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Abstract

For a class of mixed initial-boundary value problem for general quasilinear hyperbolic sys-
tems, this paper establishes the local exact boundary controllability with boundary controls
only acting on one end. As an application, the authors show the local exact boundary control-

lability for a kind of nonlinear vibrating string problem.
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§1. Introduction

Let us consider the following first order quasilinear hyperbolic system

∂u

∂t
+A(u)

∂u

∂x
= F (u), (1.1)

where u = (u1, · · · , un)T is an unknown vector function of (t, x), A(u) = (aij(u)) is an n×n
matrix with suitably smooth elements aij(u)(i, j = 1, · · · , n) and F : Rn → Rn is a vector

function of u with suitably smooth components fi(u)(i = 1, · · · , n) such that

F (0) = 0. (1.2)

By the definition of hyperbolicity, on the domain under consideration, the matrix A(u)

has n real eigenvalues λi(u)(i = 1, · · · , n) and a complete set of left eigenvectors li(u) =

(li1(u), · · · , lin(u))(i = 1, · · · , n):

li(u)A(u) = λi(u)li(u). (1.3)
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Réné-Descartes, 67084 Strasbourg, France.

∗ ∗ ∗Project supported by the Special Funds for Major State Basic Research Projects of China.



210 CHIN. ANN. OF MATH. Vol.23 Ser.B

We have

det |lij(u)| ̸= 0. (1.4)

Moreover, we assume that on the domain under consideration, the eigenvalues satisfy the

following conditions:

λr(u) < 0 < λs(u) (r = 1, · · · ,m; s = m+ 1, · · · , n). (1.5)

Let

vi = li(u)u (i = 1, · · · , n). (1.6)

We set the boundary conditions as follows:

x = 0 : vs = Gs(t, v1, · · · , vm) +Hs(t) (s = m+ 1, · · · , n), (1.7)

x = 1 : vr = Gr(t, vm+1, · · · , vn) +Hr(t) (r = 1, · · · ,m), (1.8)

where, without loss of generality, we assume that

Gi(t, 0, · · · , 0) ≡ 0 (i = 1, · · · , n). (1.9)

There is a number of publications on the exact controllability for linear hyperbolic sys-

tems (see [11] and the references therein). Especially, the exact boundary controllability

for first order linear hyperbolic systems has been established by the characteristic method.

J.-L. Lions introduced his Hilbert Uniqueness Method (HUM)(see [9,10]) which gives a more

general and systematic framework for the study of the exact boundary controllability and

the stabilisation for wave equations. Combining the HUM and Schauder’s fixed point the-

orem, the first work on the exact controllability for semilinear wave equations was given

by Zuazua[12,13]. Later, using a global inversion theorem, Lasiecka and Triggiani[3] gave an

abstract result on the global exact controllability for semilinear wave equations. However,

the exact controllability for the quasilinear hyperbolic systems remains quite open. To our

knowledge, the first work in this direction was done by Cirinà[2] (see also [1]). Under linear

boundary controls, he proved the local null controllability esstentially for quasilinear hyper-

bolic systems of diagonal form. In [5] and [6] the exact boundary controllability for reducible

quasilinear hyperbolic systems was established by a characteristic method. Recently, these

results were generalized to the case of general quasilinear hyperbolic systems. The following

result was proved in [8].

Proposition 1.1. Assume that lij(u), λi(u), fi(u) and Gi(t, ·)(i, j = 1, · · · , n) are all C1

functions with respect to their arguments. Assume furthermore that (1.2), (1.4)–(1.5) and

(1.9) hold. Let

T0 > max
i=1,··· ,.n

1

|λi(0)|
. (1.10)

Then, for any given initial data ϕ ∈ C1[0, 1] and final data ψ ∈ C1[0, 1] with small C1 norm,

there exist boundary controls Hi(t) ∈ C1[0, T0](i = 1, · · · , n) with small C1 norm, such that

the mixed initial-boundary value problem for system (1.1) with the initial condition

t = 0 : u = ϕ(x) (1.11)
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and the boundary conditions (1.7)–(1.8) admits a unique C1 solution u = u(t, x) with small

C1 norm on the domain

R(T0) = {(t, x)| 0 ≤ t ≤ T0, 0 ≤ x ≤ 1},

which satisfies the final condition

t = T0 : u = ψ(x). (1.12)

As mentioned in [8], the exact controllability time T0 given in Proposition 1.1 is optimal,

however, the boundary controls are not unique.

We will prove in §2 that for a class of mixed initial-boundary value problem, the number of

boundary controls can be diminished, provided that the exact controllability time is doubled.

