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Abstract

The authors study the asymptotic behaviour of solutions of the heat equation and a number
of evolution equations using scaling techniques. It is proved that in the framework of bounded

data stabilization need not occur and the general asymptotic behaviour is complex. This
behaviour reflects for large times, even on compact sets, the complexity of the initial data at
infinity.
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§1. Introduction

In recent decades much attention has been paid to the study of the long time behaviour of
suitable classes of solutions of partial differential equations using the concepts of dynamical
systems. Such concepts, like orbit, omega-limit and attractor, were introduced in the first
half of the century for the investigation of systems of ordinary differential equations, which
are finite dimensional instances of dynamical systems, and were successfully extended to the
infinite dimensional framework. Here we want to combine these ideas with the property of
invariance under the scaling group to obtain results on the complex large time behaviour
of a number of evolution equations with a simple structure when they are posed in the set
of bounded measurable functions defined in the whole space, L∞(RN ). Invariance under
the scaling group allows the equation to copy in certain way the behaviour of the initial
data at infinity of the space variable into the behaviour of the solution u = u(·, t) for
large t. The results apply to the classical heat equation, which we take as a model, but
also to a large number of evolution equations like the porous medium equation, the p-
Laplacian equation, the wave equation, and scalar conservation laws. Scale invariance is
at the heart of our argument. However, it is really necessary only in a weak form called

Manuscript received May 11, 2001.
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quasi-invariance. This will allow our theory to be extended to homogenization problems,
equations involving reaction, convection and diffusion, and the equations of fluid mechanics.
The space L∞(RN ) plays an important role in providing for a setting where complexity
occurs in the asymptotic behaviour of the above-mentioned equations. Thus, the evolution
problems under consideration are usually well-posed in other functional spaces like Lp(RN ),
for some 1 < p <∞, and the asymptotic behaviour can be then rather simple, reflecting the
simple structure of the equation. Consider for instance the heat equation. When we consider
solutions defined in RN it is well known that every solution with initial data u0 ∈ L1(RN )
converges as t → ∞ towards a multiple of the fundamental solution, the one which has the
same integral,

u(x, t) → Ct−N/2 exp
(
− x2

4t

)
, C = (4π)−N/2

∫
u0(x) dx. (1.1)

When the space domain is a bounded set Ω ⊂ RN and we take homogeneous Dirichlet
conditions the typical space is L2(Ω), the convergence to a unique type of profile takes place
after multiplying by eλ1t, where λ1 is the so-called first eigenvalue. A similar result happens
for homogeneous Neumann conditions. In the setting of almost periodic functions solutions
posed in RN converge to the space average of the initial data. Similar simplicity occurs for
many of the equations mentioned above. We will prove below that, on the contrary, the
simple behaviour is lost when L∞(RN ) is taken as the functional setting.

The rest of this paper is organized as follows. In Section 2 we present the main results
and techniques developed in this paper in the simple example of the linear heat equation.
Section 3 contains the analysis of the behavior of the initial data under scaling. In Section
4 we present the extension to an abstract setting of the results of Section 2 on the heat
equation. In Section 5 we return to the heat equation to make some earlier results more
precise. Section 6 is devoted to nonlinear heat equations as the porous media equation
and the p-Laplacian one. In Section 7 we analyze the interesting case of scalar hyperbolic
conservation laws in one and several space dimensions. In Section 8 we extend the analysis
done in L∞ to other Lp spaces to cover other existing results. In Section 9 we point out
that the compactness requirements may be often avoided in the context of linear evolution
equations. Finally, in Section 10, we observe that most of the results of this paper can be
adapted to situations where the equation under consideration is not invariant under the
scaling transformation but is quasi-invariant in an appropriate sense that we define.

§2. The Heat Equation

In order to introduce the methods and results in a simple setting we consider in the first
place the linear constant-coefficient heat equation posed in RN with N ≥ 1,{

ut = ∆u in Q = RN × (0,∞),
u(x, 0) = u0(x) in RN . (2.1)

We want to analyze the asymptotic behaviour of solutions as t → ∞. It is easy to see that
for suitable initial data there exists a constant c ∈ R such that u(·, t) → c in L∞(RN ) as
t→ ∞. This happens at least in two cases.

