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Abstract

Several quadrilateral shape regular mesh conditions commonly used in the finite element

method are proven to be equivalent. Their influence on the finite element interpolation error
and the consistency error committed by nonconforming finite elements are investigated. The
effect of the Bi-Section Condition and its extended version (1 + α)- Section Condition on the
degenerate mesh conditions is also checked. The necessity of the Bi-Section Condition in finite

elements is underpinned by means of counterexamples.
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§1. Introduction

Quadrilateral mesh is widely used in the finite element method due to its simplicity
and flexibility. However, numerical accuracy cannot be achieved over an arbitrary mesh,
so one has to impose certain mesh conditions. There exist several mesh conditions in the
literature, which can be classified into two groups. One is the shape regular mesh condition
and the other is the degenerate condition. Roughly speaking, a shape regular condition
requires that the element cannot be too narrow on the one hand ((C-R)1 hereinafter) and
the interior angle of each vertex is neither too small nor too close to π on the other hand
((C-R)2 hereinafter). The first condition of this type belongs to Ciarlet-Raviart (C-R)[27,28].
Another two are attributed to Girault-Raviart (G-R)[33] and Arunakirinathar-Reddy (A-
R)[11], all these three conditions aim for the optimal interpolation error for the isoparametric
element, whereas a similar condition of Z. Zhang (Z)[68] appeared in the study of the Wilson
nonconforming element. It may be interesting to ask whether such conditions are equivalent.
One of the main results of this paper is a strict proof for the equivalence of C-R, G-R, A-R
and Z (see Theorem 3.1 below).
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Meanwhile, there are several degenerate mesh conditions, which violate either (C-R)1 or
(C-R)2, and sometimes even both of them. Such degenerate meshes are particularly effective
for the finite element approximation of some physical problems with singularities (see [5]).
These conditions are scattered in the literature, most of them are mutatis mutandis. We
only consider two degenerate conditions, namely the Jamet condition (J)[34] and Acosta-
Durans[1] Regular Decomposition Property (RDP). We will clarify their connection to the
shape regular mesh condition. In particular, we show by means of a counterexample that
RDP is necessary for obtaining the optimal interpolation error in theH1-norm for the 4-node
isoparametric element, thereby we solve the open problem proposed in [1].

On the other hand, the Bi-Section Condition or its extended version (1 + α)-Section
Condition are two mesh conditions which quantify the deviation of an arbitrary quadrilateral
from a parallelogram. These two mesh conditions are used to estimate the consistency error
of the Wilson nonconforming element[54] as well as the interpolation and consistency error
of the nonconforming quadrilateral rotated Q1 element (NRQ1) (see [40,42,46]), and the
interpolation error of the lowest-order Raviart-Thomas element (RT[0]) (see [61,43]). Süli

[58]

proved that the Jamet degenerate mesh condition plus the Bi-Section Condition actually
imply the shape regular conditions when the mesh diameter approaches zero. We show that
the requirement of the Bi-Section Condition in Süli’s result can be replaced by the even
weaker (1 + α)-Section Condition.

The necessity of the Bi-Section Condition for the optimal consistency error of the Wilson
element is illustrated by Z. Shi[54] with a counterexample. Likewise, P. Ming[40] showed that
this is also true for the NRQp

1 (see §6 for the definition). We will propose a series of
counterexamples to demonstrate that the Bi-Section Condition is also necessary for the
optimal interpolation error of NRQ1 and RT[0]. All these facts substantiate the necessity of
the Bi-Section Condition in the finite element analysis.

We mainly focus on the 4-node isoparametric element, two low-order quadrilateral non-
conforming elements, i.e., the Wilson and NRQ1 elements, and the quadrilateral RT[0]

element. Moreover, only 2-D mesh is taken into account (see [67], for some other isopara-
metric elements and [31,53] for 3-D). We only consider the finite element approximation
for the coercive elliptic problem, the non-coercive problem is more involved and will be
addressed elsewhere (see also [1,10] for related references.)

The remaining part of this paper is organized as follows. In §2, we state all shape
regular mesh conditions mentioned above. Their equivalence is proven in §3. In §4, several
degenerate mesh conditions are reviewed and their connections to the shape regular mesh
condition are elucidated with the aid of the Bi-Section Condition and (1 + α)-Section
Condition. The influence of different mesh conditions on the interpolation error and the
finite element error for the 4-node isoparametric element, the nonconforming Wilson element
and NRQ1 element, and the RT[0] element are included in §5, §6 and §7, respectively. Some
conclusions are drawn and three open problems are proposed in the last section.

Throughout this paper, the generic constant C is independent of the element geometry
unless otherwise stated.

§2. Shape Regular Mesh Condition

Before introducing mesh conditions, we fix some notations. For any convex polygon Ω
with Lipschitz boundary, Hk(Ω) is defined as the standard Sobolev space[2] equipped with
the norm ∥ · ∥k, and semi-norm | · |k,Ω, Hk

0 (Ω) is the corresponding homogeneous space. Ω
will be dropped if no confusion can occur. −

∫
Ω
u dx is defined as the integral average of u on
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Ω. For any vectors x = (x1, x2) and y = (y1, y2), x ⊗ y is a 2 × 2 matrix with elements
(x⊗ y)ij : = xiyj . For any matrix A, ∥A∥ denotes its Euclidean norm.

