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Abstract

Consider any traveling wave solution of the Kuramoto-Sivashinsky equation that is asymp-
totic to a constant as x → +∞. The authors prove that it is nonlinearly unstable under H1

perturbations. The proof is based on a general theorem in Banach spaces asserting that linear

instability implies nonlinear instability.
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§1. Introduction

The Kuramoto-Sivashinsky equation

ut + uxxxx + uxx + uux = 0 (0.1)

was derived by Kuramoto[2] as a model describing phase turbulence in reaction-diffusion

systems and independently by Sivashinsky[3] as a model of flame propagation. There are

many numerical and some theoretical results showing that some of its solutions engage in

very complicated dynamical behavior.

A traveling wave solution u = φ(x − ct) satisfies, after one integration, the third-order

equation

φ′′′ + φ′ +
1

2
(φ− c)2 = k (0.2)

where k is a constant. A special case is a steady state c = 0. This ordinary differential

equation has been studied extensively. Numerical studies[6−20] indicate the existence of het-

eroclinic and homoclinic orbits, as well as periodic and quasiperiodic solutions. Theoretical

results include the existence of periodic solutions and heteroclinic orbits[4,5]. In particular,
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Troy[4] proved that if k = 1, there exist at least two distinct odd solutions of (0.2) such that

φ(x) → c ∓
√
2 as x → ±∞. He conjectured that there are an infinite number of different

ones. Furthermore for k ̸= 1 there are probably many others.

In this paper we consider any traveling wave solution φ(x− ct) of (0.1) that approaches

a constant as x → +∞. Then we consider solutions u(x, t) of (0.1) with initial data u(x, 0)

arbitrarily near φ(x) in the H1(R) norm. We prove that there exist such solutions that do

not remain near φ(x − ct) in the H1(R) norm at some later times. The instability of the

traveling waves is a hint of the complexity of the dynamics of (0.1).

Our proof is based on the principle of linearization. We prove that the essential spectrum

of the linearized generator meets the right half-plane and thus generates modes eλt with

Rλ > 0 (Lemma 2.1). Then we invoke a general theorem that asserts that linearized

instability implies nonlinear instability (Theorem 1.1).

Theorem 1.1 is a slight generalization of an earlier theorem[1] concerning nonlinear semi-

groups in a Banach space X. In the present case we have two Banach spaces X ⊂ Z, the

linear semigroup is smoothing (mapping Z into X), while the nonlinear term loses regularity

(mapping X into Z). The gain and loss of regularity compensate for each other.

§1. The Abstract Theorem

Consider an evolution equation

du

dt
= Lu+ F (u), (1.1)

where L is a linear operator that generates a strongly continuous semigroup etL on a Banach

space X, and F is a strongly continuous operator such that F (0) = 0. We focus on the

instability of the zero solution of equation (1.1). About such a problem, the following

question was addressed in a previous article[1].

If the spectrum of L meets the right half-plane {Rλ > 0}, does it follow that the zero

solution of (1.1) is nonlinearly unstable?

Here, the zero solution is called nonlinearly stable in X if for any ϵ > 0 ∃δ > 0 such

that ∥u0∥X < δ implies that the unique solution u ∈ C([0,∞);X) of equation (1.1) with

u(0) = u0 satisfies sup
0≤t<∞

∥u(t)∥X < ϵ. Otherwise, it is called nonlinearly unstable.

In [1], the authors considered the whole problem in only one space X, that is to say,

the nonlinear operator maps X into X. However, many equations possess nonlinear terms

that include derivatives and therefore F maps into a larger Banach space Z. If, therefore,

the linear part is smoothing, mapping Z back into X, then we can recover the nonlinear

instability as before. This is the content of the following theorem.

Theorem 1.1. Assume the following.

(i) X,Z are two Banach spaces with X ⊂ Z and ∥u∥Z ≤ C1∥u∥X for u ∈ X.

(ii) L generates a strongly continuous semigroup etL on the space Z, and the semigroup

etL maps Z into X for t > 0, and
∫ 1

0
∥etL∥Z→X dt = C4 < ∞.

(iii) The spectrum of L on X meets the right half-plane, {Rλ > 0}.
(iv) F : X → Z is continuous and ∃ρ0 > 0, C3 > 0, α > 1 such that ∥F (u)∥Z ≤ C3∥u∥αX

for ∥u∥X < ρ0.