(i) When u0 = c+ f with c ∈ R and f ∈ Lp(RN ) for some p ∈ [1,∞) , and
(ii) When u0 is periodic.
In the first case the solution converges to c with a polynomial rate, in the second one the

asymptotic c is the average of the initial datum on a periodicity cell and the convergence
rate is exponential. Obviously, the constant is not the only possible asymptotic regime. This
can be easily seen considering for instance

(iii) initial data in 1D with two different asymptotic values c± at ±∞.
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In this case it can be proved that the asymptotic behaviour is given by the special solution
of the heat equation with piece-wise constant initial data of Heaviside type, u0(x) = H(x)
with

H(x) = c+ for x > 0 (resp. H(x) = c− for x < 0) (2.2)

(cf. end of this section).
The first goal of this paper is to describe what are all the possible asymptotic regimes of

the solutions of the heat equation and other evolution equations for bounded initial data. It
is natural to address this problem by means of scaling techniques. Given a solution u(x, t)
of the heat equation and a constant λ > 0 we introduce the rescaled function

uλ(x, t) = u(λx, λ2t). (2.3)

The key point is that uλ solves the heat equation with initial data u0,λ(x) = u0(λx). Due to
the Maximum Principle we have for every (x, t) that |u(x, t)| ≤ ∥u0∥L∞(RN ), and the same
bound applies to uλ for all λ > 0, i.e., it is uniform in λ. By standard compactness results
for the solutions of the heat equation we conclude that along a subsequence λn → ∞ we
have

u0,λ ⇀ ϕ in L∞(RN ) weak-star,
uλ ⇀ v in L∞

loc(Q).

Moreover, the limit function v solves the heat equation with initial data ϕ. In particular,
for t = 1 we have

uλ(x, 1) → v(x, 1) in L∞(K)

uniformly on any compact subset K ⊂ RN . This can be re-written as follows:

u(λx, λ2) → v(x, 1) in L∞(K). (2.4)

By setting λ2 = t we deduce the convergence of the rescaled orbit

u(
√
t x, t) → v(x, 1) in L∞(K) (2.5)

as t→ ∞ along a suitable subsequence.
Let us now denote by St the semigroup generated by the heat equation, defined by

(Stu0)(x) = u(x, t). Then v(x, 1) = S1 ϕ. Summing up, we obtain the following result.

Theorem 2.1. The set of accumulation points in L∞
loc(RN ) of u(

√
tx, t) as t → ∞

coincides with the set {S1(ϕ)}, where ϕ ranges over the set of accumulation points as λ→ ∞
of the family {u0,λ : λ > 0} in the weak-star topology of L∞(RN ).

Proof. The direct part has already been settled. For the converse, suppose that u is a
bounded solution u(x, t) defined for x ∈ RN and t > 0, and assume that we have a sequence
tn → ∞ such that

u(
√
tnx, tn) → v(x) in L∞

loc(RN ).

We can write this as

uλn(x, 1) → v(x) in L∞
loc(RN )

with tn = λ2n. On the other hand, by standard theory, a bounded solution u has a bounded
initial trace u0 at t = 0. But the family of rescalings of the initial data u0,λn(x) = u0(λnx)
is bounded in L∞(RN ), hence relatively compact in the weak-star topology. This means
that, along a finer subsequence, u0,λn(x)⇀ ϕ(x) for some ϕ ∈ L∞(RN ). By the direct proof
we know that v = S1(ϕ).

Remark 2.1. The time t = 1 in S1 is taken for convenience and can be replaced by Sτ
for any τ > 0 after changing the function u(

√
t x, t) into u((t/τ)1/2 x, t). In any case, it must

be pointed out that the map S1 has a regularizing effect on the set of accumulation points
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of u0,λ: all functions of the form S1(ϕ) are C∞ smooth and enjoy certain a priori bounds
(cf. Section 5).

Therefore, the key point in our project is understanding the set of accumulation points
(i.e., accumulation functions) of the family u0,λ. The following section will be devoted to
analyzing this question. We will show that in the setting of bounded data the situation can
be quite complex. We advance a remarkable result, which will be proved in that section.

Theorem 2.2. Given any bounded sequence {gj : j = 1, 2, · · · } in L∞(RN ) there exists
a bounded function u0 ∈ L∞(RN ) such that the set of accumulation points of the family
{u0,λ}λ as λ→ ∞ in the weak-star topology of L∞(RN ) contains the whole sequence {gj}.

As we will see, the set of accumulation points that contains an infinite sequence will be
larger than just this set of points, indeed it can contain a continuum. As an immediate
consequence of the two previous results we have

Corollary 2.1. For every bounded sequence {ϕj : j = 1, 2, · · · } in L∞(RN ) there exists
a bounded function u0 ∈ L∞(RN ) such that, if u(x, t) is the corresponding solution of the
heat equation, the set of accumulation points of u(

√
t x, t) as t → ∞ in L∞

loc(RN ) contains
the family {S1(ϕj)}.

To conclude this section we note that the particular results on the asymptotic behaviour
mentioned at the beginning of the section can be easily understood in this framework. In the
case (i) when u0 = c+f with f ∈ L1(RN )∩L∞(RN ) the unique limit of u0,λ is the constant
c, and the corresponding solution of the rescaled problem in the limit is v = c. On the other
hand, when u0 is periodic, the unique accumulation point of u0,λ is the average of the initial
data on the periodicity cell and the corresponding solution v is this constant. Finally, in
example (iii) the asymptotic limit has the form v(x, t) = V (x t−1/2) where V = S1H, H
being the Heaviside function (2.2).

