
Chin. Ann. of Math.
23B:2(2002),219-226.

ON NONLINEAR DIFFERENTIAL
GALOIS THEORY
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Abstract

Let X denote a complex analytic manifold, and let Aut(X) denote the space of invertible
maps of a germ (X, a) to a germ (X, b); this space is obviously a groupoid; roughly speaking, a
“Lie groupoid” is a subgroupoid of Aut(X) defined by a system of partial differential equations.

To a foliation with singularities on X one attaches such a groupoid, e.g. the smallest one whose
Lie algebra contains the vector fields tangent to the foliation. It is called “the Galois groupoid
of the foliation”. Some examples are considered, for instance foliations of codimension one, and
foliations defined by linear differential equations; in this last case one recuperates the usual

differential Galois group.

Keywords Differential Galois group, Complex analytic manifold, Lie groupoid

2000 MR Subject Classification 22E30

Chinese Library Classification O152.5 Document Code A

Article ID 0252-9599(2002)02-0219-08

This is an account of a work in course of progress. The aim is the following: define and

study, for non linear differential equations, an object which generalizes the differential Galois

group of linear equations. In [9], I give such a definition, and I prove the required result

in the linear case. Here, I recall it shortly, and I insist on further examples and on open

problems.

I should mention that another definition of a differential Galois group was proposed several

years ago, by Umemura[15]; at the moment, I do not know the exact relations between both

theories.

§1. General Definitions

I give the definitions in the complex analytic case; a similar theory, somewhat simpler,

could be developed in the algebraic case (but, up to now, nothing is written in this context).

Let X denote a (smooth) complex analytic manifold, of dimension n; let AutX be the

space of germs of invertible maps (X, a) → (X, b) [e.g. the source is a, and the target b;

a, b ∈ X]; let also Jk, resp. J
∗
k be the space of jets of order k, resp. invertible jets of order
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k, of maps from X to X. I provide these spaces by the sheaf (on X2) of functions which

are analytic on the variables of X2, and polynomial in the derivatives: precisely, in local

coordinates, let x1, · · · , xn be the coordinates at the source, and y1, · · · , yn the coordinates

at the target; with the standard notations, we have

OJk
= OX2 [yαj ], 1 ≤ j ≤ n, α = (α1, · · · , αn) ∈ Nn, |α| = α1 + · · ·+ αn ∈ {1, 2, · · · , k},

OJ∗
k
= OX2 [yαj , δ

−1], δ = det(yij) the Jacobian matrix.

The main objects in consideration here are what I call “D-groupoids” or “Lie groupoids” on

X. Roughly speaking, there are the subgroupoids of AutX which are defined by a system

of partial differential equations. More precisely, putting OJ∗ = ∪OJ∗
k
, we consider a sheaf

of ideals J ⊂ OJ∗ which has the following properties:

(i) Jk = OJ∗
k
∩ J is coherent and reduced (i.e., equal to its radical), for every k ≥ 0; we

say for short that J is pseudocoherent, and reduced.

(ii) J is differential, e.g. stable by derivations.

[The derivations are defined in local coordinates by the standard formula

Dif =
∂f

∂xi
+
∑
j,α

∂f

∂yαj
yα+εi
j , εi = (0, · · · , 1, · · · , 0);

it is easy to verify that the stability by derivations is independent of the coordinates chosen.]

The two preceding properties define, generally speaking, a system of partial differential

equations in AutX. One has to add a third condition to have a Lie groupoid, which I explain

now.

The set J∗
k is obviously a groupoid for the composition of jets (e.g. the composition ψφ

exists if target φ = source ψ, and all elements are invertible); this property can be translated

into a property of OJ∗
k
; now, take Jk a coherent sheaf of ideals of OJ∗

k
, and call Yk the ringed

space (X2,OJ∗
k
/Jk). This has a sense to say that “Yk is a subgroupoid of J∗

k”; we have

to take this sentence in the sense of ideals, or in the “scheme sense”, and not only in the

set-theoretical sense (this can be expressed by properties of Jk which I leave the reader to

guess, or to look, f.i. in [7]).

So, now, the third condition to impose to J is the following

(iii-1) For every k, Yk contains the identity (e.g. the ideal of the identity contains Jk),

and Yk is stable by the inverse.

(iii-2) For every U ⊂ X, open relatively compact (I abreviate U ⊂⊂ X), there exists Z,

closed analytic subset of codimension ≥ 1 of U such that, on (U −Z)2, Yk is a subgroupoid

of J∗
k for k large.