2.1. Geometric Facts of Quadrilateral Mesh

Let Th be a partition of Ω by convex quadrilaterals with the mesh size h: = max
K∈Th

hK . We

define hK and hK as the longest and shortest edges of K, respectively. ρK is defined as the
diameter of the largest circle inscribed in K. As in Fig.1, we denote the four vertices of K
by Pi with the coordinates xi. Let their edges be PiPi+1 and |PiPi+1| their corresponding
lengths. The subtriangle of K with vertices Pi−1, Pi and Pi+1 is denoted by Ti (i modulo
4), i.e., Ti: = ⟨Pi−1, Pi, Pi+1 ⟩. Similar to K, hi and ρi are defined as the longest edges of Ti
and the diameter for the largest circle inscribed in Ti, respectively. Denote the interior angle
of the vertex Pi by θi, and µK : = max

1≤i≤4
| cos θi|. Moreover, dK is denoted as the distance

between midpoints of two diagonals of K.

We define by Pk the space of polynomials of degree no more than k, and by Qk the space
of degree no more than k in each variable.

Let K̂ = [−1, 1]2 be the reference square having the vertex P̂i with the coordinates

x̂i(1 ≤ i ≤ 4), then there exists a unique mapping FK(ξ, η) ∈ Q1(K̂) such that FK(x̂i) =
xi, 1 ≤ i ≤ 4. The Jocobian of FK(ξ, η) is denoted by DFK(ξ, η) which can be split as
DFK(ξ, η) = DFK(0, 0) + k ⊗ l, where k: = (x1 − x2 + x3 − x4)

T /4 and l: = (η, ξ)T . The
determinant of DFK(ξ, η) is JK(ξ, η) = detDFK(ξ, η) = J0 + J1ξ + J2η. It can be shown
that

max
(ξ,η)∈K̂

JK(ξ, η) = max
1≤i≤4

|Ti|/2, min
(ξ,η)∈K̂

JK(ξ, η) = min
1≤i≤4

|Ti|/2

and

J0 = JK(0, 0) = |K|/4, JK(ξ, η) > 0.

Fig.1

2.2. Shape Regular Mesh Conditions

We mainly concern the following shape regular mesh conditions.

(1) Ciarlet-Raviart (C-R) (see [27,28]).

Th is regular[26, p. 247], if there exist two constants σ0 ≥ 1 and 0 < µ < 1 such that

hK/hK ≤ σ0, 0 < µK ≤ µ < 1. (2.1)

(2) Girault-Raviart (G-R) (see [17,33]).

Define ρK : = 2 min
1≤i≤4

ρi. Th is regular if there exists σ > 0 such that

max
K∈Th

hK/ρK ≤ σ. (2.2)

(3) Arunakirinathar-Reddy (A-R) (see [11]).
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Th is regular if there exist four constants C, C0, C1 and γ > −1 such that

∥DFK(0, 0)∥ ≤ ChK , ∥DF−1
K (0, 0)∥ ≤ Ch−1

K , C0h
2
K ≤ JK(0, 0) ≤ C1h

2
K .

(2.3)

(DF−1
K (0, 0)k, l) ≥ γ. (2.4)

(4) Z. Zhang (Z) (see [68]).
Define ρ̃K : = min1≤i≤4 ρi. Th is regular if there exists σ > 0 such that

max
K∈Th

hK/ρ̃K ≤ σ. (2.5)

Remark 2.1. A simple manipulation yields that C1 in (2.3) can equal 1/8, which is even
sharp.

§3. Equivalence of Shape Regular Conditions

In this section, we will prove that all the aforementioned shape regular conditions are
equivalent. Before the presentation, we state two lemmas for later use.

Lemma 3.1.[70] For a family of triangular finite elements, if the ratio between the longest
edge of the triangle and the radius of the biggest circle inscribed into the triangle is uniformly
bounded, then there exists a constant θ0 such that all interior angle θK of triangles satisfies

θK ≥ θ0 > 0. (3.1)

Lemma 3.2. For any triangle K, the diameter of the biggest circle inscribed into K is
less than the shortest edge of K.

Theorem 3.1. All the forgoing mentioned shape regular mesh conditions (C-R, G-R,
A-R and Z) are equivalent.

Proof. We only need to prove that all shape regular mesh conditions are equivalent
to C-R. The equivalence between G-R and Z is obvious. So what we need to prove is the
equivalence of C-R, G-R and A-R.

Firstly we prove that G-R implies C-R.
Given the regular condition G-R, in view of Lemma 3.2, we have

hK/hK ≤ 2hK/ρK ≤ 2σ.

which gives (C-R)1 with σ0 = 2σ.
Notice that hi/rhoi ≤ 2hK/ρK ≤ 2σ, invoking Lemma 3.1, we see that each interior

angle of K is bounded below by θ0, which in turn implies an upper bound for each angle
with π− 2θ0, so θ0 ≤ θi ≤ π− 2θ0, thus we come to (C-R)2 with µ = max(cos θ0, | cos 2θ0|).
Therefore, C-R follows from G-R.