§3. The Scaling of Bounded Data

Let us now return to general theory. We are interested in describing the possible behaviour
of bounded functions at infinity using as a tool the action of the scaling group G = {Gλ}λ>0.
G acts on the space X = L∞(RN ) by the formula

Gλ(f)(x) = f(λx). (3.1)

Definition 3.1. We define the scaling omega-limit set of any function f , or G-omega-
limit set, as the set G∞(f) of all accumulation points of the family Gλ(f) as λ→ ∞ in the
weak-star topology of L∞(RN ), σ(L∞, L1). In the usual notation of dynamical systems we
write

G∞(f) =
∩
r>1

γ+r (f), (3.2)

where γ+r (f) is the forward G-orbit of f starting at λ = r, γ+r (f) = {Gλ(f) : λ ≥ r} and the
closure is taken in the weak-star topology.

Since the space L1(RN ) is separable, the above topology restricted to a ball Bc = {f ∈
L∞(RN ) : |g| ≤ c} is metrizable and we can characterize the G∞-limit sequentially. Thus,
G∞(f) is the set of functions g ∈ L∞(RN ) such that there exists a sequence λn → ∞ and
Gλn

f → g weakly-star. We also have
Lemma 3.1. The group acts continuously on X endowed with the weak star convergence.

It follows easily that the G-omega-limit of a function f ∈ X is never empty. It is also closed
and connected in the weak-star topology. It is also invariant under the action of the group.

Proof. The first assertion means that the map G : X × R+ → X is continuous when X
is endowed with the weak-star topology. Since weak-star topologies are not so frequent in
the literature on asymptotic phenomena, we are giving a proof for the reader’s convenience.
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Firstly, if we restrict G to be defined on a bounded subset of X (as is the case in the
application of the present paper) the topology is metrizable and we only need to check that
for a bounded sequence fn converging weakly-star to f , a sequence of numbers λn converging
to λ > 0, and a test function ϕ ∈ L1(RN ) we have

∫
Gλn(fn)ϕdx→

∫
Gλ(f)ϕdx. We write

the difference as∫
Gλn(fn)ϕdx−

∫
Gλ(f)ϕdx =

∫
fn (G1/λn

ϕ− ϕ) dx+

∫
(fn − f)ϕdx. (3.3)

The first term tends to zero because ϕ is integrable and the fn are uniformly bounded, while
the second converges because fn ⇀ f .

When G is defined on the whole space X, we have to replace the sequence fn by a net
fα converging to f weakly-star. But then the Banach-Steinhaus theorem implies that the
family fα is uniformly bounded and we are back in the previous situation. In particular,
the decomposition (3.3) with fα instead of fn allows to prove just in the same way that∫
Gλn(fα)ϕdx→

∫
Gλ(f)ϕdx as fα ⇀ f and λn → λ.

The consequences are standard in the dynamical systems literature (cf. [21, 22]). The
last assertion means that for every λ > 0 we have Gλ(G∞(f)) = G∞(f).

Remark 3.1. Though we will use by default the topology of weak-star convergence in
L∞(RN ), we will use the term bounded subset of L∞(RN ) in the usual uniform sense unless
mention to the contrary.

3.1. Simple G-Omega-Limits
We say that the omega-limit is simple if it contains only one function. Particular examples

of simple omega-limits have been mentioned in the previous section. For case (i) it is
clear that all functions f ∈ Lp(RN ) ∩ L∞(RN ), 1 ≤ p < ∞, have a simple omega-limit,
G∞(f) = {0}. In case (ii) all periodic functions have a constant as simple omega-limit.
This is also true for the more general class of almost periodic functions A characterized
as the closure in L∞(RN ) (with uniform converge) of set of trigonometric polynomial with
arbitrary frequencies,

P (x) =
n∑
1

ake
i ωk· x (3.4)

with ωk ∈ RN (cf. [4]). For a function f ∈ A the G∞-set is given by the limit of the averages

G∞(f) = lim
R→∞

∮
BR

f dx. (3.5)

On the other hand, a non-constant omega-limit is given by the piecewise-constant initial
data in one dimension.

A consequence of the invariance of the omega-limit is the following characterization of
simple omega-limits.

Lemma 3.1. If an omega-limit is simple, G∞(f) = {g}, then g has the form g(x) =
g(x/|x|).

It is immediate that this g is its own ω-limit, g = G∞(g),though any bounded function f
which coincides with g for large x could be used to obtain G∞(f) = g.

Simple omega-limits for the initial data of an evolution process of the type considered
in this paper give rise to evolutions which stabilize to a unique asymptotic profile. We are
interested in addressing quite the opposite situation.