Then the zero solution of (1.1) is nonlinearly unstable in the space X.
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Remark 1.1. If Z = X, the theorem reduces to the theorem in [1].

To prove the theorem, we need the following two lemmas cited from [1]. For brevity, the

proofs of the lemmas are omitted. The first lemma asserts the existence of an approximate

eigenvector v corresponding to an eigenvalue of maximal growth.

Lemma 1.1. Let the spectrum of eL on X be denoted by σX(eL). Let eλ ∈ σX(eL) such

that |eλ| equals the spectral radius of eL on X. For every η > 0 and every integer m > 0,

there exists v ∈ X such that

∥(emL − emλ)v∥X < η∥v∥X , (1.2)

∥etLv∥X ≤ 2KetRλ∥v∥X , ∀t, 0 ≤ t ≤ m, (1.3)

where K = sup{∥eθL∥X→X : 0 ≤ θ ≤ 1} and Rλ means the real part of λ.

The second lemma asserts that the whole semigroup grows at approximately the same

rate as the eigenvalue.

Lemma 1.2. Under the assumption of Lemma 1.1, for all ϵ > 0, there exists a constant

Cϵ so that for all 0 ≤ t < ∞ we have

eRλt ≤ ∥etL∥X→X ≤ Cϵe
(Rλ+ϵ)t.

Proof of Theorem 1.1. If u ∈ C([0, T );X) (T ≤ ∞) is a solution of (1.1) with initial

data u(0) = v ∈ X, then it formally satisfies the associated integral equation

u(t) = etLv +

∫ t

0

e(t−τ)LF (u(τ)) dτ, 0 ≤ t < T. (1.4)

We are going to prove that there exists a universal constant ϵ0 > 0 such that sup
0≤t<T

∥u(t)∥X >

ϵ0 no matter how small ∥v∥X may be.

Let us first define some quantities used below. Let

µ = eλ (1.5)

as in Lemma 1.1. Choose

ϵ =
(α− 1)Rλ

2
(1.6)

and Cϵ as in Lemma 1.2. Let C2 = ∥eL∥Z→X . Define k by

kα−1 = 2|µ|αC3

[
2K +

1

2|µ|

]α[ 2CϵC2

(α− 1)Rλ
e−αRλ + C4

]
. (1.7)

Let δ be free to remain arbitrarily small within the interval (0, δ0) with

δ0 ≡ min
{1

k
, 1,

ρ0
2

}
. (1.8)

Let T ∗ be the integer in the interval (b, b+ 1] where

b = ln
( 1

δk

)
/ ln |µ| > 0. (1.9)

Note that (1.5) and (1.9) imply that

1

k
< δeT

∗Rλ ≤ |µ|
k
, (1.10)

and T ∗ is dependent on δ as well as on µ and k. We may assume that the zero solution

is stable. Thus there exists δ′ > 0 such that if ∥v∥X = δ < δ′, then there exists a unique
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solution u ∈ C([0,∞);X) of the integral equation (1.4). Let v be given by Lemma 1.1 with

m = T ∗ and η = 1
4k , we take ∥v∥X = δ. Now define

T = sup
{
t : ∥u(τ)− eτLv∥X <

δeRλτ

2|µ|
and ∥u(τ)∥X <

ρ0
2

for 0 < τ ≤ t
}
. (1.12)

Clearly T > 0. By (1.4) we have, for 0 < t ≤ min{T ∗, T},

∥u(t)− etLv∥X ≤
∫ t−1

0

∥e(t−τ−1)L∥X→X ∥eL∥Z→X∥F (u(τ))∥Z dτ

+

∫ t

t−1

∥e(t−τ)L∥Z→X ∥F (u(τ))∥Z dτ. (1.13)

Taking ϵ = (α−1)
2 Rλ in Lemma 1.2 and using the assumptions of the theorem, we have

∥u(t)− etLv∥X ≤
∫ t−1

0

Cϵe
α+1
2 Rλ(t−τ−1)C2C3∥u(τ)∥αX dτ

+

∫ t

t−1

∥e(t−τ)L∥Z→XC3∥u(τ)∥αX dτ. (1.14)

