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Abstract

A simple derivation of the Connection in Finsler space.
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The study of Riemann-Finsler geometry has recently been enhanced by the publication
of a substantial book[?l. In this book we made essential use of a connection introduced
in 19483, The connection is a natural generalization of the Levi-Civita connection in the
Riemannian case and seems to be the right analytical basis of the subject. We have given a
derivation of it. According to Anastesie it coincides with the one introduced by Rund, who
kindly gave an exposition of the paper in his book.

The aim of this paper is to give a short derivation of the connection. We will also show
how it gives a solution of the local congruence, i.e., a complete system of local invariants
which ensures that two Finsler structures differ by a change of coordinates.

§1. A Simple Equivalence Problem

Problem. Given in R"™ with the coordinates 2 n Pfaffian forms w?, linearly independent,
and in R"™ with the coordinates z** also n linearly independent Pfaffian forms w*l, 1<i<n.
Find the conditions that there exists a coordinate transformation

' ::U*i(xl,--- ,z"), (1.1)
such that
w* =W (1.2)
(Our Latin subscripts and supscripts have the range 1, -+, n.)

The idea is to construct invariants under the transformation (1.1). We have, since the
w’s are linearly independent,

dw' = cékwj AWk, (1.3)
where we can suppose
i+ =0. (1.4)
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With the condition (1.4), the c;'- i are completely determined. If the corresponding quantities
in R*" are denoted with asterisks, we have

chy = i (1.5)
Differentiating, we have
dely = dciy, (1.6)
so that
Cir = ;kl (1.7)
if
dC;k = C;klwl (18)
and similar equations with asterisks. Continuing this process, we get a sequence of functions,
Cik> Cikts Cokips * " s (1.9)

which are equal to the corresponding functions with asterisks. The solution of our problem
is thus given by the following theorem:

Theorem 1.1. The transformation (1.1) has the invariant functions (1.9). If one of the
functions is a constant, the corresponding function with asterisk must be equal to the same
constant. If some of the functions are independent and another one is a function of them,
the same must be true with the functions with asterisks, by the same functional relation.

§2. The Connection in a Riemann-Finsler Space

Let M be a manifold and T'M its tangent bundle. By SM we mean the manifold of its
rays, i.e., the set of non-zero tangent vectors differing by a positive factor. If n = dim M,
then dim TM = 2n and dim SM = 2n — 1. We use the local coordinates x of M, then
TM has the local coordinates 2, y', if the vector is y’+2-, and SM has the same local
coordinates, 4° being then homogeneous coordinates, up to a positive factor. In this section
we will agree on the following ranges of indices:

A Riemann-Finsler metric on M is given by the function
ds=F(z', - 2" dat,---  dz™), (2.2)

where F'(x,y) is supposed to be smooth and positively homogeneous in the second variable,
ie.,

F(z, \y) = A\F(z,y), A>0. (2.3)
We introduce the quantities
0% /1
i = ——(=F? 2.4
Jis ayzayy(z ) (24)

which are functions on SM, and we make the regularity hypothesis that the matrix (g;;)
is positive definite (or more generally non-singular). The quadratic differential form @ =
gi;j(z,y)dz'dx? will be called the Riemann form.
The projection 7 pulls TM back:
™TM —TM

\ 1 (2.5)
SM — M
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and we will use the bundle at the left-hand side. In this bundle the g;; in (2.4), being
homogeneous of degree 0 in y* and therefore functions on SM, define an inner product.
SM has the distinguished one-form

of

H = .
oyt

dx’. (2.6)

It will be called the Hilbert form.
Lemma 2.1. Under the regularity hypothesis, the Hilbert form satisfies

HA(dH)"' #£0, (2.7)

and hence define a contact structure on SM.
For proof, refer to [2, p. 272].

In the bundle at the left-hand side of (2.5) we take a frame field e; and let w' be the
coframe field dual to e;.

A connection D is by definition the absolute differential

De; = we;. (2.8)
Then the tensor Zwi ® e; is independent of the choice of e; and the invariant condition
D(w'®e;) =0 (2.9)
is called the vanishing of torsion. This condition becomes, when written explicitly,
dw' = Wi A w; (2.10)

We wish to introduce a torsionless connection in the bundle at the left column of (2.5).

Analytically this is to determine the forms w} so that (2.10) are satisfied. We will make use

of the local coordinates z*,y’ described above and choose an orthonormal frame ze; such

that e,, is the unit vector along the vector y* 8?& . On SM, w?, w? form a base of the exterior

algebra of differential forms.

We suppose our connection to preserve the length of e, and the orthogonality of e, and
e«- The connection forms therefore satisfy the conditions
Wnn = 0, Wan + Wna = 0. (2.11)

Here and later we use the Kronecker indices d;; to raise or lower indices. Notice that in the
connection forms wj the second index is an upper index.

We complete the Hilbert form into a coframe

w' = vida®, (2.12)
with
OF
w" = FI7 i.e., 'U,? = Tyi? (213)
y*up =0, (2.14)

ie., (en,w®) = 0. Let (uF) be the inverse matrix of (vF), so that

ubvl = vful = o). (2.15)

i %

Then

n

k
k Yy
— 2.16
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and we have

0*F 0’F
dw™ = 9270y o dr’ ' A da® +8 akdy A da
0*F 0’F ok
8z’5‘ kupqup Aw? + By o dy" AN ugw?.

