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Abstract

Iterative algorithms for solving the data assimilation problems are considered, based on the
main and adjoint equations. Spectral properties of the control operators of the problem are
studied, the iterative algorithms are justified.
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§0. Introduction

The investigation of global changes has increased the interest to the observation data

assimilation and data processing problems, which are applied to the modeling, retrospective

analysis, and forecasting various physical and geophysical processes. From the mathematical

standpoint, these problems may be formulated as the optimal control problems. Starting

with the studies of Bellman and Pontryagin, these problems attract the attention of many

researchers. New essential ideas were contributed to the optimization theory and methods

by French mathematical school. In this connection, we must mention the works by J.-

L.Lions and his disciples, which became fundamental, dedicated to investigation of problems

on insensitive optimal control, nonlinear sentinels for distributed systems. The general

approach (Hilbert Uniqueness Method) developed by J.-L.Lions makes it possible to prove

the existence of insensitive controls in linear and nonlinear systems.

In this study, we consider numerical algorithms for the data assimilation problems based

on the iterative algorithms using the main and adjoint equations. Properties of the control

operators studied are used to justify the iterative algorithms.
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§1. Statement of the Problem

Consider mathematical model of a physical process that is described by the evolution

problem {
dφ
dt +A(t)φ = f, t ∈ (0, T ),
φ|t=0 = u,

(1.1)

where φ = φ(t) is an unknown function, A(t) is an operator (generally, nonlinear) acting for

each t in the Hilbert space X with the definition domain D(A) ⊂ X, u ∈ X, and f = f(t)

is a prescribed function.

Introduce the functional

J(φ) =
1

2

∫ T

0

(C(φ− φ̂), φ− φ̂)Xdt+
α

2
(φ|t=0 − φ̂◦, φ|t=0 − φ̂◦)X , (1.2)

where α = const. ≥ 0, C is a linear operator, and (·, ·)X is an inner product in X. The

function φ̂ = φ̂(t), as a rule, is determined by a priori observation data, φ̂◦ ∈ X. We assume

hereinafter that all spaces and functions under consideration are real.

Consider problem (1.1) with an unknown function u ∈ X in the initial condition. The

data assimilation problem can be formulated as follows: find φ and u such that they satisfy

(1.1) and, on the set of solutions to equation (1.1), functional (1.2) takes the minimum value.

Write this problem as 
dφ

dt
+A(t)φ = f, t ∈ (0, T ),

φ(0) = u,
J(φ) = inf

ũ∈H
J(φ̃),

(1.3)

where φ̃ is a solution of (1.1) when φ̃(0) = ũ.

Problems in the form (1.3) were analyzed by Pontryagin[2], Lions[3] (see also [5–14], etc.).

To solve (1.3) a number of approaches may be used (see e.g. [14]). We will consider iterative

algorithms for solving (1.3), assuming for simplicity that A(t) is a linear operator.

The necessary optimality condition[3] reduces problem (1.3) to the system for finding the

functions φ, φ∗, u:

dφ

dt
+A(t)φ = f, t ∈ (0, T ); φ(0) = u, (1.4)

−dφ
∗

dt
+A(t)∗φ∗ = C(φ̂− φ), t ∈ (0, T ); φ∗(T ) = 0, (1.5)

α(u− φ̂◦)− φ∗(0) = 0, (1.6)

where A(t)∗ is the operator adjoint to A(t).

§2. Control Operator and Its Properties

Let Y = L2(0, T ;X) be a space of abstract functions u(t) with values in X, with the

inner product and the norm

(u, v) =

∫ T

0

(u, v)Xdt, ∥u∥ =
(∫ T

0

∥u∥2Xdt
)1/2

, u, v ∈ Y.

In the forthcoming, we suppose that the original model satisfies the following conditions:
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(i) the solution to the problem{
dψ
dt +A(t)ψ = f, t ∈ (0, T ),
ψ|t=0 = v,

(2.1)

meets the inequality

∥ψ∥Y ≤ c1(∥f∥Y + ∥v∥X), c1 = const. > 0; (2.2)

(ii) the solution of the adjoint problem{
−dψ∗

dt +A∗(t)ψ∗ = p, t ∈ (0, T ),

ψ∗
∣∣
t=T

= 0,
(2.3)

satisfies

∥ψ∗∥Y + ∥ψ∗∣∣
t=0

∥X ≤ c∗1∥p∥Y , c∗1 = const. > 0. (2.4)

Remark 2.1. The solutions of the problems (2.1) and (2.3) are supposed to exist such

that ψ,ψ∗ ∈ Y , treated in a classical or a weak sense. The conditions (i), (ii) are satisfied

if, for example, the operator A(t) is positive definite:

(A(t)w,w)Y ≥ γ∥w∥2Y , γ = const. > 0, ∀w ∈ Y.