We are in a position to prove that C-R implies G-R. For any triangle Ti, we have

ρi =
2|Ti|

|Pi−1Pi|+ |PiPi+1|+ |Pi+1Pi−1|
≥ h2K sin θi

3hi
≥ (1− µ2)1/2

3σ02
hi,

where |Ti| is the area of the triangle Ti and sin θi ≥ (1−µ2)1/2 since | cos θi| ≤ µ. The above
inequality immediately leads to

hi/ρi ≤ 3σ2
0/(1− µ2)1/2. (3.3)

Let ρK = 2ρi0 . Using (3.3), we get

hK/ρK ≤ (hK/hi0)(hi0/2ρi0) ≤ σ0
3σ2

0/2

(1− µ2)1/2
= :σ,

that is just the G-R condition.
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We remain to prove that C-R and A-R are equivalent. Firstly we show that C-R implies
A-R. The first part of A-R is easily deduced from C-R, we omit details for simplicity. Further,
a simple manipulation shows (DFK(0, 0)−1k, l) = (JK − J0)/J0, then

JK/J0 ≥
min(ξ,η)∈K̂ JK(ξ, η)

|K|/4
= 2 min

1≤i≤4
|Ti|/|K|. (3.4)

It is seen that

|Ti| ≥ 1/2h2K(1− µ2)1/2 ∀1 ≤ i ≤ 4, |K| ≤ h2K .

Inserting the above two inequalities into (3.4) leads to

JK/J0 ≥ (1− µ2)1/2/σ2
0 .

Let γ: = (1− µ2)1/2/σ2
0 − 1 > −1, then we obtain the A-R condition.

To deduce C-R from A-R, without loss of generality, let T1 include the shortest edge hK .
The second part of A-R implies

2|T1|/|K| ≥ min
(ξ,η)∈K̂

JK(ξ, η)/J0 ≥ 1 + γ. (3.5)

Using (3.2) and noticing that |T1| ≤ 1/2hKhK , we obtain (C-R)1 with σ0 = (4C0(1+ γ))
−1.

Since the area of any triangle Ti can be expressed as |Ti| ≤ 1/2h2K sin θi, so repeating
the above procedure using |Ti| ≤ 1/2h2K sin θi instead of |Ti| ≤ 1/2hKhK , we get sin θi ≥
4C0(1 + γ), which implies (C-R)2 with µ = (1− 16C2

0 (1 + γ)2)1/2. We complete the proof.

§4. Degenerate Mesh Condition

In what follows, we discuss some degenerate mesh conditions. As a preparation, we
introduce the (1 + α)-Section Condition.

Definition 4.1. (1 + α)-Section Condition (0 ≤ α ≤ 1)

dK = O(h1+α
K ),

uniformly for all elements K as h→ 0.
If dK = 0, K degenerates into a parallelogram. In case α > 0, we recover the Condition

A in [54]. In case α equals to 1, we obtain Condition B, or the Bi-Section Condition[54].
Angle condition is another kind of degenerate mesh condition, which is introduced in [50]

and used to measure the deviation of a quadrilateral from a parallelogram. Define σK as

σK : = max( |π − α1|, |π − α2| ).
Here α1 is the angle between the outward normal of two opposite sides of K and α2 is the
angle between the outward normal of other two sides. We call a mesh satisfying the Angle
Condition if σK = O(hK), i.e., if σK/hK is uniformly bounded for all elements. It is seen
that 0 ≤ σK < π, and σK = 0 iff K is a parallelogram.

Assuming that C-R holds, H. S. Chow et al (see [24, Theorem 3.2]) proved that the Angle
Condition and the Bi-Section Condition are equivalent.

Remark 4.1. Observe that the h2-parallelogram mesh condition in [32] is actually
equivalent to the Bi-Section Condition.

Motivated by the Bi-Section Condition, we define a kind of mesh which will be shown
to be quite useful for the convergence analysis of finite elements.

Definition 4.2. We call Th an asymptotically regular parallelogram mesh if it satisfies
C-R as well as the Bi-Section Condition.

Notice that any polygon can be meshed by asymptotically regular parallelograms with a
mesh size tending to zero. Indeed, if we begin with any mesh of convex quadrilaterals, and
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refine it by dividing each quadrilateral into four by connecting two midpoints of opposite
edges. As in Fig.2, the resulting mesh is an asymptotically regular parallelogram mesh.

Fig.2
There is also another kind of method for generating such an asymptotically regular paral-
lelogram mesh. For example, the C2-grid in [8] which results from a mapping of uniform
grids is actually an asymptotically regular parallelogram mesh. This approach has already
appeared in [71] (see also [25, Remark 2.3]).

As to the generation of a shape regular mesh satisfying the (1+α)-Section Condition, we
refer to [23] for the work of Whiteman’s school.

Degenerate Mesh Conditions
(1) Jamet condition (J) (see [34,36]).
Th is regular if there exists a constant σ > 0 such that

hK/ρK ≤ σ.

(2) Acosta-Duran Regular Decomposition Property (RDP) (see [1]).
Th is regular with constant N ∈ R and 0 < ψ < π, or shortly RDP(N,ψ), if we can

divide K into two triangles along one of its diagonals, which will always be called d1, the
other is d2 in such a way that |d2|/|d1| ≤ N and both triangles satisfy the maximum angle
condition, i.e., each interior angle of these two triangles is bounded from above by ψ.

(3) Süli condition (S) (see [58]).
Th is regular if it satisfies the J condition and the Bi-Section Condition simultaneously.
Remark 4.2. Notice that Süli’s condition was firstly appeared in the convergence proof

of a kind of cell vertex finite volume method for hyperbolic problems and has recently got
renewed interest in the mixed finite volume method[25].

