\x — 20> "dx < — lu — c®|?dx
Bar—BRr R R Bar—Br
¢ 2
R Bar—Bry2
<C |Dul?|z — xo|* "dz,
Bar—Bry2
hence
I <cC |Dul?|z — zo|* "dz. (4.25)

Bar—Bry2
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Consider next the term
1= / aDXDG* thdx
Q

_ / aDGT D((X — 2V)72)dz — 2 / aDG Drp(X — 2V )rrda
Q Q

> —2/ aDG™ D1p(X — 2N)rpdx
Q

— cRJ?

> _C |DG\|U7

— 7 Trdx,
where we have used the estimate
|X —2N| < Clu— B2 (4.26)
We estimate II from below as follows
n>-C Gl o GYDGPu — *2ridz. (4.27)
Bar—Br Rr? Bar—Br

The first term on the right hand side is estimated by the right hand side of (4.21). So there
remains to estimate the term

11 = / G DG |u — cf)?rida.
Bor—Br

Now, we introduce a new cut off function &, satisfying
¢ = 0 for|z| <1,
T for |x| > 1,

and we set

- Tr — X
er(@) = ¢(572),
thus
&r = Tr on Byp — Bg.

We first test the Green function equation (4.14) with G=/2|u — c#|2¢2 which vanishes on
the boundary of 2, since Bor C ;. It also vanishes on g, hence

% / DGDGG 3%y — Pt dr = / aD(|u — cB?¢%).DGG~Y 2 dx. (4.28)
Q Q

On the other hand, taking in (2.10) v = (u, — cl}?)Gl/zfﬁ yields, summing up in v,

1
Z/ aDuVDVG1/2§12%dz + Z/ aD(|Ju — cR|2§}23)DGG71/2dx
174 Q Q
1
5 / aDG.Déglu — PGV 2¢pda + / aD|u — c®|2. DERGY € pdx
Q Q

= / (H,(z, Du) — au,)(u, — c)GY2e2d.
Q
So we deduce, taking into account the quadratic growth of H,,
/ aD(|u— B 22 DGG Y2 de < 2/ aDG.Dép|u — PGV ¢ pda
Q Q

2—n

+CR™

—n — B2
/ |Duf?dz + CR"(73) 4+ CR* / el
Bzr—Bry2 Bar—Bry2 R (4.29)



178 CHIN. ANN. OF MATH. Vol.23 Ser.B

Furthermore

/ aDG.Dég|u — cB2PG Y% ¢pda
Q

—3/2 R |22 C 2—n lu—c"?
<Cé | aDG.DGG |lu — c*|*¢gde + =R ———dx, V9,
Q2 0 Bar—BRry2 R

and combining this estimate in (4.29), (4.28) for § sufficiently small yields

/ aDGDGG 32 |u — B2 da
Q

—n —n - R 2
< cRr"(1=%) 4 OR% / |Dul?dz + CR*F* / Juz 7P
Bar—BRry2 R

dx,
Bar—BRry2

and using Poincaré’s inequality, we obtain

2—n

/ aDGDGG 2|y — P 2e2dx < CR™(1"2%) 4+ OR* / |Duf?dz.  (4.30)
Q Bar—BRry2

Going back to the definition of III, and recalling that £ = 7 on Bop — Bg, we get
Il < OR / G *2aDGDGu — R dx,
Q

and from (4.30) it follows that

IMI < CRQ‘"/ |Duf?dz + CR" 20
Bar—Bry2
<C |Dul?|z — 20|* "dx + CR' 27 .
Bar—BRry2

Finally from (4.27) we obtain
I>-C |Du)?|z — zo|* "dx — CR 307
B2r—BRry2
Collecting results in the application of (4.5) and changing R into 2R, we obtain (4.19) with
a:4,and5:§since§<1+2lq,and5<2.
4.4. C°% Regularity on the Boundary
By local maps representation of the boundary, the problem amounts to the following.