Within these integrals we use (1.3) and (1.12) to obtain

∥u(τ)∥X ≤ ∥eτLv∥X + ∥u(τ)− eτLv∥X ≤ (2K +
1

2|µ|
)δeτRλ. (1.15)

Substituting (1.15) into (1.14), we have

∥u(t)− etLv∥X ≤ C2C3Cϵ

(
2K +

1

2|µ|

)α

δαe
α+1
2 Rλ(t−1)

∫ t−1

0

e
α−1
2 Rλτ dτ

+ C3

(
2K +

1

2|µ|

)α

δα
∫ t

t−1

∥e(t−τ)L∥Z→XeταRλ dτ

< C2C3Cϵ

(
2K +

1

2|µ|

)α

δαe
α+1
2 Rλ(t−1) 2

(α− 1)Rλ
e

(α−1)
2 Rλ(t−1)

+ C4C3

(
2K +

1

2|µ|

)α

δαeαRλt

=
kα−1

2|µ|α
(δeRλt)α

by (1.7). Then we have

∥u(t)− etLv∥X <
kα−1

2|µ|α
(δeRλt)α for 0 ≤ t ≤ min(T, T ∗). (1.16)

Now if T ≤ T ∗, then we claim that ∥u(T )∥X ≥ ρ0

2 . Indeed, if T ≤ T ∗ and ∥u(T )∥X < ρ0

2 ,

then by definition (1.12) of T , we have

∥u(T )− eTLv∥X =
δeRλT

2|µ|
.

Combining it with (1.16) for t = T , we obtain

δeRλT

2|µ|
<

kα−1

2|µ|α
(δeRλT )α,

that is,

δeRλT >
|µ|
k
,



No.2 W. STRAUSS & WANG, G. X. INSTABILITY OF TRAVELING WAVES 271

which means T > T ∗ by (1.11) and leads to a contradiction. Thus the claim is proven. Next,

if ∥u(T )∥X ̸= ρ0

2 , we have T > T ∗. Choose t = T ∗ so that by (1.11) we have

∥u(T ∗)− eT
∗Lv∥X <

kα−1

2|µ|α
(δeRλT∗

)α ≤ kα−1

2|µ|α
( |µ|

k

)α

=
1

2k
. (1.19)

So

∥u(T ∗)∥X ≥ ∥eT
∗Lv∥X − 1

2k
. (1.20)

On the other hand, taking m = T ∗ and η = 1
4k in Lemma 1.1, (1.2) implies

∥eT
∗Lv∥X ≥ ∥eT

∗λv∥X − 1

4k
∥v∥X .

Since ∥eT∗λv∥X = eT
∗Rλ∥v∥X and ∥v∥X = δ, we get by (1.11)

∥eT
∗Lv∥X ≥ eRλT∗

δ − δ

4k
>

1

k
− δ

4k
.

Hence (1.20) implies

∥u(T ∗)∥X ≥ 1

k
− δ

4k
− 1

2k
>

1

4k
, (1.21)

since δ < 1.

Therefore, there exists a time t (either T or T ∗) at which

∥u(t)∥X ≥ min
{ 1

4k
,
ρ

2

}
≡ ϵ0,

and ϵ0 is a universal constant independent of the size of the initial data v.

Remark 1.2. The proof shows that there exist C > 0 and ϵ0 > 0 such that for all

sufficiently small positive δ, there is a solution u that satisfies ∥u(0)∥X < δ but

sup
0≤t≤C| log δ|

∥u(t)∥ ≥ ϵ0.

Thus the escape time occurs logarithmically soon.

§2. Application to the Kuramoto-Sivashinsky Equation

The Kuramoto-Sivashinsky equation in one dimension is

vt + vx4 + vx2 +
1

2
(vx)

2 = 0, −∞ < x < ∞. (2.1)

With u = vx it can be written as

ut + ux4 + ux2 + uux = 0, −∞ < x < ∞. (2.2)

If φ(x − ct) is a traveling wave solution of (2.2), then φ satisfies the ordinary differential

equation

φ′′′ + φ′ +
1

2
(φ− c)2 = k (2.3)

where k is a constant. If c = 0, then φ is a steady-state solution. Troy[4] proved that if

k = 1, then equation (2.3) admits at least two odd solutions satisfying

lim
x→∞

φ(x) = c−
√
2, lim

x→−∞
φ(x) = c+

√
2.