3.2. General G-Omega-Limits
At the next level of complexity we construct an example that we call log-periodic. It is

based on any function f ∈ L∞(RN ) such that for some real number a > 1,

f(ax) = f(x), x ∈ RN .
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In that case the G-omega-limit is given by the log-periodic orbit

G∞(f) = {Gλ(f) : 1 ≤ λ ≤ a},
that contains f and its scalings, and it is topologically equivalent to a circle, S1. An easy
way of constructing such functions is to consider spherical coordinates x = (r, ϕ), take a
bounded function f1(ϕ) defined on the sphere SN−1 and put f(r, ϕ) = f1(R(r)(ϕ)), where
R(r) is a family of transformations of the sphere such that R(1) = id and R(a r) = R(r) for
every r > 0, i.e., R is log-periodic.

As we announced in Theorem 2.2, we can construct very large omega-limits. We recast
the result in the present notation

Lemma 3.2. Given any sequence {gj} of functions which is bounded in L∞(RN ) we can
construct a function f ∈ L∞(RN ) such that G∞(f) contains the closure of that sequence in
the weak-star topology, G∞(f) ⊃ clo{g1, g2, · · · }.

Proof. We use a zooming method. Given the function gi, i ≥ 1, we restrict it to the
annulus Aj = {2−j < |x| < 2j}, j ≥ 1 integer, and transfer this image to a far away distance
by means of a scaling with factor 1/λij ,

gij(x) = gi(x/λij), (3.6)

which is defined in the annulus Aij = {2−jλij < |x| < 2jλij} . Next, we select the factors
λij in such a way that all these sets are disjoint. This can be obtained as follows: we first
arrange the indexes (i, j) in a sequence by standard diagonal process, and then choose the
sequence λij iteratively so that each annulus lies immediately outside of the preceding one.
We can also leave gaps between successive annuli if we wish, only this makes the λij even
larger. We then define the desired f on each annulus Aij by

f(x) = gi(x/λij), x ∈ Aij . (3.7)

This formula gives then a unique value for f on
∪
ij

Aij since the annuli Aij are disjoint. If

there exist gaps between successive annuli, we define f on the gaps as zero or in any other
bounded way.

It is then clear that applying the group action Gλ to f with the sequence of factors λij , for
fixed i and variable j = 1, 2, · · · , we obtain in the limit exactly the function gi on the annulus
Aj . Since the sequence Aj expands as j → ∞, we get along this sequence Gλ(f) → gi with
uniform convergence on compact subsets of RN \ {0}. This in particular implies weak-star
convergence in RN .

3.3. Maximal Omega-Limits
As a corollary of this result and the fact that the unit ball in L∞(RN ) is separable in the

weak-star topology we have the following consequence.
Corollary 3.1. Given C > 0 there exists a function f ∈ L∞(RN ) with ∥f∥∞ = C such

that G∞(f) = {f ∈ L∞(RN ) : ∥f∥∞ ≤ C}.
Let us look a bit closer at this kind of functions. We define the set

M = {f ∈ L∞(RN ) : ∥f∥ = 1, G∞(f) = B1(L
∞(RN ))},

where B1(L
∞(RN )) is the unit ball in L∞(RN ). Then we have

Theorem 3.1. The set M is dense with empty interior in B1(L
∞(RN )) with the weak-

star topology.
Proof. A basis of open neighbourhoods of a function f ∈ L∞(RN ) has the form

B(ϕ1, · · · , ϕn, ϵ) =
{
g ∈ L∞(RN ) :

∣∣∣ ∫ (f − g)ϕi dx| ≤ ϵ, ∀i
}
,

where ϕi ∈ L1(RN ), i = 1, · · · , N , and ϵ > 0. This condition does not depend on the
behaviour of g at far away distances as long as we have a bound like |g| ≤ C. But the
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behaviour for large x is precisely what determines G∞(f).

§4. General Evolution Setting. Main Asymptotic Formula

If we consider again the argument used in Section 2 for the classical heat equation, we
can see that there are two types of properties of the equation on which the proof is based,
namely (I) the heat equation defines a semigroup with some good properties, and (II) this
semigroup is invariant under the action of the scaling group G.