In §3 this result will be applied to show the local exact boundary controllability for a class

of nonlinear vibrating string problem.

§2. Main Results

We now suppose that

n = 2m. (2.1)

We suppose furthermore that the boundary condition (1.7) (resp. (1.8)) can be equivalently

rewritten as

x = 0 : vr = Gr(t, vm+1, · · · , vn) +Hr(t) (r = 1, · · · ,m) (2.2)[
resp. x = 1 : vs = Gs(t, v1, · · · , vm) +Hs(t) (s = m+ 1, · · · , n)

]
,

where

Gr(t, 0, · · · , 0) ≡ 0 (r = 1, · · · ,m) (2.3)[
resp. Gs(t, 0, · · · , 0) ≡ 0 (s = m+ 1, · · · , n)

]
and

small C1 norm of Hs ⇐⇒ small C1 norm of Hr (2.4)[
resp. small C1 norm of Hr ⇐⇒ small C1 norm of Hs

]
,

where r = 1, · · · ,m; s = m+ 1, · · · , n.
Theorem 2.1. Under the assumptions of Proposition 1.1, we suppose furthermore that

conditions (2.1)–(2.4) hold and Gr(t, ·) (r = 1, · · · ,m) (resp. Gs(t, ·) (s = m + 1, · · · , n))
are C1 functions with respect to their arguments. Let

T > 2 max
i=1,··· ,.n

1

|λi(0)|
. (2.5)

Suppose finally that Hs(t)(s = m+1, · · · , n) (resp. Hr(t)(r = 1, · · · ,m)) are given C1[0, T ]

functions with small C1 norm. Then, for any given initial data ϕ ∈ C1[0, 1] and final data

ψ ∈ C1[0, 1] with small C1 norm, such that the conditions of C1 compatibility are satisfied

at points (0, 0) and (T, 0) (resp. (0, 1) and (T, 1)) respectively, there exist boundary controls

Hr(t) ∈ C1[0, T ](r = 1, · · · ,m) (resp. Hs(t) ∈ C1[0, T ](s = m + 1, · · · , n)) with small C1
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norm, such that the mixed initial boundary value problem (1.1), (1.11) and (1.7)–(1.8) admits

a unique C1 solution u = u(t, x) with small C1 norm on the domain

R(T ) = {(t, x)| 0 ≤ t ≤ T, 0 ≤ x ≤ 1},

which satisfies the final condition

t = T : u = ψ(x). (2.6)

In order to prove Theorem 2.1, it suffices to establish the following

Lemma 2.1. Under the assumptions of Theorem 2.1, for any given initial data ϕ ∈
C1[0, 1] and final data ψ ∈ C1[0, 1] with small C1 norm, such that the conditions of C1

compatibility are satisfied at points (0, 0) and (T, 0) (resp. (0, 1) and (T, 1)) respectively, the

quasilinear hyperbolic system (1.1) with the boundary condition (1.7) (resp. (1.8)) admits a

C1 solution u = u(t, x) with small C1 norm on the domain R(T ), which satisfies (1.11) and

(2.6).

In fact, let u = u(t, x) be a C1 solution on the domain R(T ) given by Lemma 2.1. Taking

the boundary controls as

Hr(t) = (vr −Gr(t, vm+1, · · · , vn)|x=1 (r = 1, · · · ,m) (2.7)[
resp. Hs(t) = (vs −Gs(t, v1, · · · , vm)|x=0 (s = m+ 1, · · · , n)

]
,

the C1 norm of which is small, we obtain the exact boundary controllability desired by

Theorem 2.1.

We now prove Lemma 2.1. For fixing the idea, in what follows we consider only the case

that the boundary controls are given at the end x = 1.

Noting (2.5), there exists an ϵ0 > 0 such that

T > 2 max
|u|≤ϵ0,i=1,··· ,.n

1

|λi(u)|
. (2.8)

Let

T1 = max
|u|≤ϵ0,i=1,··· ,.n

1

|λi(u)|
. (2.9)

We first consider the forward mixed initial-boundary value problem for system (1.1) with

the initial data

t = 0 : u = ϕ(x), 0 ≤ x ≤ 1 (2.10)

and the boundary conditions (1.7) and

x = 1 : vr = f̄r(t) (r = 1, · · · ,m), (2.11)

where f̄r(t) are any given functions of t with small C1[0, T1] norm. We assume that the

conditions of C1 compatibility are satisfied at point (0, 1). By [7], there exists a unique

semi-global C1 solution u = u(1)(t, x) with small C1 norm on the domain

{(t, x)| 0 ≤ t ≤ T1, 0 ≤ x ≤ 1}. (2.12)

Thus we can uniquely determine the corresponding value of u = u(1)(t, x) on x = 0 as

x = 0 : u = a(t), 0 ≤ t ≤ T1 (2.13)

and the C1[0, T1] norm of a(t) is suitably small.
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Similarly, we consider the backward mixed initial-boundary value problem for system

(1.1) with the initial condition

t = T : u = ψ(x), 0 ≤ x ≤ 1 (2.14)

and the boundary conditions (2.2) and

x = 1 : vs = ḡs(t) (s = m+ 1, · · · , n), (2.15)

where ḡs(t) (s = m+1, · · · , n) are any given functions of t with small C1[T −T1, T ] norm.