The goal of this section is to prove the following theorem.
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Theorem 2.1. All the traveling waves φ(x − ct) of the Kuramoto-Sivashinsky equation

satisfying φ ∈ L∞(R), φx, φxx ∈ L2(R) and φ− b+ ∈ L2([0,∞)) are nonlinearly unstable

in the space H1(R).

This means that there exist positive ϵ0 and C0, a sequence {un} of solutions of the K-S

equation, and a sequence of times 0 ≤ tn ≤ C0 log n such that ∥un(0) − φ∥H1(R) → 0 but

∥un(tn)− φ(· − ctn)∥H1(R) ≥ ϵ0.

If φ(x− ct) ∈ H1(R) is a traveling-wave solution of the K-S equation (2.2), then letting

w(x, t) = u(x, t)− φ(x− ct), we have

wt + wx4 + wx2 + φwx + φxw + wwx = 0, −∞ < x < ∞, (2.5)

with initial value

w(x, 0) = w0(x) ≡ u0(x)− φ(x). (2.6)

So the stability of traveling-wave solutions of (2.2) is translated into the stability of the zero

solution of (2.5). In order to prove Theorem 2.1, taking Z ≡ L2(R), X = H1(R), we need

to prove that the four conditions of Theorem 1.1 are satisfied by the associated equation

(2.5).

Denote the linear partial differential operator in (2.5) by L = −(∂4
x + ∂2

x + φ∂x + φx) ≡
L0 − [(φ− b+)∂x + φx] with L0 = −(∂4

x + ∂2
x + b+∂x). Then (2.5) may be rewritten in the

form (1.1),

wt = Lw + F (w), (2.7)

where F (w) = −wwx. Note that F maps H1(R) into L2(R) and satisfies

∥F (w)∥L2 ≤ ∥w∥2H1 . (2.8)

This proves Condition (iv) of Theorem 1.1 with C3 = 1 and α = 2.

To prove Condition (ii) in Theorem 1.1, we need the following two lemmas.

Lemma 2.1. Let L0 = −(∂4
x + ∂2

x + b+∂x) for any real constant b+. Then

∥etL0∥Hm→Hm ≤ e
t
4 for m ∈ R, 0 ≤ t < ∞, (2.8)

∥etL0∥L2→H1 ≤ a(t) ≡ 4t−
1
4 for 0 < t ≤ 1. (2.9)

Proof. We write u(x, t) = etL0u0(x). By Fourier transformation,

û(ξ, t) = e−t(ξ4−ξ2+iξ)û0(ξ).

∥u(t)∥2Hm =

∫ ∞

−∞
(1 + ξ2)m|û(ξ, t)|2 dξ =

∫ ∞

−∞
(1 + ξ2)me−2t(ξ4−ξ2)|û0(ξ)|2 dξ

≤ sup
ξ∈R

e−2t(ξ4−ξ2)

∫ ∞

−∞
(1 + ξ2)m|û0(ξ)|2 dξ = e

t
2 ∥u0∥2Hm .

Hence

∥etL0∥Hm→Hm ≤ e
t
4 .

On the other hand, letting s = ξ2, we have

∥u(t)∥2H1 ≤ sup
s∈R+

f(s)

∫ ∞

−∞
|û0(ξ)|2 dξ
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with f(s) = (1 + s)e−2t(s2−s), t > 0. Elementary computation shows that

sup
s>0

f(s) ≤
(3
2
+

1

2
t−

1
2

)
e

t
2 .

Thus

∥u(x, t)∥H1 ≤
(3
2
+

1

2
t−

1
2

) 1
2

e
t
4 ∥u0∥L2 ,

and

∥etL0∥L2→H1 ≤
(3
2
+

1

2
t−

1
2

) 1
2

e
t
4 ≤ 4t−

1
4 for 0 < t ≤ 1,

since e
t
4 ≤ e

1
4 < 2. Thus Lemma 2.1 has been proved.

The following lemma proves Condition (ii).

Lemma 2.2. Let L = −[∂4
x + ∂2

x + φ(x)∂x + φ′(x)] ≡ L0 − (φ − b+)∂x − φx with

φ ∈ L∞(R), φx ∈ L2(R), χ[0,∞)(φ− b+) ∈ L2(R). Then

∥etL∥L2→H1 ≤ C5t
− 1

4 for 0 < t ≤ 1, (2.10)

∥etL∥H1→H1 ≤ C6 < ∞ for 0 ≤ t ≤ 1, (2.11)

where the constants C5, C6 are defined by (2.17), (2.20) below.