In order to set up a framework that applies to a number of linear or nonlinear evolution
models we introduce the following abstract setting. Instead of concentrating on the evolution
equation

ut = Au , (4.1)

we look rather to the fact that it generates a semigroup. We assume that
(I.i) The equation generates a point-wise continuous semigroup in X = L∞(RN ), i.e.,

given any initial data u0 ∈ X there exists a unique solution u ∈ Y = C([0,∞) : X) that we
write as St(u0) to denote the dependence on the initial data. Then

S : X × [0,∞) → X, S(u0, t) = St(u0)

is the semigroup map. When we want to stress the dependence on x we write (Stu0)(x) =
u(x, t), and sometimes we write u(t) when no confusion arises. X is endowed with the
weak-star topology σ(L∞, L1). We impose still an additional condition

(I.ii) For every t > 0 the map St is continuous in the weak-star topology of X = L∞(RN ).
Conditions (I.i) and (I.ii) imply that the map S is separately continuous in both variables.
(II) We impose another type of condition on the semigroup, namely scale invariance. By

this we mean that there is a power function σ(λ) = λα, α > 0, such that whenever u(x, t) is
a solution in Y with initial data u0 then

ũ = u(λx, σ(λ)t) (4.2)

is also a solution in Y , with data ũ0 = Gλu0. In the case of the heat equation σ(λ) = λ2. This
property is expressed in functional terms as St(Gλ(u0)) = Gλ(Sσ(λ)t(u0)), or in abridged
form as the commutation rule:

StGλ = GλSσ(λ)t. (4.3)

The next stage is to note that we are interested in the convergence on expanding sets of
the form {|x| ≤ c ψ(t)}. This makes it convenient to define the rescaled orbit corresponding
to a standard orbit u(·, t) = Stu0 as

U(y, t) = u(ψ(t)y, t), (4.4)

where ψ = σ−1 is the inverse function of σ, ψ(t) = t1/α. We denote the “renormalized
semigroup” as

(Rt u0)(y) = U(y, t), (4.5)

which implies the identity: Rt = Gψ(t)St. Notice that R1 = S1. The invariance under Gλ

takes a much simpler form in rescaled form. If Ũ is the rescaled orbit corresponding to

initial data ũ0(x) = u0(λx) then, since Ũ(y, t) = ũ(ψ(t)y, t) = u(λψ(t)y, σ(λ)t), we have

Ũ(y, t) = U(y, σ(λ)t), i.e., RtGλ u0 = Rσ(λ)t u0. (4.6)

We define the omega-limit of the R-evolution orbit in a similar way to what we did for
the scaling group G, but now we use Rt instead of Gλ.

Definition 4.1. The R-omega-limit set of the evolution orbit {Rt(u0) = U(·, t)t > 0}
starting at u0 ∈ X is the set

R∞(u0) = {g ∈ X : ∃tn → ∞ and U(·, tn) → g}, (4.7)
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with convergence in the topology of X.
The basic properties are easily established: the R-omega-limit set is a nonvoid, closed,

connected subset of X. Our result relates the omega-limits of the scaling group Gλ and the
scaled evolution Rt.

Theorem 4.1 (Main Asymptotic Formula). If St is a semigroup fulfilling properties
(I) and (II) above, then for every u0 ∈ X we have

R∞(u0) = S1(G∞(u0)). (4.8)

Proof. It repeats the lines of Theorem 2.1. Let g ∈ G∞(u0) and let λn → ∞ be such
that Gλn(u0) → g weak-star. We note that Rσ(λ)u0 = R1(Gλu0) = S1(Gλu0). Using the
property (I.ii) we conclude that along the sequence tn = σ(λn),

lim
n→∞

Rtnu0 = lim
n→∞

S1(Gλnu0) = S1(g).

Thus, R∞(u0) ⊂ S1(G∞(u0)). The converse is similar.
We conclude that the orbit Rt(u0) stabilizes to a limit only if G∞(u0) is simple. Using

the fact that G∞(u0) is closed under the action of G and that the renormalized semigroup
Rt commutes with G in the sense of (4.6) we have

Corollary 4.1. Given u0 ∈ X and given g ∈ G∞(u0) then Rt(g) ∈ R∞(u0) for every t >
0.

Thus, the whole renormalized orbit of g is contained in the omega-limit of u0, proving in
this way that the asymptotic behaviour of u(x, t) can oscillate strongly even at a fixed point,
say, x = 0. Summing up, the results show that the evolution equation does not stabilize to
a certain asymptotic profile for general initial data in X, but it rather copies the complexity
of the G-omega-limit which, as we have seen, can be quite wild.

4.1. Regularizing Semigroups
In many cases we have the extra condition on the semigroup:
(I.iii) The semigroup is regularizing. By this we mean that St maps bounded sets of X

into relatively compact subsets in a better space X1 ⊂ X for t > 0. In the case of the heat
equation X1 is the set BC(RN ) of continuous and bounded functions with the topology of
uniform convergence on compact sets. Then the convergence in the definition of R∞(u0) is
uniform over compact subsets of RN .

4.2. Local and Global Convergence
We insist that the local convergences that we have established for the orbit of the semi-

group are uniform on compact sets of the variables y =
√
t x. In particular, when the

semigroup is regularizing we may consider the space variable x ranging over a fixed bounded
set A ⊂ RN , and then we obtain the following uniform convergence result.