As addressed in [36], C-R implies the J condition with σ = (1 − µ2)1/2/σ0. On the
contrary, the J condition allows for the degeneration of a quadrilateral K into a triangle
since the ratio h/h can be arbitrarily large and the largest angle of K can equal π, i.e., the
J condition may violate either (C-R)1 or (C-R)2. This is shown in Fig.3 below.

Fig.3
Both elements in Fig.3 satisfy the J condition since hK/ρK ≤

√
2+1. However, as to the

left element, the ratio hK/hK = (a2 + (a− b)2)1/2/b ≤
√
2a/b blows up as b tends to zero,

which obviously violates (C-R)1. As to the right element, the interior angle ∠ADC = π−x,
which approaches π as x tends to zero, thereby it violates (C-R)2. However, not the whole
(C-R)2 is violated since the J condition excludes the interior angle from becoming too small.
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This fact is hidden in [58, Lemma 1] which is stated as follows.

Lemma 4.1. If Th satisfies Süli’s condition, then for sufficiently small h, Th is shape
regular in the sense of C-R.

Proceeding along the same line of the above lemma, we obtain

Corollary 4.1. If Th satisfies the J condition as well as the (1 + α)-Section Condition,
then for sufficiently small h, Th is shape regular in the sense of C-R.

Notice that C-R does not imply the S condition. Indeed, considering the trapezoid mesh
as that in Fig. 6, it is seen that the S condition is stronger than C-R. In fact, it is a
strong shape regular mesh condition instead of a degenerate one. Invoking [1, Remark 2.7],
RDP(N,ψ) is weaker than both the J condition and C-R, therefore it is weaker than the S
condition. Moreover, RDP(N,ψ) together with the Bi-Section Condition does not imply C-
R. It is due to the fact that a rectangular element which satisfies both RDP(1, π/2) and the
Bi-Section Condition simultaneously may still have its anisotropic aspect ratio arbitrarily
large.

Remark 4.3. Schmidt[51] replaced the Bi-Section Condition in Lemma 4.1 by the
arbitrary smallness of the ratio dK/hK .

Remark 4.4. Zlámal[71] proposed the k-strongly regular mesh condition for investigating
the superconvergence of isoparametric elements. Following the analysis of Theorem 3.1, we
find that Zlámal’s 1-strongly regular condition is actually equivalent to the S condition.
Notice that the 1-strongly regular condition has already appeared in [29] but in a slightly
different form.

Remark 4.5. Braess[18,p.99, Remark 2] proposed a new shape regular mesh condition which
consists of (C-R)1, the J condition and the maximum interior angle condition. Obviously, it
is equivalent to C-R. However, due to its superfluous complexity this new condition is not
advisable.

§5. 4-Node Isoparametric Element

Denoting by Q the standard Lagrangian interpolant for the 4-node isoparametric element,
we look for a geometric condition under which the estimate

∥u−Qu∥0,K + hK |u−Qu|1,K ≤ Ch2K |u|2,K
holds uniformly for K ∈ Th.

In view of [1,Theorem 4.7], the optimal interpolation error estimate with respect to the
L2 norm holds with a constant independent of the geometry of K, so we only consider

|u−Qu|1,K ≤ ChK |u|2,K . (5.1)

Ciarlet and Raviart[27] proved (5.1) under C-R. However, C-R prohibits the quadrilateral
from either reducing to a triangle or becoming too flat. Jamet[35,36] derived (5.1) under the
J condition which allows a quadrilateral degenerating to a triangle, but not too flat. Ženisek
and Vanmaele[66] also proved (5.1). They required that the two longest sides of the element
be opposite and almost parallel, but the constant C in (5.1) depends on an angle, which
somehow is the minimum angle of the element K. Apel[4] derived the following estimate

|u−Qu|1,K ≤ C
(
h1

∥∥∥ ∂

∂x1
∇u

∥∥∥
0,K

+ h2

∥∥∥ ∂

∂x2
∇u

∥∥∥
0,K

)
. (5.2)

Here h1 and h2 are the element sizes in the direction of x1 and x2, respectively. Acosta
and Durán[1] derived (5.1) under RDP(N,ψ), which seems the weakest mesh condition up
to now under which (5.1.) is valid (see [1, Remark 2.4–Remark 2.7]). One may ask whether
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RDP(N,ψ) is also necessary. Acosta and Durán put it as an open problem in [1]. The
following example shows that this condition is indeed necessary.

Counterexample

Fig.4
Consider an element K like Fig.4 which does not satisfy RDP(N,ψ). If we decompose it

by the diagonal AC, then the triangles ⟨A,B,C⟩ and ⟨A,C,D⟩ indeed satisfy the maximal
angle condition since all interior angles in these two triangles are bounded from above by π/2.
However, |BD|/|AC| = 1/a which cannot be bounded by any constant as a tends to zero. If
we decompose it by the diagonalBD, a simple computation leads to sin∠DAB = 2a/(1+a2),
so the angle ∠DAB approaches π as a tends to zero, thus it also violates RDP(N,ψ).

Let u(x, y) = x2, then |u|22,K = 8a. A direct manipulation shows that
∥∥∥∂(u−Qu)

∂y

∥∥∥2
0,K

=

(3a)−1, so we have

|u−Qu|21,K/|u|22,K ≥
∥∥∥∂(u−Qu)

∂y

∥∥∥2
0,K

/
|u|22,K = (1/24)1/a2.