Proof. Consider the initial value problem

ut = Lu = L0u− [φ(x)− b+]∂xu− φ′(x)u,

u(x, 0) = u0(x), x ∈ R.

Then u(x, t) = etLu0(x), t ≥ 0, x ∈ R. Thus

u(t) = etL0u0 −
∫ t

0

e(t−τ)L0 [(φ− b+)∂xu+ φ′u] dτ.

Denote A = ∥φ− b+∥L∞ , B = ∥φ′∥L2 . Then for 0 < t ≤ 1,

∥u(t)∥H1 ≤ ∥etL0∥L2→H1∥u0∥L2 +

∫ t

0

∥e(t−τ)L0∥L2→H1∥φ− b+∥L∞∥∂xu∥L2 dτ

+

∫ t

0

∥e(t−τ)L0∥L2→H1∥φ′∥L2∥u∥L∞ dτ (2.12)

≤ a(t)∥u0∥L2 + (A+B)

∫ t

0

a(t− τ)∥u(τ)∥H1 dτ for 0 < t ≤ 1.
(2.13)

By iteration,

∥u(t)∥H1 ≤ a(t)∥u0∥L2 + (A+B)

∫ t

0

a(t− τ)
[
a(τ)∥u0∥L2

+ (A+B)

∫ τ

0

a(τ − s)∥u(s)∥H1 ds
]
dτ

= a(t)∥u0∥L2 + (A+B)

∫ t

0

a(t− τ)a(τ)∥u0∥L2 dτ

+ (A+B)2
∫ t

0

∫ τ

0

a(t− τ)a(τ − s)∥u(s)∥H1 dsdτ. (2.14)
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The second term on the right side of (2.14) is

(A+B)

∫ t

0

a(t− τ)a(τ)∥u0∥L2 dτ

= (A+B)∥u0∥L2

∫ t

0

4(t− τ)−
1
4 4τ−

1
4 dτ

= 16(A+B)C8t
1
2 ∥u0∥L2 for 0 < t ≤ 1, (2.15)

where C8 =
∫ 1

0
(1 − r)−

1
4 r−

1
4 dr. By exchanging the order of integration, we get from the

third term on the right side of (2.14),∫ t

0

∫ τ

0

a(t− τ)a(τ − s)∥u(s)∥H1 dsdτ =

∫ t

0

[ ∫ t

s

a(t− τ)a(τ − s) dτ
]
∥u(s)∥H1 ds.

Now ∫ t

s

a(t− τ)a(τ − s) dτ = 16

∫ t

s

(t− τ)−
1
4 (τ − s)−

1
4 dτ

= 16C8(t− s)
1
2 ≤ 16C8 for 0 < s ≤ t ≤ 1. (2.16)

Therefore (2.13)–(2.16) imply

∥u∥H1 ≤ [a(t) + 16C8(A+B)]∥u0∥L2 +

∫ t

0

16C8(A+B)2∥u(s)∥H1 ds for 0 < t ≤ 1.

By Gronwall’s inequality, we get

∥u∥H1 ≤ [4t−
1
4 + 16C8(A+B)] exp[16C8(A+B)2t]∥u0∥L2 for 0 < t ≤ 1.

So with the constant

C5 = [4 + 16C8(A+B)]e16C8(A+B)2 , (2.17)

we have

∥u∥H1 ≤ C5t
− 1

4 ∥u0∥L2 for 0 < t ≤ 1. (2.18)

Thus (2.10) has been proven. To prove (2.11), replacing the first term on the right side of

(2.12) by ∥etL0∥H1→H1∥u0∥H1 and using (2.8), we have

∥u(t)∥H1 ≤ e
t
4 ∥u0∥H1 + (A+B)

∫ t

0

a(t− τ)∥u(τ)∥H1 dτ for 0 < t ≤ 1. (2.19)

Similarly iterating and computing as above, we obtain

∥u(t)∥H1 ≤ [2 + 16(A+B)]e16C8(A+B)2∥u0∥H1 ≡ C6∥u0∥H1 for 0 < t ≤ 1. (2.20)

Hence (2.11) is proven and the proof of Lemma 2.2 is finished.