Theorem 4.2. Let St be a regularizing semigroup under the above hypotheses and let
u(x, t) be an orbit with initial data u0 ∈ L∞(RN ). Then for every g ∈ G∞(u0) there exists
a sequence tn → ∞ such that

u(x, tj) → v(0, 1) as t→ ∞ (4.9)

uniformly on compact sets A ⊂ RN , where v is the solution of the heat equation with initial
data g.

In particular, there exist bounded initial data for which the set of accumulation points
of {u(0, t)} as t→ ∞ is the closed interval [a, b] ⊂ R. It suffices to take as set gj in Lemma
3.2 the set of constant functions gj(x) = rj , where rj ranges over a dense set in [a, b]. The
same applies to the omega-limit of {u(x, t)} for fixed x ∈ RN .

On the other hand, the orbits with complex asymptotics cannot have uniform convergence
since the behaviour that will appear at later stages of the evolution must be present at any
smaller t, typically as |x| → ∞.
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4.3. Log-Periodic Solutions
Corresponding to log-periodic data, u0(ax) = u0(x) for some a > 0, we have a solution

u(x, t) such that u(ax, σ(a) t) = u(x, t). In terms of the rescaled orbits U(x, t) = u(
√
tx, t)

we have U(x, σ(a) t) = U(x, t). This means that the rescaled orbit is log-periodic in time with
log-period T = σ(a). Recall that this is the same as saying that it is periodic in logarithmic
time τ = log(t). In this case we can control the speed of recurrence of the orbit around the
different points of the omega-limit, which is not true for more complex situations.

§5. The Heat Equation Revisited

Since the heat equation generates a regularizing semigroup, the results of the last sections
apply to say that the set of accumulation points of the renormalized orbit U(x, t) = u(

√
tx, t),

which we will denote by R∞(u0), is the image by S1 of the set of accumulation points
G∞(u0). The convergence to the omega-limit R∞(u0) takes place locally uniformly in x
along subsequences tn → ∞.

Range Constraints. We note that R∞(u0) can be a very large set. The maximum
extension of such a set is the image of a ball in L∞(RN ). We have to add that, since the
evolution copies the set G∞(u0) in a regularized way given by the map S1, this reduces the
range of R∞(u0) since S1 has strong regularizing properties. In other words, there are some
constraints for a function to belong to R∞(u0) for some u0. In the first place, the solutions
of the heat equation are C∞ functions. On the other hand, there are quantitative aspects:
thus, for every u0 ≥ 0 there is an a priori second-order estimate ∆ log(u) ≥ −N

2t (cf. [1]).
This implies a universal constraint on the range of any omega-limit set R∞(u0).

Corollary 5.1. For every g ∈ R∞(u0) with u0 ≥ 0 we have

∆log(g) ≥ −N
2
. (5.1)

There is a version of this result for any bounded set in L∞(RN ), not just for positive
solutions, since a lower bound of the form u ≥ −c can be converted into v ≥ 0 by defining
v = u + c which is again a solution of the heat equation. In this way, we obtain a lower
bound for ∆ log(g + c) instead of ∆ log(g).

Let us remark that the extent of this regularization depends on the amount of renormal-
ization. Thus, a renormalization with larger compression, using a function of the form

u(cyt1/2, t), c > 1,

instead of Definition 4.1, produces a renormalized semigroup whose omega-limit satisfies

R′
∞(u0) = S1/c2(G∞(u0))

which is just a rescaled version of the previous one, but this time the evolution is shorter for
c > 1 and the regularization smaller. Thus, the a priori bound from below on the Laplacian
of log(u) is now −c2N/2. In the limit c → ∞ we recover increasingly the whole range of
G∞.

§6. Nonlinear Heat Equations

The above general setting applies perfectly not only to the heat equation, but also to
the most popular models of quasilinear heat equations, namely the porous medium equation
and the p-Laplacian equation.

6.1. The Porous Medium and Related Equations
We will restrict here consideration to the subset of nonnegative solutions, hence X =

L∞
+ (RN ), which is the case treated in detail in the literature because of its applications, and
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avoids technical difficulties. It is well-known (cf. [2]) that the equation

ut = ∆(um), m > 0, (6.1)

defines a semigroup of contractions in L1(RN ) and can be extended to a much wider class of
initial data, in particular to L∞

+ (RN ). The equation is called the porous medium equation
for m > 1, the fast diffusion equation for 0 < m < 1 and it reduces to the classical heat
equation for m = 1.