Indeed, from (2.1) we get (dψ
dt
, ψ

)
X
+ (A(t)ψ,ψ)X = (f, ψ)X ,

whence

1

2

∫ T

0

d

dt
(ψ,ψ)Xdt+

∫ T

0

(A(t)ψ,ψ)Xdt =

∫ T

0

(f, ψ)Xdt,

and by virtue of positive definiteness of A(t),

1

2
∥ψ

∣∣
t=T

∥2X + γ∥ψ∥2Y ≤ (f, ψ)Y +
1

2
∥ψ

∣∣
t=0

∥2X ≤ ∥f∥Y ∥ψ∥Y +
1

2
∥v∥2X ,

or

γ∥ψ∥2Y ≤ 1

2γ
∥f∥2Y +

γ

2
∥ψ∥2Y +

1

2
∥v∥2X .

The last inequality gives (2.2) with c1 = max(γ−1, γ−1/2). Similarly, the inequality (2.4)

is obtained. In the finite-dimensional case, when X = Rn, n ∈ N, the inequalities (2.2),

(2.4) are valid without positive definiteness requirement if the n× n-matrix A(t) is regular

enough (for instance, having the elements continuous in t).

Let us introduce the operator L : X → X defined through the successive solutions of the

following problems: {
dψ
dt +A(t)ψ = 0, t ∈ (0, T ),
ψ|t=0 = v,

(2.5)

{
−dψ∗

dt +A∗(t)ψ∗ = −Cψ, t ∈ (0, T ),

ψ∗
∣∣
t=T

= 0,
(2.6)

Lv = αv − ψ∗(0). (2.7)
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We define also F ∈ X as the successive solutions of the following problems:{
dϕ
dt +A(t)ϕ = f, t ∈ (0, T ),
ϕ|t=0 = 0,

(2.8){
−dϕ∗

dt +A∗(t)ϕ∗ = C(φ̂− ϕ), t ∈ (0, T ),

ϕ∗
∣∣
t=T

= 0,
(2.9)

F = αφ̂◦ + ϕ∗(0), (2.10)

where f, φ̂ ∈ Y, φ̂◦ ∈ X are introduced in (1.4)–(1.6). We suppose that C : Y → Y is a

linear bounded self-adjoint positive semi-definite operator.

Then, the system (1.4)–(1.6) is reduced to the equation for the control u:

Lu = F, (2.11)

and the operator L : X → X is called the control operator[13].

Under the hypotheses (i), (ii) the following statement is valid.

Lemma 2.1. The operator L acts in X with domain of definition D(L) = X, it is

bounded, self-adjoint, and positive semi-definite. If α > 0, the operator L is positive definite.

Proof. Let v ∈ X, and ψ be the solution to (2.5). By (2.2), ∥ψ∥Y ≤ c1∥v∥X . For the

solution ψ∗ of (2.6) the inequality (2.4) holds:

∥ψ∗∥Y + ∥ψ∗∣∣
t=0

∥X ≤ c∗1∥Cψ∥Y .

Hence, from (2.7),

∥Lv∥X = ∥αv − ψ∗∣∣
t=0

∥X ≤ α∥v∥X + ∥ψ∗∣∣
t=0

∥X
≤ α∥v∥X + c∗1∥Cψ∥Y ≤ α∥v∥X + c∗1c1∥C∥∥v∥X ,

and, therefore, L is bounded. Further, we have for v, w ∈ X,

(Lv,w)X = (αv − ψ∗∣∣
t=0

, w)X = α(v, w)X − (ψ∗∣∣
t=0

, w)X

= α(v, w)X + (Cψ,ψ1)Y = α(v, w)X + (ψ,Cψ1)Y = (v, Lw)X ,

where ψ1 is the solution to (2.5) with v = w. Hence, L is self-adjoint, and

(Lv, v)X = α(v, v)X + (Cψ,ψ)Y ≥ 0,

that is, L is positive semi-definite. Moreover, L is positive definite if α > 0.

Corollary 2.1. The following estimate is valid:

(Lv, v)X ≥ µmin(v, v)X , ∀v ∈ X, (2.12)

where µmin is the lower spectrum bound of the operator L, and µmin ≥ α.

The following solvability result holds.