Since the diameter of K is 2, (5.1) does not hold with a constant independent of a.
To sum up, we have the following interpolation result for the 4-node isoparametric ele-

ment.
Theorem 5.1. For any u ∈ H2(Ω), if RDP(N,ψ) holds, then there exists a constant

C = C(N,ψ) such that

|u−Qu|1,K ≤ ChK |u|2,K . (5.3)

Moreover, RDP(N,ψ) is also necessary for the validity of (5.3).
By Céa Lemma, the error bound of the 4-node isoparametric element solution is bounded

by its interpolation error, i.e.,

∥u− uh∥1 ≤ C inf
v∈Vh

∥u− v∥1. (5.4)

Here

Vh: = {v ∈ H1
0 | v|K ∈ Q1(K), ∀K ∈ Th}.

However, the experience with triangle elements indicates that the interpolation error
actually says nothing about the approximation error of the finite element. When triangles
with uncontrolled maximal angles are taken into account, examples in [12] show that the
approximation error grows to infinity as the interpolation error with respect to the H1-norm
grows to infinity. However, in [6], another example shows that the finite element solution
converges while the interpolation error with respect to the H1-norm also grows to infinity.
So it is equally interesting to ask such question for the quadrilateral element approximation.
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§6. Nonconforming Quadrilateral Element

As to the nonconforming quadrilateral element approximation, the situation is less satis-
factory. The main nonconforming quadrilateral elements are the Wilson element and non-
conforming rotated Q1 element. The former is well-known in the engineering community
and has a long history (see [65]). The latter is the simplest nonconforming quadrilateral
element, and was proposed for solving the incompressible flow problem in [50] and widely
used in the software FEATFLOW[62]. It has also been applied to the crystalline microstruc-
ture problem[37], the Chappman-Ferraro problem[38] and the Reissner-Mindlin plate bending
problem[41,45].

By Strang Lemma[57], it is common to split the finite element error into two parts, i.e.,
the interpolation error and the consistency error, thus the impact of the mesh conditions
on both errors has to be checked.

For any v belonging to a nonconforming finite element space, we define the discrete H1-
norm as

∥v∥1,h: =
( ∑

K∈Th

∥v∥21,K
)1/2

.

The interpolation error of numerous nonconforming elements can be checked case by
case. As to the consistency error, it is common to estimate the following piecewise integral
functional ∑

K∈Th

∫
∂K

ψ · nv ds.

Usually the nonconforming element has some sort of continuities, so to bound the above
piecewise integral functional is boiled down to the estimate of the following integral func-
tional, i.e.,

∥u− J (u)∥0,E ∀E ⊂ ∂K.

Here J (u) usually takes two forms as

J (u) = J a
E (u): = −

∫
E
u ds or J (u) = JK(u): = −

∫
K

u dx, u ∈ H1(K)

and J (u) = J p
E (u): = u(M) in case of u ∈ H1(K)∩C0(K), where M is the middle point of

the edge E . The following lemma bounds the above functional.
Lemma 6.1. For u ∈ H1(K) or u ∈ H1(K) ∩ C0(K), and for any E ⊂ ∂K, we have

∥u− J (u)∥0,E ≤ C(|E|/|K|)1/2hK∥∇u∥0,K . (6.1)

Proof. In case of u ∈ H1(K), since ∥u−−
∫
E u ds∥0,E = infC∈R ∥u− C∥0,E , we have

∥u− J a
E (u)∥0,E ≤ ∥u− JK(u)∥0,E .

By a sharp trace inequality in [63, Lemma 3.2], the right hand side of the above inequality
is bounded by

(2|E|/|K|)1/2(∥u− JK(u)∥0,K + hK∥∇u∥0,K).

Since K is convex, by the Poincaré Inequality[48] we have the first term as

∥u− JK(u)∥0,K ≤ hK/π∥∇u∥0,K . (6.2)

A combination of the above three inequalities yields (6.1).
When u ∈ H1(K) ∩ C0(K), proceeding along the same line of the above procedure and

employing the scaling trick instead of the Poincaré Inequality on the last step complete the
proof.
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To be more specific, we further bound the expression C(|E|/|K|)1/2hK appeared on the

right hand side of (6.1) as Mσ1/2h
1/2
K provided that the J condition holds, where M is

independent of h.
The following simple example shows that the dependence on σ is essential.
Counterexample
Consider an element K centered at the origin with the lengths 2hx and 2hy in the x

and y directions, respectively. Without loss of generality, we assume that hx < hy, and

define σ: = (h2x + h2y)
1/2/ρK . Let u(x, y) = x2 + y2 and E be one vertical edge. A simple

computation leads to

∥u− J a
E (u)∥20,E = 8h5y/45, ∥∇u∥20,K = 16hxhy(h

2
x + h2y)/3.

A combination of these two identities leads to

∥u− J a
E (u)∥0,E/∥∇u∥0,K ≥ σ1/2(h2x + h2y)

1/4/2
√
30.

On the other hand, (6.1) gives the upper bound as

∥u− J a
E (u)∥0,E/∥∇u∥0,K ≤ Cσ1/2(h2x + h2y)

1/4.