Let us examine the properties of the evolution process. In all cases m > 0, for every
u0 ∈ L∞(RN ), u0 ≥ 0 there exists a unique continuous weak solution u(x, t), i.e., u ∈
BC(Q) ∩ C([0,∞) : L1

loc(RN )) and∫ ∫
{uηt + um∆η} dxdt+

∫
u0(x)η(x, 0) dx = 0 (6.2)

holds for every test function η ∈ C2,1(Q), η ≥ 0, which is compactly supported in RN ×
[0,∞). Hence, the equation generates a semigroup in this class of solutions and the property
(I.i) holds. Also, the Maximum Principle holds. The closure property (I.ii) holds easily: the
limits of bounded weak solutions are still bounded weak solutions and weak-star converging
initial data pass to the limit in formula (6.2). This uses the fact that the map St is regu-
larizing, property (I.iii), since the images of bounded sets are relatively compact subsets of
Cα for some α > 0 in compact sets of RN (cf. [10]). Finally, scale invariance holds with
σ(λ) = λ2. We then have

Theorem 6.1. The results of Theorems 4.1 and 4.2 apply to this problem and the con-
vergence in the definition of R∞, formula (4.7), takes place uniformly on compact sets.

The possible range of the omega-limit set R∞(u0) is now controlled by the constraints

∆(um−1) ≥ −C
t
, ut ≥ −Cu

t
,

which hold for m > 1, while for (N − 2)/N < m < 1 we have even stronger constraints

|∆(um−1)| ≤ C

t
, |ut| ≤

Cu

t
.

These a priori bounds have universal constants C = C(m,N) > 0 independent of the
solution under consideration (under the only restriction that u ≥ 0) (cf. [1,6]). For instance,
when 0 < m < 1 we have ∆(um−1) ≥ m

t . Let us finally remark that some of the results
can be extended to the very fast diffusion range m < 0, where the equation is written as
ut = ∇ · (um−1∇u) (cf. for instance [33] and references therein). More generally, we can
consider the general filtration equation ut = ∆Φ(u), where Φ is a continuous increasing real
function, or even a maximal monotone graph in R2 (cf. [2]). In order not to lengthen the
presentation we restrain from entering into the specific details of these extensions. Let us
only assert that the general theory of Section 4 applies under suitable conditions on Φ.

6.2. The p-Laplacian Equation
The equation reads

ut = Div(|∇u|p−2∇u), p > 1. (6.3)

The properties of the evolution are similar[11], and a regularizing semigroup is obtained.
Scale-invariance holds with σ(λ) = λp. The regularizing effect holds: St takes bounded
initial data into solutions which are C1+α in x, Cβ in time for t ≥ τ > 0. Regularizing
estimates have been proved in [16] and take the form for p > 2, ∆pv ≥ −C

t , ut ≥ −Cu
t ,

where v = u(p−2)/(p−1) and C > 0 is a universal constant that depends only on p and N .
The estimate is valid for all nonnegative solutions u = u(x, t). But the restriction to positive
data is here irrelevant since the equation is invariant under vertical displacements u→ u+c.
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§7. Scalar Conservation Laws. The Compact Case

We consider in this section the asymptotics of scalar conservation laws in one and more
space variables.

We start with the one-dimensional theory which relies on better known results and re-
quires less assumptions on the non-linearity.

7.1. One Space Dimension
We study the first-order equation

ut + f(u)x = 0, (7.1)

where u(x, t) is a scalar function and f is a locally Lipschitz continuous scalar function. We
may assume that f(0) = 0. The proper concept of solution is given by the entropy solutions
that can be formulated as those bounded distributional solutions that satisfy a family of
entropy inequalities. We take from [19, 20] the precise definition of solution.

Definition 7.1. An entropy solution of equation (7.1) is a function u ∈ L∞
loc(Q) satisfying

∂

∂t
|u− k|+ ∂

∂x
{sign (u− k) (f(u)− f(k))} ≤ 0 (7.2)

in D′(Q) for any k ∈ R. An entropy solution of the Cauchy problem with initial data
u(x, 0) = u0(x) ∈ L∞(R) is an entropy solution such that

u(·, t) → u0 in L1
loc(R) as t→ 0 essentially.

The Kruzhkov condition (7.2) can be equivalently formulated as two conditions: (i) the
equation is satisfied in the sense of distributions, (ii) for every entropy pair (ϕ, ψ) where ϕ
is a convex function and ψ′(u) = f ′(u)ϕ′(u) we have

∂

∂t
ϕ(u) +

∂

∂x
ψ(u) ≤ 0

in the sense of distributions (cf. [28]).
Kruzhkov proves that the bounded entropy solution of the initial problem exists and is

unique, and we have the local estimate for any two such solutions∫
Bt

|u(x, t)− v(x, t)| dx ≤
∫
B0

|u0(x)− v0(x)| dx, (7.3)

where B0 = B(0, R) is the ball of center 0 and radius R > 0 and Bt = B(0, R(t)) is the ball
of radius R(t) = R − Nt, where N is the Lipschitz constant of f in the interval [−M,M ]
with M = max{∥u0∥∞, ∥v0∥∞}. The Maximum Principle applies:

u0 ≤ v0 implies u(x, t) ≤ v(x, t) in Q.