We now proceed to verify Condition (iii) of Theorem 1.1. Formula (2.11) in Lemma 2.2

means that L generates a strongly continuous semigroup on the Banach space H1(R) (see

[22]). By Fourier transformation, the essential spectrum of L0 on H1(R) is

σe(L0) ⊃ {−ξ4 + ξ2 − ib+ξ|ξ ∈ R}. (2.21)

This curve meets the vertical lines Reλ = α for −∞ < α ≤ 1
4 because −∞ < −ξ4 + ξ2 ≤ 1

4 .

We now prove that the same curve belongs to the essential spectrum of L.

Lemma 2.3. The essential spectrum of L on H1(R) contains that of L0.
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Proof. Let ξ ∈ R and let λ = P (ξ) = −ξ4+ξ2− ib+ξ. Following Schechter[23], λ ∈ σe(L)

if there exists a sequence {ζn} ⊂ H1(R) with

∥ζn∥H1 = 1, ∥(L− λ)ζn∥H1 → 0,

and {ζn} does not have a strongly convergent subsequence in H1(R). (Here we use the

definition: λ /∈ σe(L) if and only if L− λ is Fredholm with index zero.) Now let ζ0 ̸≡ 0 be a

C∞ function with compact support in (0,∞). Define

ζn(x) = cne
−iξxζ0(x/n)/

√
n, n = 1, 2, · · · ,

where cn is chosen so that ∥ζn∥H1 = 1. In fact,

∥ζn∥L2 = cn∥ζ0∥L2 and 1 = ∥ζn∥H1 ≤ kcn

for some positive constant k. Hence cn ≥ 1
k > 0. Since ∥ζn∥L∞ → 0 but ∥ζn∥L2 is bounded

away from zero, {ζn} can have no convergent subsequence in L2(R).

It remains to show that ∥(L− λ)ζn∥H1 → 0. We write

L− λ = L0 − λ+ (φ− b+)∂x − φx.

Now elementary computations show

(L0 − λ)ζn(x) = eiξx
∑

1≤s≤4

P (s)(ξ)cnζ
(s)
0

(x
n

)
/(s!n

1
2+s),

∂(L0 − λ)ζn(x) = iξ(L0 − λ)ζn(x) + eiξx
∑

1≤s≤4

P (s)(ξ)cnζ
(s+1)
0

(x
n

)
/(s!n

3
2+s).

Thus

∥(L0 − λ)ζn(x)∥H1 ≤ (1 + |ξ|)
∑

1≤s≤4

|P (s)(ξ)|cn∥ζ(s)0

(x
n

)
∥L2/(s!n

1
2+s)

+
∑

1≤s≤4

|P (s)(ξ)|cn
∥∥∥ζ(s+1)

0

(x
n

)∥∥∥
L2
/(s!n

3
2+s) → 0 as n → ∞.

Moreover, for any positive integer m, ∥∂m
x ζn∥L∞ → 0 as n → ∞, so we have

∥(φ− b+)∂xζn∥2L2 ≤ ∥∂xζn∥2L∞∥χ[0,∞)(φ− b+)∥2L2 → 0,

and

∥∂x[(φ− b+)∂xζn]∥2L2 ≤ 2

∫
R

φ2
x[∂xζn(x)]

2 dx+ 2

∫
R

(φ− b+)
2[∂xxζn(x)]

2 dx

≤ 2∥∂xζn∥2L∞∥φx∥2L2 + 2∥∂xxζn∥2L∞∥χ[0,∞)(φ− b+)∥2L2 → 0.

In addition,

∥φxζn∥L2 ≤ ∥ζn∥L∞∥φx∥L2 → 0

and

∥φx∂xζn + φxx∂xζn∥L2 ≤ ∥∂xζn∥L∞∥φx∥L2 + ∥∂xζn∥L∞∥φxx∥L2 → 0.

Thus

∥(φ− b+)∂xζn + φxζn∥H1 → 0 as n → ∞.

So from the estimates above,

∥(L− λ)ζn∥H1 → 0 as n → ∞.
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The proof of Lemma 2.3 is completed.

Therefore all the four conditions of Theorem 1.1 are satisfied by the linearized equation

(2.5) and Theorem 2.1 has been proved.
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