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The study of Riemann-Finsler geometry has recently been enhanced by the publication
of a substantial book[2]. In this book we made essential use of a connection introduced
in 1948[3]. The connection is a natural generalization of the Levi-Civita connection in the
Riemannian case and seems to be the right analytical basis of the subject. We have given a
derivation of it. According to Anastesie it coincides with the one introduced by Rund, who
kindly gave an exposition of the paper in his book.

The aim of this paper is to give a short derivation of the connection. We will also show
how it gives a solution of the local congruence, i.e., a complete system of local invariants
which ensures that two Finsler structures differ by a change of coordinates.

§1. A Simple Equivalence Problem

Problem. Given in Rn with the coordinates xi n Pfaffian forms ωi, linearly independent,

and in Rn with the coordinates x∗i

also n linearly independent Pfaffian forms ω∗i

, 1 ≤ i ≤ n.
Find the conditions that there exists a coordinate transformation

x∗i

= x∗i

(x1, · · · , xn), (1.1)

such that

ω∗i

= ωi. (1.2)

(Our Latin subscripts and supscripts have the range 1, · · · , n.)
The idea is to construct invariants under the transformation (1.1). We have, since the

ω’s are linearly independent,

dωi = cijkω
j ∧ ωk, (1.3)

where we can suppose

cijk + cikj = 0. (1.4)
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With the condition (1.4), the cijk are completely determined. If the corresponding quantities

in R∗n

are denoted with asterisks, we have

cijk = c∗
i

jk. (1.5)

Differentiating, we have

dcijk = dc∗
i

jk (1.6)

so that

cijkl = c∗
i

jkl (1.7)

if

dcijk = cijklω
l (1.8)

and similar equations with asterisks. Continuing this process, we get a sequence of functions,

cijk, cijkl, cijklp, · · · , (1.9)

which are equal to the corresponding functions with asterisks. The solution of our problem
is thus given by the following theorem:

Theorem 1.1. The transformation (1.1) has the invariant functions (1.9). If one of the
functions is a constant, the corresponding function with asterisk must be equal to the same
constant. If some of the functions are independent and another one is a function of them,
the same must be true with the functions with asterisks, by the same functional relation.

§2. The Connection in a Riemann-Finsler Space

Let M be a manifold and TM its tangent bundle. By SM we mean the manifold of its
rays, i.e., the set of non-zero tangent vectors differing by a positive factor. If n = dimM ,
then dim TM = 2n and dim SM = 2n − 1. We use the local coordinates xi of M , then
TM has the local coordinates xi, yi, if the vector is yi ∂

∂xi , and SM has the same local

coordinates, yi being then homogeneous coordinates, up to a positive factor. In this section
we will agree on the following ranges of indices:

1 ≤ i, j, k, · · · ≤ n; 1 ≤ α, β, γ, · · · ≤ n− 1. (2.1)

A Riemann-Finsler metric on M is given by the function

ds = F (x1, · · · , xn, dx1, · · · , dxn), (2.2)

where F (x, y) is supposed to be smooth and positively homogeneous in the second variable,
i.e.,

F (x, λy) = λF (x, y), λ > 0. (2.3)

We introduce the quantities

gij =
∂2

∂yi∂yj

(1
2
F 2

)
, (2.4)

which are functions on SM , and we make the regularity hypothesis that the matrix (gij)
is positive definite (or more generally non-singular). The quadratic differential form Q =
gij(x, y)dx

idxj will be called the Riemann form.
The projection π pulls TM back:

π∗TM −→TM

↓ ↓

SM −→
π

M

(2.5)
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and we will use the bundle at the left-hand side. In this bundle the gij in (2.4), being
homogeneous of degree 0 in yk and therefore functions on SM , define an inner product.
SM has the distinguished one-form

H =
∂f

∂yi
dxi. (2.6)

It will be called the Hilbert form.

Lemma 2.1. Under the regularity hypothesis, the Hilbert form satisfies

H ∧ (dH)n−1 ̸= 0, (2.7)

and hence define a contact structure on SM .

For proof, refer to [2, p. 272].

In the bundle at the left-hand side of (2.5) we take a frame field ei and let ωi be the
coframe field dual to ei.