The above two inequalities illustrate the sharpness of the element geometry dependence of
the constant in the right hand side of (6.1). Moreover, this example also works for the other
two cases when J (u) is JK(u) or J p

E (u).
6.1. Wilson Element
The Wilson nonconforming finite element space[65] is

{ v ∈ L2(Ω) | v ◦ FK ∈ P(K̂) ∀K ∈ Th },
where Q1(K̂) ⊂ P(K̂) ⊂ P2(K̂). We write P(K̂) = Q1(K̂) + B(K̂), where B(K̂) contains
the nonconforming part:

B(K̂) = Span(ξ2 − 1, η2 − 1).

There are also another two types of Wilson-like elements (see [68] for a review).
Let Πh denote the interpolant for the Wilson element, we sum up the interpolation results

in the following theorem.
Theorem 6.1. For any u ∈ H2(Ω), if Th is C-R shape regular, then there exists a

constant C = C(σ0, µ) such that

∥u−Πhu∥0 + h∥u−Πhu∥1,h ≤ Ch2∥u∥2. (6.3)

Moreover, if u ∈ H3(Ω), Th is C-R shape regular and the (1 + α)-Section Condition holds,
then there exists a constant C = C(σ0, µ) such that

∥u−Πhu∥0 + h∥u−Πhu∥1,h ≤ Ch2+α∥u∥3. (6.4)

Proof. (6.3) has already been included in [39, Theorem 1]. Notice that P2(K̂) ⊂ P(K̂),
the standard interpolation argument yields (6.4).

One may ask if the shape regular condition can be relaxed in the above theorem. There is
no such result for a general quadrilateral mesh, however, the following result indicates that
it is not hopeless at least for a rectangular mesh.

Lemma 6.2. If Ω is covered by a uniform rectangular mesh with hx(h1) and hy(h2) in
the x and y directions, respectively, then

∥u−Πhu∥0 ≤ Ch2
(∥∥∥∂2u
∂x2

∥∥∥
0
+
∥∥∥∂2u
∂y2

∥∥∥
0

)
, (6.5)

∥∥∥∂(u−Πhu)

∂xi

∥∥∥
0
≤ C

2∑
j=1

hj

∥∥∥ ∂2u

∂xi∂xj

∥∥∥
0
, i = 1, 2. (6.6)
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Moreover, if u ∈ H3, then

∥u−Πhu∥0 ≤ Ch3|u|3, (6.7)∥∥∥∂(u−Πhu)

∂xi

∥∥∥
0
≤ C

2∑
j,k=1

hjhk

∥∥∥ ∂3u

∂xi∂xj∂xk

∥∥∥
0
, i = 1, 2. (6.8)

To estimate the consistency error, we follow that in [54]. The consistency functional can
be decomposed into∑

K∈Th

∫
∂K

ψ · nv ds =
∑

K∈Th,E⊂∂K

∫
E

(
ψ · n−−

∫
K

ψ · n
)(
v −−

∫
K

v
)
ds

+
∑

K∈Th,E⊂∂K

∫
E

(
ψ · n−−

∫
K

ψ · n
)
−
∫
K

v ds

+
∑

K∈Th,E⊂∂K

−
∫
K

ψ · n
∫
E
v ds. (6.9)

Lemma 6.1 bounds the first two terms on the right hand side of (6.9), thus the J condition is
needed. Moreover, in [54, Theorem 2], a counterexample is presented to show that the Bi-
Section Condition is necessary for estimating the third term on the right hand side of (6.9).
Summing up and using Lemma 4.1, we see that the asymptotically regular parallelogram
mesh condition is both sufficient and necessary for obtaining the optimal consistency error,
at least for the above decomposition. Moreover, the optimal interpolation error requires that
Th is shape regular which may be weakened as indicated by Lemma 6.1. However, it is still
unknown whether or not the asymptotically regular parallelogram mesh is really necessary
for the optimal error estimate of the Wilson-type elements.

6.2. Nonconforming Rotated Q1 Element
Two types of the quadrilateral rotated Q1 finite element spaces can be defined as follows.

Let

Q1: = { q ◦ F−1
K | q ∈ Span⟨1, x, y, x2 − y2⟩ }.

Denote J a/p
E for J a

E as well as J p
E . The finite element spaces are defined as

V
a/p
h : = { v ∈ L2(Ω) | v|K ∈ Q1(K), v is continuous regarding J a/p

E (·) },
and the corresponding homogeneous spaces as

V
a/p
0,h : = { v ∈ V

a/p
h | J a/p

E (v) = 0, if E ⊂ ∂Ω }.
A global interpolation operator πh is realized by the forgoing local interpolation operator

J a/p
E , i.e., πh|K = J a/p

E ∀E ⊂ ∂K. We have the following interpolation result for πh.

Theorem 6.2.[50, Lemma 1] For any u ∈ H2 ∩H1
0 , if Th is C-R shape regular, then

∥u− πhu∥0 + h∥u− πhu∥1,h ≤ Ch(h+ σh)∥u∥2. (6.10)

Here C depends on σ0 and µ.
As a direct consequence of the above result, we have
Corollary 6.1. For any u ∈ H2 ∩H1

0 , if the (1 + α)-Section Condition holds, then

∥u− πhu∥0 ≤ C1h
1+α∥u∥2. (6.11)

Here the constant C1 is independent of the geometry of K ∈ Th. If Th is an asymptotically
regular parallelogram mesh, then

∥u− πhu∥1,h ≤ C2h∥u∥2. (6.12)
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Here C2 depends on σ0 and µ.
By Theorem 5.1, RDP(N,ψ) is sufficient and necessary for obtaining the optimal inter-

polation error for the 4-node isoparametric element. One may ask whether this is the same
for the NRQ1 element. The following lemma and a counterexample give a negative answer.