Lemma 2.2. Under the hypotheses (i), (ii), for α > 0, the control equation (2.11) has a

unique solution u ∈ X, and

∥u∥X ≤ α

µmin
∥φ̂◦∥X +

c∗1
µmin

∥Cφ̂∥Y +
c1c

∗
1

µmin
∥C∥∥f∥Y . (2.13)

Proof. If α > 0, from Corollary 2.1, there exist a unique solution u of the control

equation (2.11), and

∥u∥X ≤ 1

µmin
∥F∥X . (2.14)
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The solution ϕ∗ of (2.9) satisfies the inequality (2.4), and

∥F∥X = α∥φ̂◦∥X + ∥ϕ∗(0)∥X ≤ α∥φ̂◦∥X + c∗1∥C(φ̂− ϕ)∥Y ,
where ϕ is the solution to (2.8). Due to (2.2), ∥ϕ∥Y ≤ c1∥f∥Y , then

∥F∥X ≤ α∥φ̂◦∥X + c∗1∥Cφ̂∥Y + c∗1c1∥C∥∥f∥Y . (2.15)

From (2.14)–(2.15) we obtain (2.13). This ends the proof.

Remark 2.2. For α = 0, the last lemma holds true also if µmin > 0. It is true, for

instance, in the case that X = Rn, n ∈ N, C = E (the identity operator). The weight

coefficient α is usually called a regularization parameter[4].

§3. Spectrum Bounds of the Control Operator

In the general case, from Corollary 2.1, for the lower spectrum bound of the operator L

we have µmin ≥ α. Moreover, from the proof of Lemma 2.1, we get

(Lv, v)X = α(v, v)X + (Cψ,ψ)Y , v ∈ X,

where ψ is the solution of (2.5). Hence, due to (2.2),

(Lv, v)X ≤ α(v, v)X + ∥C∥∥ψ∥2Y ≤ α∥v∥2X + c1∥C∥∥v∥2X ,
and for the upper spectrum bound µmax of the operator L we get

µmax ≤ α+ c1∥C∥. (3.1)

In the case that C = E (the identity operator), sharper estimates may be derived. The

following result is valid.

Theorem 3.1. The spectrum σ(L) of the operator L defined by (2.5)–(2.7) for C = E

satisfies the estimates

m ≤ σ(L) ≤M, (3.2)

where

m = α+

∫ T

0

e−
∫ t
0
λmax(τ)dτdt, M = α+

∫ T

0

e−
∫ t
0
λmin(τ)dτdt,

and λmin, λmax are the lower and the upper spectrum bounds of the operator A+A∗, respec-

tively.

Proof. For the operator L defined by (2.5)–(2.7) for C = E the following representation

is valid:

(Lu, u) = α(u, u) +

∫ T

0

(φ(t), φ(t))dt, u ∈ X, (3.3)

where φ(t) is the solution to (2.5) for v = u. From (2.5),

d

dt
∥φ∥2 + ((A+A∗)φ,φ) = 0,

then

−λmax(t)∥φ∥2 ≤ d

dt
∥φ∥2 ≤ −λmin(t)∥φ∥2,

where λmax and λmin are the lower and the upper spectrum bounds of the operator A+A∗,

respectively. Therefore, the function F (t) = ln ∥φ∥2 meets the inequality

−λmax(t) ≤
dF

dt
≤ λmin(t).
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By integrating this inequality with respect to t from 0 to t, we get

−
∫ t

0

λmax(τ)dτ ≤ F (t)− F (0) ≤ −
∫ t

0

λmin(τ)dτ,

or

−
∫ t

0

λmax(τ)dτ ≤ ln
∥φ(t)∥2

∥u∥2
≤ −

∫ t

0

λmin(τ)dτ.

Hence

e−
∫ t
0
λmax(τ)dτ ≤ ∥φ(t)∥2

∥u∥2
≤ e−

∫ t
0
λmin(τ)dτ .

Integrating the last inequality with respect to t from 0 to T and taking into account (3.3),

we obtain ∫ T

0

e−
∫ t
0
λmax(τ)dτdt ≤ (L̄u, u)

(u, u)
≤

∫ T

0

e−
∫ t
0
λmin(τ)dτdt,

where L̄ is the operator L for α = 0. Thus, the spectrum bounds of the operator L are

defined by (3.2). This ends the proof.

If A(t) = A : X → X is a linear closed operator independent of time and being unbounded

self-adjoint positive definite operator in X with the compact inverse, then the eigenvalues

µk of the operator L̄ are defined by the formula[13]

µk =
1− e−2λkT

2λk
,

where λk are the eigenvalues of the operator A. Then in (3.2) λmin = 2λ1, λmax = ∞, and

m, M are given in the explicit form

m = α, M = α+
1− e−2λ1T

2λ1
, (3.4)

where λ1 is the least eigenvalue of the operator A. By this is meant that the estimates (3.2)

are exact.