[Note that, in the algebraic case, the “U” would be unnecessary, and also probably the

restriction “k large”.]

One can see that this definition has reasonably good properties, and covers the cases of

interest, for the following reasons:

(a) Any increasing sequence Jℓ ⊂ Jℓ+1 ⊂ · · · of ideals defining a D-groupoid is locally

stationary.

(b) Let Jk ⊂ OJ∗
k
be a coherent sheaf of ideals, not necessarily reduced defining a sub-

groupoid of J∗
k outside of some Z ⊂ X of codimension ≥ 1; let J′ be the pseudocoherent and
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differential ideal generated by Jk; then the radical J′rad of J′ defines a Lie groupoid; and,

on every U ⊂⊂ X, one has J′rad = J′ outside a subset of codimension ≥ 1.

This situation occurs practically when Jk is the ideal expressing the condition that the

transformation stabilizes a “differential structure of order k, meromorphic on X with poles

on Z” (whichever be the reasonable meaning given to this expression); standard examples

are given by the groupoids preserving a 2-form (for instance, symplectic structures), one

form up to invertible factors (f.i. contact structures), etc. In the literature, these objects

are usually called “Lie pseudogroups”, and considered in the nonsingular case; but here, I

need to accept singularities.

(c) From (a) and (b), one deduces that any intersection of D-groupoids is locally finite,

and is a D-groupoid (if the groupoids are defined by the sheaf of ideals Jα ⊂ OJ∗ , their

intersection is the smallest pseudocoherent reduced differential sheaf of ideals which contains

the Jα).

For these properties, see [9].

§2. D-Envelope and Galois Groupoid

Call “D-Lie-algebra” any system of linear partial differential equations on Θ, the sheaf

of vector fields of X, such that its solutions are stable by Lie bracket. A D-groupoid has a

D-Lie algebra, which is simply the linearized differential system along the identity.

But the converse is not true. This is similar to the fact that a Lie subalgebra of Gl(n,C) is
not necessarily the Lie algebra of an algebraic subgroup of Gl(n,C). Given a D-Lie algebra

L, we can therefore define its D-envelope, as the smallest D-groupoid whose Lie algebra

contains L; this is meaningful, according to the property 1-c.

An especially interesting case is the case of the foliations with singularities. This is

defined, f.i. by a coherent subsheaf N of Ω1 (the sheaf of 1-forms on X) of locally constant

rank outside of Z ⊂ X of codimension ≥ 1 and verifying outside of Z the Frobenius condition

dN ⊂ Ω1 ∧ N . We can suppose, by increasing a little bit N , that any local section which

is in N outside of Z is actually in N . Then N defines a D-Lie algebra F , the vectors fields

orthogonal to N (in fact, F is defined by equations of order 0).

Definition The Galois groupoid G(F) of F is its D-envelope.

Before giving examples, a few explanations are necessary. First, I will use the following

facts:

(i) The solutions of a D-groupoid Y make a subgroupoid, in the usual sense, of AutX.

(ii) These solutions determine Y . Therefore, I will often identify both objects implicitely.

The first result is essentially obvious. The second one is a general fact of differential

algebra (see [10], or [13] for the algebraic case).

Now consider, outside Z, the groupoid of automorphisms of X which preserve F (or N);

it is easy to prove that the Zariski closure of the corresponding D-groupoid is a D-groupoid

on X; denote it by AutF . It is obvious that its D-Lie algebra contains F ; therefore, AutF
contains GalF .

Call “admissible” (w.r.t. F) any D-groupoid Y contained in AutF and containing GalF .

If we consider Y near a pair (a, b) ∈ (X − Z)2, no condition for Y occurs along the leaves,

and Y is given by equations on the variables transversal to the foliation (f.i., in the case of

AutF , there are no such equations).
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More precisely, suppose F of codimension d outside Z, and call “transversal” a locally

closed submanifold T of X of dimension d which, outside of a set of codimension ≥ 1, does

not meet Z and is transverse to F . Call T the disjoint union of all the transversals; it

is easy to see that, on T , an admissible groupoid Y defines a groupoid: the “transversal

groupoid” defined by Y . The philosophy is the following one: from a geometrical point of

view, the interesting object is the transversal groupoid (which will correspond, f.i. to some

transversal structure). But, to verify the admissibility, we have to go back to X, and to

verify the possibility of extension along Z (actually, meromorphic extension in a suitable

sense will be sufficient, since, then, one has just to take Zariski closures of the corresponding

varieties Yk ↪→ J∗
k ).

§3. Examples

The first example is treated in [9]; the second one will be developed elsewhere.