A connection D is by definition the absolute differential

Dei = ωj
i ej . (2.8)

Then the tensor
∑

ωi ⊗ ei is independent of the choice of ei and the invariant condition

D(ωi ⊗ ei) = 0 (2.9)

is called the vanishing of torsion. This condition becomes, when written explicitly,

dωi = ωj ∧ ωi
j . (2.10)

We wish to introduce a torsionless connection in the bundle at the left column of (2.5).
Analytically this is to determine the forms ωi

j so that (2.10) are satisfied. We will make use

of the local coordinates xi, yj described above and choose an orthonormal frame xei such
that en is the unit vector along the vector yi ∂

∂xi . On SM, ωi, ωα
n form a base of the exterior

algebra of differential forms.

We suppose our connection to preserve the length of en and the orthogonality of en and
eα. The connection forms therefore satisfy the conditions

ωnn = 0, ωαn + ωnα = 0. (2.11)

Here and later we use the Kronecker indices δij to raise or lower indices. Notice that in the
connection forms ωi

j the second index is an upper index.

We complete the Hilbert form into a coframe

ωi = vikdx
k, (2.12)

with

ωn = H, i.e., vni =
∂F

∂yi
, (2.13)

ykvαk = 0, (2.14)

i.e., ⟨en, ωα⟩ = 0. Let (uk
i ) be the inverse matrix of (vki ), so that

uk
i v

j
k = vki u

j
k = δji . (2.15)

Then

uk
n =

yk

F
(2.16)
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and we have

dωn =
∂2F

∂xi∂yk
dxi ∧ dxk +

∂2F

∂yi∂yk
dyi ∧ dxk

=
∂2F

∂xi∂yk
ui
pu

k
qω

p ∧ ωq +
∂2F

∂yi∂yk
dyi ∧ uk

qω
q.

Since
∂F

∂yi
is homogeneous of degree zero in yk,

∂2F

∂yk∂yi
yk = 0 by Euler’s theorem, and

we can write

dωn = ωα ∧ ωn
α, (2.17)

where

ωn
α = −uk

α

∂2F

∂yj∂yk
dyj +

1

F
uj
α

( ∂F

∂xj
− ∂2F

∂xj∂yk
yk

)
ωn + uj

αu
k
β

∂2F

∂xj∂yk
ωβ + λαβω

β , (2.18)

where λαβ = λβα are to be determined.
On the other hand, we have

dωα = dvαk ∧ dxk = −vαk du
k
i ∧ ωi = −vαk du

k
β ∧ ωβ − vαk d

(yk
F

)
ωn. (2.19)

We now study the equations (2.11). The first equation can clearly be satisfied. For the
existence of ωα

n satisfying the second equation of (2.11) and

dωα = ωβ ∧ ωα
β + ωn ∧ ωα

n , (2.20)

it is necessary and sufficient that − 1

F
vαk is equal to the coefficient of dyk in the expression

(2.18) for ωn
α. This gives

uj
αGjk = δαβv

β
k , (2.21)

where

Gjk = F Fjk, Fjk =
∂2F

∂yi∂yk
(2.22)

are functions on SM .
Notice that

vβi u
j
αu

k
βGjk = vliu

k
l u

j
αGjk − vni u

k
nu

j
αGjk = uj

αGji,

since uk
nGjk = 1

F yk(F Fjk) = 0. Hence (2.21) can be rewritten

uj
αu

k
βGjk = δαβ . (2.23)

It can also be written

δαβv
α
i v

β
j = Gij . (2.24)

In forms the last equation becomes
∑
α
ωα2

= Q−H2. Comparing (2.19) and (2.20), we get

ωα
β = vαk du

k
β − δαγ

(
uj
γu

k
β

∂2F

∂xj∂yk
+ λβγ

)
ωn + µα

βγω
γ ,

where µα
βγ = µα

γβ , but are otherwise arbitrary.
It remains to determine ωα

β . We find

δασω
α
ρ + δαρω

α
σ =− dGiju

i
ρu

j
σ − ui

ρu
j
σ

( ∂2F

∂xi∂yj
+

∂2F

∂xj∂yi

)
ωn

− 2λρσω
n + (δασµ

α
ργ + δαρµ

α
σγ)ω

γ . (2.25)
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Since Gij are functions on SM , we can write

dGij = Gα
ijω

k
α +Gijkω

k. (2.26)

We choose λρσ, µα
ρσ so that the following equation holds

ωρσ + ωσρ = Hα
ρσω

n
α. (2.27)

This determines λρσ, µα
ρσ completely by

λρσ = −1

2
ui
ρu

j
σ

(
Gijn +

∂2F

∂xi∂yj
+

∂2F

∂xj∂yi

)
,

µα
ρσ =

1

2
δαβ(ξρβα + ξαβρ − ξρσβ), (2.28)

ξρσβ = Gijβu
i
ρu

j
σ.