We assume that the conditions of C1 compatibility are satisfied at point (T, 1). Once again

by [7], there exists a unique semi-global C1 solution u = u(2)(t, x) with small C1 norm on

the domain

{(t, x)| T − T1 ≤ t ≤ T, 0 ≤ x ≤ 1}. (2.16)

Thus we can uniquely determine the corresponding value of u = u(2)(t, x) on x = 0 as

x = 0 : u = b(t), T − T1 ≤ t ≤ T (2.17)

and the C1[T − T1, T ] norm of b(t) is suitably small. Noting that both a(t) and b(t) satisfy

the boundary condition (1.7), we can find a C1[0, T ] function c(t) with small C1 norm, such

that

c(t) =

{
a(t), 0 ≤ t ≤ T1,
b(t), T − T1 ≤ t ≤ T

(2.18)

and c(t) satisfies the boundary condition (1.7) on the whole interval [0, T ].

Now we change the order of the variables t and x, then system (1.1) is rewritten in the

following form

∂u

∂x
+A−1(u)

∂u

∂t
= F̃ (u) := A−1(u)F (u). (2.19)

We notice that

F̃ (0) = 0. (2.20)

Noting (1.5), the eigenvalues of the inverse matrix A−1(u) satisfy

1

λr(u)
< 0 <

1

λs(u)
(r = 1, · · · ,m; s = m+ 1, · · · , n). (2.21)

Moreover, since the matrices A(u) and A−1(u) have the same left eigenvectors, we can still

define the variables vi(i = 1, · · · , n) by the same formula (1.6).

We now consider the mixed initial-boundary value problem for system (2.19) with the

initial condition

x = 0 : u = c(t), 0 ≤ t ≤ T (2.22)

and the boundary conditions

t = 0 : vs = Φs(t) (s = m+ 1, · · · , n), (2.23)

t = T : vr = Ψr(t) (r = 1, · · · ,m), (2.24)

where

Φi(x) = li(ϕ(x))ϕ(x) (i = 1, · · · , n), (2.25)

Ψi(x) = li(ψ(x))ψ(x) (i = 1, · · · , n), (2.26)
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the C1 norm of which is small. It is easy to see that the mixed initial-boundary value problem

(2.19) and (2.22)–(2.24) satisfies the conditions of C1 compatibility at points (0, 0) and (T, 0)

respectively. Therefore, by [7] there exists a unique semi-global C1 solution u = u(t, x) with

small C1 norm on the domain

R(T ) = {(t, x)| 0 ≤ t ≤ T, 0 ≤ x ≤ 1}.

In order to finish the proof of Lemma 2.1, it is only necessary to check that

t = 0 : u = ϕ(x), 0 ≤ x ≤ 1, (2.27)

t = T : u = ψ(x), 0 ≤ x ≤ 1. (2.28)

In fact, the C1 solutions u = u(t, x) and u = u(1)(t, x) satisfy the system (2.19) (namely,

(1.1)), the initial condition

x = 0 : u = a(t), 0 ≤ t ≤ T1 (2.29)

and the boundary condition

t = 0 : vs = Φs(t) (s = m+ 1, · · · , n). (2.30)

Because of the finiteness of the speed of wave propagation and the choice of T1 given by

(2.9), the mixed-initial boundary problem (2.19) and (2.29)–(2.30) has a unique C1 solution

on the domain

{(t, x)| 0 ≤ t ≤ T1(1− x), 0 ≤ x ≤ 1} (2.31)

(see [4]). Then it follows that

u(t, x) ≡ u(1)(t, x) (2.32)

on this domain. In particular, we obtain (2.27). We can get (2.28) in a similar way.

Thus u = u(t, x) is the desired C1 solution. The proof of Lemma 2.1 is complete.

Remark 2.1. The exact controllability time given by Theorem 2.1 is optimal.

Remark 2.2. The boundary controls in Theorem 2.1 are not unique.