Lemma 6.3. If Ω is covered by a uniform rectangular mesh with hx(h1) and hy(h2) in
the x and y directions, respectively. Then for u ∈ H2 ∩H1

0 , we have

∥u− πhu∥0 ≤ C
2∑

i,j=1

hihj

∥∥∥ ∂2u

∂xi∂xj

∥∥∥
0
, (6.13)

|u− πhu|1,h ≤ Ch(1 + σ)|u|2. (6.14)

Here σ is the anisotropic ratio which is defined by σ: = max(hx/hy, hy/hx).
Proof. (6.14) is included in [42, Theorem 2.1], from which we get (6.13).
We adopt a counterexample in [42] to show that the anisotropic ratio σ appeared in the

right hand side of (6.14) is essential.
Counterexample
Consider an element K centered at the origin with the lengths 2hx and 2hy in the x and

y directions, respectively. Without loss of generality, we assume that hy < hx, and define
the anisotropy ratio as σ: = hx/hy. Let u(x, y) = 2x2, then |u|22,K = 64hxhy. As to this u,

we can verify that |u− πhu|21,K = 16h3xhy(1 + σ2)/3, therefore

|u− πhu|1,K/|u|2,K = ((1 + σ2)/3)1/2hx/2.

So (6.14) cannot hold with a constant independent of the anisotropic ratio σ.
Notice that the asymptotically regular parallelogram mesh condition is sufficient for the

optimal interpolation error for the NRQ1 element, the following counterexample shows that
the Bi-Section Condition is also necessary.

Counterexample
Consider the element K as that in Fig. 5. Let u(x, y): = 1/(1 + x). It is seen that

|u|22,K ≤ 4|K| = 8(2− a)h2K . (6.15)

A simple manipulation shows that

∥u− πhu∥20,K =

∫
K̂

h2K(1− a(1 + η)/2)(1 + ξ)(ahKξη/2 +O(h2K))2/f(ξ, η) dx̂,

where f(ξ, η) is defined as

f(ξ, η): = (1 + hK)2(1 + (1− a)hK)2(1 + (2− a)hK)2(1 + (1− a(1 + η)/2)(1 + ξ)hK)2.

Notice that 0 ≤ a < 1, so |f(ξ, η)| ≤ 36, thus a combination of the above two identities
yields

∥u− πhu∥20,K ≥ a2h4K/648 +O(h6K), (6.16)

which together with (6.15) leads to

∥u− πhu∥0,K/|u|2,K ≥
√
2ahK/18 =

√
2dK/18. (6.17)

Proceeding along the same line, we obtain

|u− πhu|1,K
|u|2,K

≥

∥∥∥∂(u−πhu)
∂x

∥∥∥
0,K

|u|2,K
≥ (

√
3/36)dK/hK . (6.18)

The above two inequalities clearly show the necessity of the Bi-Section Condition for the
optimal interpolation error bound of the NRQ1 element with respect to both L2-norm and
H1-norm.
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Fig.5
Degradation of the interpolation error will occur on real quadrilateral meshes, particu-

larly, on the following trapezoid meshes. Nevertheless, as shown by Corollary 6.1, if the
quadrilateral mesh is an asymptotic parallelogram (see Fig.2), such degradation will not
occur.

Fig.6
It remains to consider the consistency error of NRQ1. As to NRQa

1 , the consistency
functional can be decomposed into∑

K∈Th,E⊂∂K

∫
E

(
ψ · n−−

∫
E
ψ · n

)(
v −−

∫
E
v
)
ds.

By Lemma 6.1, the J condition is needed for the optimal consistency error estimate. As
to NRQp

1, besides the J condition the Bi-Section Condition is also needed. The latter is
even necessary in some sense for NRQp

1 as shown in [42, Theorem 3.2]. However, for the
rectangular NRQ1, a different argument yields the optimal consistency error bound which
is independent of the J condition (see [44] for more details). We do not know whether a
similar argument works for the quadrilateral NRQ1.

The above discussion indicates that there is a convergence degradation of the NRQ1

element over a degenerate mesh. Indeed, such degradation was observed by the numerical
results in [50, 62], both the interpolation and consistency error commit such degradation.
There are many works on modifications of this element to accommodate the degenerate
mesh (see [7, 21, 22, 44]).

To sum up, neither the Wilson element nor the NRQ1 element can be used for a degenerate
mesh. Is there another kind of lower-order nonconforming quadrilateral element which
can be used over a fully degenerate mesh while retaining its excellent stability property
simultaneously? Such an element would be a grail for the finite element circus.

§7. RT Element of Lowest-Order

Up to now, there are only few results available to explain the mesh dependence of the
interpolation error for mixed elements, like R-T[k], BDFM[k] and BDM[k] et al

[20].1

1see [64, 56] for the definitions of RT[k], BDDM[k] and BDFM[k] over an arbitrary quadrilateral mesh.
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Wang and Mathew[64] gave the optimal interpolation error for all these mixed finite
elements over an arbitrary quadrilateral, unfortunately, the mesh dependence is not clearly
stated therein.