Thus all the ωi
j are determined. We state the result as the theorem:

Theorem 2.1. Given the Riemann-Finsler metric, there is a uniquely defined connection
in the bundle π∗TM → SM ∋ (x, y) characterized by the conditions :

(1) It is torsionless ;

(2) The length of the vector y and the property of a vector ⊥ to y are preserved ;

(3) Relative to orthonormal frames the conditions

ωαβ + ωβα = Hαβγωγn (2.27a)

are satisfied.

§3. Cartan Tensor

Condition (2.27a) in Theorem 2.1 in the last section means that the inner product is pre-
served by the parallelism defined by the connection when ωαn = 0, i.e., when the parallelism
preserves the vector y. We wish to calculate the function Hαβγ in terms of F .

By (2.25) and (2.27) we have

Hα
ρσ = −Gα

iju
i
ρu

j
σ. (3.1)

Comparing the coefficients of dyk in (2.26), we get Gα
iju

k
αFkl = −F Fijl − FlFij . Here and

later subscripts of F mean partial differentiation with respect to the corresponding yi. It
following that

Gα
ijy

juk
αFkl = F Fil or (Gα

ijy
juk

α − δki F )Fkl = 0.

Since the matrix (Fkl) is of rank n − 1, this holds only when Gα
ijy

juk
α − δki F = piy

k.
Multiplication of this equation by Fk and subsequent summation give pi = −Fi. Hence

Gα
ijy

juk
α = −Fiy

k + δki F, (3.2)

Gα
ijy

j = vαF. (3.3)

With the help of this relation we find

vρl v
σ
mHα

ρσ = −Gα
ij

(
δil −

yi

F
Fl

)(
δim − yi

F
Fm

)
= −Gα

lm + vαl Fm + vαmFl,

vρl v
α
mHα

ρσu
k
αFkj =

(1
2
F 2

)
lmj

.
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Multiplying this by uj
β , we get vρl v

σ
mHραβ = F

(
1
2F

2
)
lmj

uj
β , which gives

Hρσα = F
(1
2
F 2

)
ijk

ui
ρu

j
σu

k
α, (3.4)

F
(1
2
F 2

)
ijk

= Hρσαv
ρ
i v

σ
j v

α
k . (3.5)

Hρσα is usually called the Cartan tensor. For a Riemannian metric it is zero and our
connection reduces to the connection of Levi-Civita.

§4. Equivalence Theorem

The following theorem is immediate.
Theorem 4.1. Consider the bundle π∗TM → SM at the left-hand side of (2.5). Let

P → SM (4.1)

be its principal bundle of orthonormal frames. Then dimP = 1
2n(n + 1) and in it are

the forms ωi, ωij , which are 1
2n(n + 1) in number and are linearly independent. If the

corresponding entities in M∗ are denoted by asterisks, the two Riemann-Finsler structures
differ by a coordinate transformation if and only if there is a coordinate transformation from

P to P ∗ such that ω∗i

= ωi, ω∗
ij = ωij .

This reduces the equivalence problem to the problem solved in §1.
In the principal bundle P the forms ωi, ωj

i constitute a basis of ∧(T ∗P ), the exterior
algebra of its cotangent bundle. By our Theorem 1.1 the local invariants of our Finsler
structure are obtained through the exterior derivatives of ωi, ωj

i . The exterior derivatives

dωi are given by (2.10). To find dωj
i we differentiate (2.10), obtaining

ωj ∧ (dωi
j − ωk

j ∧ ωi
k) = 0.

It follows that

dωi
j = ωk

j ∧ ωi
k +Ri

jklω
k ∧ ωl + P i

jkαω
k ∧ ωα

k , (4.2)

where we suppose

Ri
jkl +Ri

jlk = 0, (4.3)

and we have

Ri
jkl +Ri

klj +Ri
ljk = 0, (4.4)

P i
jkα = P i

kjα. (4.5)

The Ri
jkl from the Riemann curvature tensor.

From the Riemann curvature one defines by contraction the Ricci curvature. The Ricci
curvature is a scalar function on SM and is the most important local invariant in Finsler
geometry. For details refer to [2, p. 190].
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