Consider a sufficiently small ball B centered on the boundary, and a diffeomorphism % from
B onto D C R™, such that

Q' =¢(BNQ) C{yeR"|y, >0},
I"=y(BNT) C {y € R" [y = 0},
1,11 sufficiently smooth. Define next
QO ={ylyn <0,(y1,- s Yn—1,—yn) € AT},
Q=0tuQ ur.
If 2 is defined on €2, set
(y) =207 (y), yeQtur’
and define 2z’ on Q= by reflection, namely

Z/(yla T 7yn—1ayn) = Z/(yla 5y Yn—1, _yn> if UYn < 0.
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Applying the procedure to the function u,, we have to prove
ul,(y) € CO (). (4.31)

We begin to reduce the variational problem (2.10) to a problem on BN€. Consider in (2.10)
functions which vanish in Q — Q N B, we obtain

/ aDu, Dvdz + a/ uyvdr = H,(x, Du)vdz,
QnB QNB QnB
Yo e H(QNB)NL®(QNB), v|yznq = 0. (4.32)

We then perform the change of coordinates z = ¢ ~(y), denote

Jy (x) = matrix ( gwi ) ,

and set
vy = P e I W)
Y [det Ty (& (y))] ’
o H @), T )p)
N F o AT

ay(y) = -
’ | det Jy (¥~ ()
The variational problem (4.32) reads
/ a'(y)Du,, Dv'dy +/ ay(y)u,v'dy = / H! (y, Du')v'dy,
Q+ Q+ Q+

Vo' € HH QM) NL>®(QT),  v|p0e v =0,

ul, € HY(QT) N L= (Q), (4.33)
a'(y)§.€ > aglél’,  ao(y) > av. (4.34)
Moreover the Hamiltonian H) (y,p) verify the special structure assumption, namely
H)(y,p) = Q (y,p)pv + H,(4,p) (4.35)
with
Ty )Q(W ™ (), p : H)(W~ (y),p
Q' (y.p) = v ()R (y) )’ O, p) = (" (), p)

| det Jy (=1 (y))] [ det Ty (v (y))]

and we have

Q' (y.p)] <k + Klpl, (4.36)
H (y,p) <k + K, |pul” (4.37)
u<v

We now proceed with the reflection procedure.
Write y = (v, yn) where ¢’ = (y1,--- ,yn—1) and define for y, < 0,

a;i(y/,yn) = a;i(y/, ~Yn), Vi,

@i (Y yn) = ai;(Y's —yn), Vi, ji# g, 1,5 #n,
@G (Y yn) = —ain (Y’ —yn), Vi #mn,

ag(y's yn) = ao(y’, —yn)
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Let also p, = (p),, pun), where p/, stands for the components p,1,-- ,py(m—1). Then, we
write for y,, <0,

H,(Y', Yns P15 Pins - 5PN PNa) = Hy(Y's =Yns D1y —Dins -+ 5Py —PNn)-
Therefore the functions u!, extended by reflection appear to be solutions of the problem

!
/ a/(y) Duy, Dv'dy + / ap(y)u,v'dy = / H),(y, Du')v'dy,
/ Q7 Q
Yo' € Hy(Q)N L=, wl, € HY(QY)NL>®(Q) (4.38)

and our objective is to prove (4.31).
If we drop the prime symbol, and use z instead of y, our problem amounts to the following.
Consider the variational problem

/ aDu, Dvdz + / apu,vdxr = / H,(z, Du)vdz,
Q Q Q
Yo e HY(Q)NL>®(Q), u, € HY(Q) NL>®(Q).

We know that the solution is C°(€Q).

It is similar to the interior C? regularity of (2.10) considered in §4. However we have to be
careful to consider only test functions, which vanish on the boundary. Nevertheless, thanks
to the special structure on H, we derive again (4.5), for any  in C1(Q),v¢ > 0,9|sq = 0. In
the proof of interior C% regularity, we use only test functions which vanish on the boundary
of ©, hence the proof carries over, and the result follows.

4.5. End of Proof of Theorem 2.1

We know that we have a solution of (2.10) which belongs to W'P(Q) N C?%(Q), 2 < p <
2+¢. We can now rely on the linear theory and Miranda-Nirenberg interpolation theorem/?!.
Indeed H,(x, Du) belongs to L5 with po > 2. Hence from the linear theory u, € w2
and since u, € C"s7 we have also

u, € WP with L = L i,
P1 pPo 2n
provided pg < 27", and thus p; > pg. After a finite number of steps we get p; > %”, and it
follows that u, € WHP()), p > 2n, and from the linear theory again u, € W2*(Q), s>
n. From Sobolev embedding theorem, u, € W' T(Q),Vs and thus from the linear theory
again u, € W2*(Q),Vs.
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