§4. Iterative Algorithms

To solve (1.4)–(1.6) we consider a class of iterative algorithms:

dφk

dt
+A(t)φk = f, t ∈ (0, T ); φk(0) = uk, (4.1)

− dφ∗k

dt
+A∗(t)φ∗k = C(φ̂− φk), t ∈ (0, T ); φ∗k(T ) = 0, (4.2)

uk+1 = uk − αk+1Bk(α(u
k − φ̂◦)φ∗k∣∣

t=0
) + βk+1Ck(u

k − uk−1), (4.3)

where Bk, Ck : H → H are some operators, and αk+1, βk+1 the iterative parameters. Let

m and M be the spectral bounds of the control operator L defined by (3.2). We introduce

the following notations:

τopt = 2(M +m)−1, θ = (M +m)(M −m)−1, (4.4)

τk = 2(M +m− (M −m) cosωkπ)
−1, k = 1, 2, . . . , s, (4.5)
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αk+1 =

{
2(M +m)−1, k = 0,

4(M −m)−1 Tk(θ)
Tk+1(θ)

, k > 0,

βk+1 =

{
0, k = 0,
Tk−1(θ)
Tk+1(θ)

, k > 0,
(4.6)

ek =

{
0, k = 0,
pk∥ξk∥2H/∥ξk−1∥2H , k > 0,

(4.7)

pk+1 = α+ (ηk, ηk)/∥ξk∥2H − ek, k = 0, 1, · · · , (4.8)

where ωk = (2i− 1)/2s, Tk is the k-th degree Chebyshev polynomial of the first kind,

ξk = αuk − φ∗k(0),

and ηk is the solution of the problem

dηk

dt
+Aηk = 0, t ∈ (0, T ); ηk(0) = ξk.

Theorem 4.1. (i) If αk+1 = τ, Bk = E, βk+1 = 0, then the condition 0 < τ <

2/(M +m) is a sufficient condition for the convergence of the iterative process (4.1)–(4.3).

For τ = τopt defined by (4.4) the following convergence rate estimates are valid:

∥φ− φk∥W ≤ c1qk, ∥φ∗ − φ∗k∥W ≤ c2qk, ∥u− uk∥H ≤ c3qk, (4.9)

where qk = 1/θk, θ is given by (4.4), and the constants c1, c2, c3, c4 do not depend on the

number of iterations and on the functions φ,φk, φ∗, φ∗k, u, uk, k > 0.

(ii) If Bk = E, βk+1 = 0, and αk+1 = τk, where the parameters τk are defined by (4.5)

and repeated cyclically with the period s, then the error in the iterative process (4.1)–(4.3) is

suppressed after each cycle of the length s. After k = ls iterations the error estimates (4.9)

are valid with qk = (Ts(θ))
−l.

(iii) If Bk = Ck = E and αk+1, βk+1 are defined by (4.6), then the error in the algorithm

(4.1)–(4.3) is suppressed for each k ≥ 1, and the estimates (4.9) hold for qk = (Tk(θ))
−1.

(iv) If Bk = Ck = E and αk+1 = 1/pk+1, βk+1 = ek/pk+1, where ek, pk+1 are defined

by (4.7), (4.8), then the iterative process (4.1)–(4.3) is convergent, and the convergence rate

estimates (4.9) are valid with qk = (Tk(θ))
−1.

Proof. It is not difficult to show that the iterative process (4.1)–(4.3) is equivalent to

the following iterative algorithm

uk+1 = uk − αk+1Bk(Lu
k − F ) + βk+1Ck(u

k − uk−1) (4.10)

for solving the control equation (2.11) with the right-hand side F defined by (2.8)–(2.10).

The bounds m andM of the spectrum of the control operator L are given by (3.2). Thus,

for α > 0 for solving the equation Lu = F we may use the well-known iterative algorithms

with optimal choice of parameters. The theory of these methods is well developed[15]. Taking

into account the explicit form of the bounds for m and M and applying for the equation

Lu = F the simple iterative method, the Chebyshev acceleration methods (s-cyclic and two-

step ones), and the conjugate gradient method in the form (4.10), we arrive at the conclusions

of the Theorem, using the well-known convergence results [15] for these methods.

Remark 4.1. In case αk = 1/α, Bk = E, βk = 0, the iterative algorithm (4.1)–(4.3)

coincides with the Krylov-Chernousko method[16].
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The numerical analysis of the above-formulated algorithms has been done in [17] for the

data assimilation problem with a linear parabolic state equation. The numerical experiments

are in good agreement with theoretical results on the convergence of the iterative algorithms.
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