§3. Application to a Class of Nonlinear Vibrating String Problem

In this section, we will use the previous results to show the local exact boundary control-

lability for the following nonlinear vibrating string equation

∂2u

∂t2
− ∂

∂x

(
K
(∂u
∂x

))
= F

(∂u
∂x
,
∂u

∂t

)
, (3.1)

where K = K(v) is a given C2 function of v, such that

K ′(v) > 0, (3.2)

and F = F (v, w) is a C1 function of v and w, satisfying

F (0, 0) = 0. (3.3)

We consider the exact boundary controllability only with one control applied at one end of

the string. The boundary condition at the end x = 0 is of Dirichlet type:

u = h(t), (3.4)



No.2 LI, T. T. & RAO, B. P. LOCAL EXACT BOUNDARY CONTROLLABILITY 215

where h(t) is a given C2 function of t; while the boundary condition at the end x = 1 is one

of the following types:

u = h̄(t), (3.5.1)

ux = h̄(t), (3.5.2)

ux + αu = h̄(t), (3.5.3)

ux + αut = h̄(t), (3.5.4)

where α is a positive constant and h̄(t), as boundary control, is a C2 function (in case

(3.5.1)) or a C1 function (in cases (3.5.2)–(3.5.4)).

We want to find a time T > 0 and suitable boundary control h̄(t) with small C1 norm

∥h̄′∥C1[0,T ] in case (3.5.1) or ∥h̄∥C1[0,T ] in cases (3.5.2)–(3.5.4), such that for any given initial

data (ϕ(x), ψ(x)) and final data (Φ(x),Ψ(x)) with small C1 norms

∥ϕ′∥C1[0,1], ∥ψ∥C1[0,1], ∥Φ′∥C1[0,1], ∥Ψ∥C1[0,1],

satisfying the conditions of C2 compatibility at points (0, 0) and (T, 0) respectively, the C2

solution u = u(t, x) to the mixed initial-boundary value problem for equation (3.1) with the

initial condition

t = 0 : u = ϕ(x), ut = ψ(x) (3.6)

and the boundary conditions (3.4)–(3.5) satisfies the final condition

t = T : u = Φ(x), ut = Ψ(x). (3.7)

We will prove

Theorem 3.1. Let

T >
2√
K ′(0)

. (3.8)

Then for any given initial data ϕ(x) ∈ C2[0, 1], ψ(x) ∈ C1[0, 1] and final data Φ(x) ∈
C2[0, 1],Ψ(x) ∈ C1[0, 1] with small C1 norms

∥ϕ′∥C1[0,1], ∥ψ∥C1[0,1] and ∥Φ′∥C1[0,1], ∥Ψ∥C1[0,1]

and any given function h(t) ∈ C2[0, T ] with small C1 norm ∥h′∥C1[0,T ], satisfying the fol-

lowing conditions of C2 compatibility at points (0, 0) and (T, 0) respectively:{
h(0) = ϕ(0), h′(0) = ψ(0),
h′′(0) = K ′(ϕ′(0))ϕ′′(0) + F (ϕ′(0), ψ(0))

(3.9)

and {
h(T ) = Φ(0), h′(T ) = Ψ(0),
h′′(T ) = K ′(Φ′(0))Φ′′(0) + F (Φ′(0),Ψ(0)),

(3.10)

there exits a boundary control h̄(t) ∈ C2[0, T ] with small C1 norm ∥h̄′∥C1[0,T ] in case (3.5.1)

or h̄(t) ∈ C1[0, T ] with small C1 norm ∥h̄∥C1[0,T ] in cases (3.5.2)–(3.5.4), such that the

mixed initial-boundary value problem for equation (3.1) with the initial condition (3.6), the

boundary condition (3.4) at the end x = 0 and one of the boundary conditions (3.5) at the

end x = 1 admits a unique C2 solution u = u(t, x) on the domain

R(T ) = {(t, x)| 0 ≤ t ≤ T, 0 ≤ x ≤ 1},
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which satisfies the final condition (3.7).

In order to prove Theorem 3.1, setting

v =
∂u

∂x
, w =

∂u

∂t
, (3.11)

equation (1.1) is reduced to the following first order quasilinear system
∂v

∂t
− ∂w

∂x
= 0,

∂w

∂t
− ∂K(v)

∂x
= F (v, w).