(i) The Linear Case

Let C be a complex nonsingular connected curve (= manifold of dimension one), and

X
π→ C a vector bundle over C. Let S be a discrete subset of C, and Z = π−1S; we suppose

given a connection ∇ on X, meromorphic on S (in local coordinates, this is simply a linear

differential system Y ′ = aY , with a meromorphic S) with poles on S; note that we could

equally consider flat meromorphic connections in the sense of [4] on vector bundles over a

nonsingular analytic manifold of any dimension; the result would be similar.

On the total space X of the bundle, ∇ defines a foliation F of dimension one, with

singularities on Z. The Galois groupoid of F can be described in the following way:

(a) Outside Z, the linear structures of X → C gives a “transversal linear structure”, and

a corresponding subgroupoid of AutF ; one proves that this groupoid extends to X (in a

unique way) into an admissible groupoid LinF .

(b) Admissible subgroupoids of LinF can be described in the following way: choose a

base point a ∈ C − S, and put Xa = π−1a. Let G be an algebraic subgroup of Gl(Xa),

containing the monodromy of ∇ at a.

Now, let IsoX be the groupoid consisting of the family of linear isomorphisms Xb
∼→ Xc,

for b, c ∈ C, and let G̃ the subgroupoid of Iso X|X−Z generated by G and the isomorphisms

of monodromy (= the parallel transport along any path in X − Z). Then, G̃ defines a

subgroupoid of LinF |X − Z. This subgroupoid extends to an admissible groupoid if and

only if G̃ extends to an analytic subvariety of IsoX.

(c) Call “admissible” such a G; then there is a smallest admissible G; one proves that it

is the differential Galois group of ∇, in the “tannakian” sense (for the definition, see [5]).

Roughly speaking, this means that the differential Galois group of ∇ “depends only” on

the corresponding foliation and “does not depend” on the further structures of X and ∇.

(ii) Codimension One

The D-Lie algebras in dimension one, outside the singularities, have been determined by

Lie; locally, their spaces of solutions are of dimension 0, 1, 2, 3,∞; in suitable coordinates,

these solutions can be written in the following way:

Dimension 0: 0

Dimension 1: λ d
dx , λ ∈ C (structure of translation)

Dimension 2: λ d
dx + µx d

dx (linear affine structure)
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Dimension 3: λ d
dx + µx d

dx + νx2 d
dx (projective structure)

Dimension ∞: all vector fields; no equation.

A study of these algebras, and the corresponding D-groupoids, near a singularity, will be

published by G. Casale. I just mention the following facts: in dimension 0, one can have

many groupoids (f.i. actions on X of finite groups); in dimension 1, the correspondence

groupoids λ algebras is neither injective nor surjective.

In dimension 2 or 3, one has just one groupoid, e.g. the groupoid of automorphisms of

the corresponding Lie algebra (in case of a D-Lie algebra of dimension one, the groupoid of

its automorphisms has dimension 2).

Finally, the case “∞” is trivial: the corresponding groupoid is AutX.

Now, the foliation, with singularities of codimension one on a manifoldX, can be classified

according to the dimension of the transversal Galois groupoid; if X is connected, it is easy

to verify that this dimension is independent of the chosen transversal. Here, I will only look

at the local situation, e.g. at a foliation in the neighborhood of 0 ∈ Cn; it can be defined by

a holomorphic 1-form ω, with ω∧dω = 0 (we can even suppose that ω has only singularities

in codimension 2).

Even in this local case, I have no complete results when GalF has transversal dimension

0 or 1.

(a) Dimension 0. This will be the case if ω has a first integral f , e.g. if there exists a

meromorphic f such that ω ∧ df = 0; then, GalF is contained in the groupoid which fixes

f . I have no necessary and sufficient condition; the question is related to the quotient by an

equivalence relation.

(b) Dimension 1. This will be the case if ω has an integrating factor, e.g. if there exist

g meromorphic such that d(gω) = 0; in that case, GalF is contained in the groupoid which

fixes gω; to prove this, it is sufficient to show that its D-Lie algebra “contains F”, e.g.

contains the vector fields tangent to the foliation; but, if ξ is such a vector field, one has

with standard notations Lξ(gω) = iξd(gω) + d⟨ξ, gω⟩ = 0.