2

oF
Since — is homogeneous of degree zero in y*, ¥ — 0 by Euler’s theorem, and

y’ Byhayi

we can write

dw" = w* Awy, (2.17)
where
0*F 1 oF O*F . 0°F
n _ k J ( ) n Tk 2= P A B 2.18
Wy Uqy 3y35y 633‘7 ax]ayk 5 a5 Y W + UQU/IB ax]aykw + afW, ( )
where A\og = Agq are to be determmed.
On the other hand, we have
) y*
dw® = dvf A da® = —vfduf AWt = —v,‘:dug AwP — o2 d( ) . (2.19)

We now study the equations (2.11). The first equation can clearly be satisfied. For the
existence of w® satisfying the second equation of (2.11) and

dw® = WP A wg +w" Awy, (2.20)

1
it is necessary and sufficient that ffv? is equal to the coefficient of dy* in the expression
(2.18) for wl. This gives

ul, G = Sapvl, (2.21)

where
9°F
are functions on SM.
Notice that
vBuJ uﬁGJk = vlul ul 1.Gik — viuy, kol 1Gik = ufoﬂ,

since ut G, = +y*(F Fj;) = 0. Hence (2.21) can be rewritten

uluf Gl = Sap. (2.23)
It can also be written

Sapvi'v] = Gij. (2.24)

2
In forms the last equation becomes Y w® = @ — H?. Comparing (2.19) and (2.20), we get

a ary 82F n a .y
wﬁ:vkduﬁ—5 ( uﬁa oy k+)\57)w + pgw?,

where pG. = pSg, but are otherwise arbitrary.
It remains to determine wg. We find

o o 0*F 0°F n
Saowy + dapwy = — dGijuy, uj — “P“‘j’(axzaya + 6xj8yi)w

— 2\ pow" + (6agum + 6apuﬂ)oﬂ. (2.25)
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Since G;; are functions on SM, we can write

dGij = Gfwh + Gijrw”. (2.26)
We choose Ap», p, so that the following equation holds
Wpo + Wop = Hpowy. (2.27)
This determines Ao, pj, completely by
2 2
Apor = _%“;“f? (G + 6ii§yj + aijgyi>’
5o = 25° €y + Easp — Epos), (228)

2
Epop = Gijpupul,.
Thus all the wj. are determined. We state the result as the theorem:

Theorem 2.1. Given the Riemann-Finsler metric, there is a uniquely defined connection
in the bundle m*TM — SM > (z,y) characterized by the conditions:

(1) It is torsionless;
(2) The length of the vector y and the property of a vector L to y are preserved;
(3) Relative to orthonormal frames the conditions

WaB + wWga = Hapgywn (2.27a)

are satisfied.

¢3. Cartan Tensor

Condition (2.27a) in Theorem 2.1 in the last section means that the inner product is pre-
served by the parallelism defined by the connection when wg, = 0, i.e., when the parallelism
preserves the vector y. We wish to calculate the function H,g- in terms of F.

By (2.25) and (2.27) we have

Hp, = —Glu,ul. (3.1)

Comparing the coefficients of dy* in (2.26), we get G%uZFkl = —I'Fy;; — F1F;;. Here and
later subscripts of F mean partial differentiation with respect to the corresponding y*. It
following that

Gyul Fry = F Fy or (GEylul — 67 F)Fy = 0.

Since the matrix (Fy;) is of rank n — 1, this holds only when G;"jyju’; — 0FF = piyt.
Multiplication of this equation by Fj and subsequent summation give p; = —F;. Hence
Gyul = —Fy* + 6FF, (3.2)
Gy’ = vF. (3.3)
With the help of this relation we find
vPv? H :—G@.((Sf—y—iﬂ)(éi _gpm):_ & v Fy, 402 Fy
L “m~~po 1] F m F m m* b

1
v HE ub Fyj = (7F2>

m=*po o 2
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Multiplying this by ujé, we get v/ v7, Hpap = F(%F2)lmjué, which gives

1 D

Hyoo = F(§F2>ijku’)uéu§’ (3.4)
1

F(§F2)ijk = Hppat{0] o). (3.5)

Hso is usually called the Cartan tensor. For a Riemannian metric it is zero and our
connection reduces to the connection of Levi-Civita.

§¢4. Equivalence Theorem

The following theorem is immediate.
Theorem 4.1. Consider the bundle 7*TM — SM at the left-hand side of (2.5). Let

P— SM (4.1)

be its principal bundle of orthonormal frames. Then dim P = %n(n + 1) and in it are
the forms w?, w;j, which are %n(n + 1) in number and are linearly independent. If the
corresponding entities in M™* are denoted by asterisks, the two Riemann-Finsler structures
differ by a coordinate transformation if and only if there is a coordinate transformation from
P to P* such that w* = W', W = wij-
This reduces the equivalence problem to the problem solved in §1.

In the principal bundle P the forms w?, w’ constitute a basis of A(T*P), the exterior
algebra of its cotangent bundle. By our Theorem 1.1 the local invariants of our Finsler
structure are obtained through the exterior derivatives of w’, w!. The exterior derivatives

dw® are given by (2.10). To find dwf we differentiate (2.10), obtaining
w! A (dw;» - wf Aw}) = 0.
It follows that
dwj» = wf A wh + R;klwk Awb+ P;kawk A Wi, (4.2)
where we suppose

Ry + Ry, = 0, (4.3)

and we have
Riy + Ry + Rjj), =0,

1 _ pi
ija - ija'

The R; ; from the Riemann curvature tensor.

From the Riemann curvature one defines by contraction the Ricci curvature. The Ricci
curvature is a scalar function on SM and is the most important local invariant in Finsler
geometry. For details refer to [2, p. 190].
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