Raviart and Thomas[49] derived the optimal interpolation error for the R-T element over a
shape regular parallelogram. Proceeding along the same line of [1, Lemma 4.1, Lemma 4.2],
one can easily get the following interpolation and stability estimates for the RT[0] element
(see [1, Remark 4.1] and [8]) for the case when Th is a rectangular mesh.

Lemma 7.1. If Ω is covered by a uniform rectangular mesh with the diameter h1 and h2
in the x and y directions, respectively, then

∥(u−RTu)i∥0 ≤ C
2∑

j=1

hj

∥∥∥∂ui

∂xj

∥∥∥
0
, i = 1, 2 (7.1)

with a constant C independent of the ratio between h1 and h2. Moreover, we have the
following stability estimate ∥∥∥∂(RTu)i

∂xi

∥∥∥
0
≤

∥∥∥∂ui

∂xi

∥∥∥
0
, i = 1, 2. (7.2)

Remark 7.1. As to a simple proof for (7.2), see [8, Lemma 5.7].
Similar to [43, Theorem 3.2], we have the following result for the quadrilateral RT[0].
Theorem 7.1. If Th is an asymptotically regular parallelogram mesh, then for u ∈

H1(div), there holds

∥u−RTu∥0 ≤ Ch∥u∥1, (7.3)

∥div(u−RTu)∥0 ≤ Ch∥u∥H1(div). (7.4)

Here the constant C depends on σ0 and µ.
Remark 7.2. Similar results can be found in [25, Lemma 3.2]. However, the Bi-

Section Condition is missing therein, which is actually necessary for obtaining the optimal
interpolation error. This will be illustrated by the example below.

Similar to [43, Theorem 3.1], we have the refined interpolation results for RT[0] as follows.
Theorem 7.2. If Th satisfies C-R as well as the (1+α)-Section Condition, then for any

u ∈Hβ(div) with β ∈ (0, 1], there holds

∥u−RTu∥0 ≤ C(hβ |u|Hβ + hα∥u∥0 + h∥divu∥0), (7.5)

∥div(u−RTu)∥0 ≤ C(hβ |divu|Hβ + hα∥divu∥0). (7.6)

If β > 1/2, the last term in (7.5) can be dropped. Morover, if u ∈H1(Ω) and the Bi-Section
Condition holds, we have

∥u−RTu∥0 ≤ Ch∥u∥1, (7.7)

∥div(u−RTu)∥0 ≤ Ch∥divu∥1. (7.8)

Here the constant C depends on σ0 and µ.2

Comparing Theorem 7.1 and Theorem 7.2 with Lemma 7.1, one may ask whether the mesh
conditions in Theorem 7.1 and Theorem 7.2 can be relaxed. The following example shows
the necessity of the (1+α)-Section Condition or the Bi-Section Condition for the optimality
of the interpolation error. It seems that the argument based on the Piola transform as that
in [43] and [25] is less hopeful for further relaxing the mesh condit ions.

Counterexample

2The definitions of Hβ and Hβ(div) with β ∈ (0, 1] can be found in [3].
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Consider the element as in Fig. 5. Let u = (1, 0), a simple manipulation yields

∥u−RTu∥20,K = 2(ahK/2)
2

∫ 1

−1

η2

1− a/2− a/2η
dη ≥ a2h2K/3. (7.9)

It is seen that

∥u∥21,K = 2(2− a)h2K .

A combination of the above two inequalities leads to

∥u−RTu∥0,K/∥u∥1,K ≥ (1/2
√
3)a = (1/2

√
3)dK/hK . (7.10)

The above example clearly shows the necessity of the (1+α)-Section Condition for obtaining
the optimal interpolation error bound (7.5).

Let u = (x, 0); proceeding along the same line of the above procedure, we obtain

∥div(u−RTu)∥0,K/∥divu∥1,K ≥ (1/
√
6)dK/hK , (7.11)

which shows the necessity of the (1 + α)-Section Condition for the optimal interpolation
error bounds in (7.6). Naturally, (7.10) and (7.11) also demonstrate the necessity of the Bi-
Section Condition for the optimal interpolation error bounds in (7.7) and (7.8), respectively.

§8. Conclusions and Open Problems

In this paper, some commonly used shape regular mesh conditions are proven to be
equivalent and their connections to some degenerate mesh conditions are also clarified.

We have checked the influence of mesh conditions on the interpolation error for the 4-
node isoparametric element, quadrilateral nonconforming element and RT[0] element. The
asymptotically regular parallelogram mesh is found to be indispensable for the successful
application of either Wilson, NRQ1 or RT[0] element, otherwise, the degradation of the
convergence order will occur which is not widely appreciated, and was casually observed in
numerical experiments (see [69, §8.7] and [9]).

Before closing this paper, we propose three open problems.
(1) Is RDP(N,ψ) also necessary for the optimal finite element approximation error of the

4-node isoparametric element for the 2-order elliptic problem?
(2) What is the necessary and sufficient mesh condition for the convergence as well as the

optimal error bounds of the Wilson and NRQ1 element for the 2-order elliptic problem?
(3) What is the necessary and sufficient mesh condition for obtaining the optimal inter-

polation error bounds of RT[k], BDDM[k] and BDFM[k]?
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