A classical theorem of Lie says the following: if ξ is a meromorphic vector field not in

F , but preserving the foliation, e.g. Lξω ∧ ω = 0, then ⟨ξ, ω⟩−1 is an integrating factor; in

fact, write ω = ⟨ξ, ω⟩π; one has also Lξπ ∧ π = 0; as d⟨ξ, π⟩ = 0, this can be written as

(iξdπ) ∧ π = 0; but, one has dπ ∧ π = 0, therefore 0 = iξ(dπ ∧ π) = iξdπ ∧ π + dπ · ⟨ξ, π⟩,
and dπ = 0.

Conversely, if g is an integrating factor, choose a ξ such that ⟨ξ, ω⟩ = g−1 (ξ is determined

modF); the same calculation shows that ξ preserves the foliation.

Transversally, this can be interpreted in the following way: ξ defines a vector field ξ̄ on

the transversals, which is fixed by the holonomy; then ξ̄−1 is a 1-form π̄ on the transversals,

and π = ⟨ξ, ω⟩−1ω is just the inverse image of π̄ on X.

I will return to this example later (see Remark (iii)).

One can ask for a necessary and sufficient condition for F to have an admissible groupoid

of transversal dimension one; it seems to me likely that such a condition is: there exists a

finite ramified covering X̃
π→ X such that π∗ω admits a meromorphic integrating factor.

Of course, if GalF has transversal dimension one, such an admissible groupoid exists.

But I do not know if it is always the case when GalF has transversal dimension 0.

(c) Dimensions 2 and 3. The answer is related with Godbillon-Vey sequence. Starting
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with ω meromorphic near 0, ω ∧ dω = 0, one can construct recursively ω1, · · · , ωn, · · ·
meromorphic, such that

dω = ω ∧ ω1,

dω1 = ω ∧ ω2,

...

dωn = ω ∧ ωn+1 +
n∑
1

(
n

k

)
ωk ∧ ωn−k+1.

The following trick is due to J. Martinet: put Ω = dt +
∑

tn

n!ωn (ω0 = ω); then, one has

dΩ = Ω ∧ ∂Ω
∂t .

Given a germ of codimension one foliation, the Godbillon-Vey sequence is not unique:

one can replace ω0 by gω0; and, at each step of the recurrence, one can add to ωn a multiple

of ω0. We say that “G−V sequence stops at order i”, i = 1, 2, 3, if we can choose the ωi’s in

such a way that ωn = 0 for n ≥ i. To stop at order 1, it is necessary and sufficient that ω0

has an integrating factor. To stop at order 2 (resp. 3), we must arrive at ω1, with dω1 = 0

(resp. ω2, with dω2 = ω1 ∧ ω2). In the nonsingular case and C∞ context the following fact

is well-known: the existence of a transversal affine (resp. projective) structure equivalent to

the possibility of stopping G− V sequence at order 2 (resp. 3) (cf. [6]).

The same result is true in the present context (this fact was suggested to me by [2]; see

also [14], for an interpretation of “case 2”, in an algebraic context, in terms of liouvillian

solutions).

Let me give a few words of explanations; the details will be published elsewhere. I will

look at the “case 3”; the other one is similar, and simpler.

Let X be a neighborhood of 0 ∈ Cn on which ω, ω1, ω2 are meromorphic, and giving

a G − V sequence stopping at order 3. On X × P1, the form Ω = dt + ω0 + ω1t + ω2
t2

2

defines a foliation transverse to the fibers {x} × P1; outside of the singularities, this defines

a transverse structure of type 3, which, on {x} × P1, is simply the standard projective

structure; [this is well known; in fact the equation Ω = 0 comes from the integrable system

dy1 = ω1

2 y1 +
ω2

2 y2, dy2 = −ω0y1 − ω1

2 y2 by taking t = y2

y1
]. One sees that the corresponding

groupoid extends to X ×P1 into an admissible one. Taking the restriction to t = 0 gives an

admissible groupoid of transversal dimension 3.

Now, the result is: conversely any admissible groupoid of dimension 3 of the foliation

defined by ω can be obtained in this way, in particular, there exists a G − V -sequence

ω0, ω1, ω2 stopping at order 3, with ω0 = fω.

(d) Dimension ∞. The corresponding groupoid is AutF ; and there is nothing else to

say from the point of view considered here. This case, which is of course the general case,

should be studied by other methods (recurrence, attractors, etc), familiars in the theory of

dynamical systems.