(3.12)

The system is strictly hyperbolic with two distinct real eigenvalues ±λ, where

λ =
√
K ′(v) > 0. (3.13)

We introduce the Riemann invariants r and s as follows:

2r = G(v) + w, 2s = −G(v) + w, (3.14)

where

G(v) =

∫ v

0

√
K ′(v)dv (3.15)

with

G(0) = 0, G′(v) =
√
K ′(v) > 0. (3.16)

Let H be the inverse function of G. It follows from (3.14) that

w = r + s, v = H(r − s). (2.17)

Using the Riemann invariants r and s, (3.12) can be rewritten into the diagonal form
∂r

∂t
− λ

∂r

∂x
= f(r, s),

∂s

∂t
+ λ

∂s

∂x
= f(r, s),

(3.18)

where

f(r, s) =
1

2
F (H(r − s), r + s) (3.19)

with

f(0, 0) = 0. (3.20)

Correspondingly, the inial and final conditions (3.6)–(3.7) yield

t = 0 :

{
r = r0(x) :=

1
2 (G(ϕ

′(x)) + ψ(x)),

s = s0(x) :=
1
2 (−G(ϕ

′(x)) + ψ(x)),
(3.21)

t = T :

{
r = r1(x) :=

1
2 (G(Φ

′(x)) + Ψ(x)),

s = s1(x) :=
1
2 (−G(Φ

′(x)) + Ψ(x)),
(3.22)

while the boundary condition (3.4) implies that

x = 0 : r + s = h′(t). (3.23)

Moreover it follows from the last two equalities in (3.9)–(3.10) that the conditions of C1

compatibility at point (0, 0):{
r0(0) + s0(0) = h′(0),
h′′(0) = λ(r0(0), s0(0))(r

′
0(0)− s′0(0)) + 2f(r0(0), s0(0))

(3.24)
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and at point (0, T ):{
r1(0) + s1(0) = h′(T ),
h′′(T ) = λ(r1(0), s1(0))(r

′
1(0)− s′1(0)) + 2f(r1(0), s1(0))

(3.25)

are satisfied. Then it is easy to check that we can apply Lemma 2.1 to get the following

Lemma 3.1. Assume that h(t) ∈ C2[0, T ] with small C1 norm ∥h′∥C1[0,T ], where T

is defined by (3.8). Then for any given initial data r0, s0 ∈ C1[0, 1] and final data r1, s1 ∈
C1[0, 1] with small C1 norm, satisfying the conditions of C1 compatibility (3.24)–(3.25), the

quasilinear hyperbolic system (3.18) associated with the boundary condition (3.23) admits a

C1 solution (r, s) = (r(t, x), s(t, x)) with small C1 norm on the domain

R(T ) = {(t, x)| 0 ≤ t ≤ T, 0 ≤ x ≤ 1},

which satisfies the initial and final conditions (3.21)–(3.22).

Proof of Theorem 3.1. Applying Lemma 3.1, we can find a C1 solution (v, w) =

(v(t, x), w(t, x)) to system (3.12) on the domain R(T ), which satisfies the initial and final

conditions

t = 0 : v = ϕ′(x), w = ψ(x), (3.26)

t = T : v = Φ′(x), w = Ψ(x) (3.27)

and the boundary condition

x = 0 : w = h′(t). (3.28)

Let

u(t, x) = h(t) +

∫ x

0

v(t, y)dy. (3.29)

It is easy to see that u = u(t, x) is a C2 function on the domain R(T ), such that

u(t, 0) = h(t) (3.30)

and

∂

∂x
u(t, x) = v(t, x). (3.31)

On the other hand, noting the first equation in (3.12) and using (3.28), we have

∂

∂t
u(t, x) = h′(t) +

∫ x

0

∂

∂x
w(t, y)dy = w(t, x). (3.32)

Therefore, it follows from the second equation in (3.12) that the function u defined by (3.29)

satisfies the string equation (3.1) and the boundary condition (3.4). Moreover, noting the

first equality in (3.9)–(3.10), we check easily that u satisfies the initial and final conditions

(3.6)–(3.7):

t = 0 : u = h(0) +

∫ x

0

v(0, y)dy = h(0) +

∫ x

0

ϕ′(y)dy = ϕ(x), (3.33)

t = T : u = h(T ) +

∫ x

0

v(T, y)dy = h(T ) +

∫ x

0

Φ′(y)dy = Φ(x). (3.34)
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We now define the control h(t) at the end x = 1 by one of the following expressions:

h̄(t) =: u, (3.35.1)

h̄(t) =: ux, (3.35.2)

h̄(t) =: ux + αu, (3.35.3)

h̄(t) =: ux + αut. (3.35.4)

The proof of Theorem 3.1 is thus finished.
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hyperboliques quasi linéaires [J], C. R. Acad. Sci. Paris, 333:Série I(2001), 219–224.

[ 9 ] Lions, J. -L., Exact controllability, stabilization and perturbations for distributed systems [J], SIAM
Rev., 30(1988), 1–68.
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