(iii) Remark: Lie Symmetries and Galois Symmetries

The result of Lie, mentionned in (ii), (b) is sometimes stated in a slightly confusing way,

as f.i. “if one has a one parameter group of symmetries of the equation, one can solve

it”; this could induce a confusion between symmetries of the data (“Lie symmetries”), and

Galois symmetries, e.g. the Galois groupoid.
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It seems to me that the precise relations should be stated in the following way. We

give on X a foliation with singularities F ; first of all, call “symmetries of F” the global

automorphisms of F which preserve F , e.g. which are solutions of AutF . In fact here, we

are not interested in them, but in the corresponding D-Lie algebra; call merautF the sheaf

of its meromorphic solutions; call similarly merF the germs of meromorphic vector fields

tangent to F ; incidentally, note that merautF/merF is a sheaf of Lie algebras, (which can

be interpreted as vector fields on the transversals).

Now, if we have a subset Γ ⊂ Γ(X,merautF/merF), we get an admissible groupoid G by

taking the solutions of AutF which fix Γ. Therefore, the bigger is Γ, the smaller is G. But

this is only one procedure among others to have admissible groupoids as small as possible.

Of course, if one has a Lie group acting on X, and preserving F , its infinitesimal trans-

formations give sections of merautF and a fortiori sections of merautF/merF .

§4. Further Examples and Problems

(i) Can one extend the results of §3 (ii) (c) to some cases of higher codimension?

(ii) Let ω be a closed form (f.i. meromorphic) of any degree on X. Then, the condition

iξω = 0 (ξ, vector field) defines a foliation with singularities F , because one has Lξω =

diξω + iξdω = diξω = 0. An admissible groupoid is therefore obtained by taking the φ,

solutions of AutF which verify φ∗ω = ω.

Find “interesting” examples where some further reduction, on no further reduction can

be obtained.

The most interesting case is probably the case where ω is a 2-form; then according to a

classical theorem of Darboux, one has, outside of the singularities, a transversal symplectic

structure.

For instance, consider the differential equation y′′ = f(x, y); writing this equation as the

Pfaff system dy−y dx, dz−f dx, put ω = (dy−z dx)∧(dz−f dx); one has dω = 0, because

f does not contain y′; and the foliation associated to ω is just the foliation corresponding

to the equation.

In particular, it is a classical problem to prove that no further reduction occur for the

“Painlevé 1” equation y′′ = y2 + x; in fact, Painlevé claimed this result with insufficient

proof, see [12] (I owe this reference to J. P. Ramis; see also [15]).

The same problem could be considered for the other Painlevé equations, for which

Okamoto has constructed transverse symplectic structures[11].

(iii) More generally, Hitchin[8] has given a transverse symplectic structure on the Sch-

lessinger equations for isomonodromic deformations; this result has been extended by

Boalch[3] to the irregular case.

Do these structures extend meromorphically to the singularities, e.g. do they give admis-

sible groupoids? If this is the case, which seems to me likely, are there further reductions,

or not?

(iv) One can consider other problems of D-envelopes that the problems arising from

foliations. For instance

(a) Find the smallest D-groupoid whose given automorphisms of X are solutions. F.i., if

f is a germ of automorphism of (C, 0), and if f ′(0) is not a root of unit, f can be embedded in
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a germ of non-trivial D-groupoid iff f is linearizable (see the forthcoming paper by G. Casale

mentioned above). The case of roots of unit is more complicated; see loc. cit.

(b) Given a vector field ξ, find its D-envelope, e.g. the smallest D-groupoid whose D-

Lie algebra contains ξ as a solution. The case of symplectic vector fields on a symplectic

manifold is of special interest: the D envelope is contained obviously in the D-groupoid of

symplectic transformations fixing ξ; but further reductions could occur.

It would be, f.i. quite interesting to look at the following case: ξ is the germ at 0, in C4

of the symplectic gradient of a Morse function (=case of 2 coupled oscillators).

In the same order of ideas, I mention the following result, which I owe to J. P. Ramis:

Let X be a symplectic manifold of dimension 2n, f a holomorphic function on X, and ξ

its symplectic gradient. Suppose that ξ is Liouville-integrable, e.g. suppose that there exist

f = f1, f2, · · · , fn, with df1, · · · , dfn generically independent, such that the Poisson brackets

{fi, fj} vanish. Then the D-Lie algebra of the D-envelope of ξ is abelian.

Actually, near a point a where the dfi are independent, we can complete f1, · · · , fp with

p1, · · · , pn to have a system of coordinates such that the symplectic form is
∑
dfi ∧ dpi.

Then, one proves easily that a local symplectic vector field at a fixing f1, · · · , fn is the

symplectic gradient of a function φ(f1, · · · , fn).
This fact is related to the methods used by Ziglin and Moralès-Ramis to prove the non-

integrability of some hamiltonian systems. On this subject, a lot of very nice work has been

made recently; the reader could consult the survey [1] by M. Audin.
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