Moreover, it is proved that the solution belongs to the class u ∈ C([0,∞) : L1
loc(R))∩L∞(Q).

We have therefore a semigroup of solutions in L∞(R) (cf. [9]).
On the other hand, there is a large literature on the asymptotic behavior of solutions of

scalar conservation laws. For instance, in the context of periodic solutions, it is by now well
known even for 1D systems of hyperbolic conservation laws, that solutions stabilize around
a constant (cf. [7]). In what concerns L1-solutions, the asymptotic profiles of solutions are
also well known (see for instance [24]). A lot is also known about the stability of shock
waves (see for instance [17]).

However, here, we are interested in the possible behavior of all solutions with bounded
initial data.

One of the main difficulties of applying the scaling techniques as above is the obtainment of
compactness. Here we shall use Tartar’s results that hold under a suitable non-degeneracy
condition on the nonlinearity. The problem of identifying the initial data of the limiting
solutions will require also special care.
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Theorem 7.1. Assume that f is not affine on any interval of the real line. Then the
equation (7.1) generates a regularizing semigroup St in L∞(R) satisfying the conditions of
Section 4, so that Theorems 4.1 and 4.2 apply. The scaling law is now linear, σ(λ) = λ.

Proof. Properties (I.i) and (II) are already established. Under the stated conditions on
f , also called weakly genuine nonlinearity, Tartar[29,30] proves that bounded sequences of
entropy solutions are relatively compact in the strong topology of Lploc(Q) for any p < ∞.
Using the local estimate we conclude compactness in the space C([τ, T ] : L1

loc(R)) for every
0 < τ < T <∞. It is immediate to see that the limit v(x, t) of such a sequence is an entropy
solution in any time interval t ≥ τ with τ > 0.

We still have to examine property (I.ii), i.e., the weak-star continuity of the semigroup
map, in the present setting. This is a delicate but essential point. Indeed, the family of
rescaled solutions uλ(x, t) of Theorem 4.1 are such that their initial data converge weak-star
in L∞(R) along subsequences, u0,λn → ϕ in L∞(R)-ws, and we want to conclude that
uλn(x, 1) converges to v(x, 1) = S1(ϕ). We state the general result independently

Lemma 7.1. Let {un} be a sequence of bounded entropy solutions of equation (7.1) with
initial data {u0,n} which converge to a certain ϕ in L∞(R) weak-star. Then un → v = Stϕ
in the sense of C([τ, T ] : Lploc(R)) for every 0 < τ < T <∞ and every 1 ≤ p <∞.

Proof. (i) By the results of [29] the sequence un converges in Lploc(Q) and also a.e. after
passing if necessary to a subsequence. The limit v is an entropy solution of the equation.
The remaining problem consists of identifying the solution in terms of the limit ϕ of the
initial data. The classical uniqueness result by Kruzhkov is not enough for our purposes
since we do not have strong convergence of v(t) in L1

loc(R) as t → 0. In other words, we
have to discard the possible occurrence of an initial layer of discontinuity. This difficulty
has been recently solved by Chen and Rascle[8] who proved uniqueness of entropy solutions
of equation (7.1) assuming that the initial data are taken in the sense of measures.

(ii) Here we give an alternative proof which easily follows from the uniqueness result of
Liu and Pierre[26].

Propostion 7.1. Under the assumption that f : R+ → R+ is Lipschitz continuous and
f(0) = 0 a nonnegative entropy of equation (7.1) such that u ∈ L∞((0, T ) : L1(R))∩L∞(R×
(τ, T )), for all τ > 0, is uniquely determined by its initial data u0 taken in the narrow sense,
i.e.,

lim
t→0

∫
u(x, t)η(x) dx =

∫
u0(x)η(x) dx

for every continuous and bounded real function η.
Indeed, [26] allows the initial data to be finite measures, but this is no concern for us here.

Let us note that such a generality forces them to work with nonnegative f and nonnegative
solutions, two restrictions that we can dispense with, since we can always displace u into
u+c and conserve the equation after a corresponding change in f to satisfy both restrictions.

Let us check the initial data of our limit solution v in the case when it has compact
support: passing to the limit in the distributional identity∫

(un(x, t)− u0,n(x))η(x) dx =

∫ t

0

∫
f(un(x, t))η(x)x dxdt

valid for every η ∈ C1
0 (R) we get∫
(v(x, t)− ϕ(x))η(x) dx =

∫ t

0

∫
f(v(x, t))η(x)x dxdt.

By density and using the fact that the support of v is uniformly bounded we prove that∫
u(x, t)η(x) dx→

∫
u0(x)η(x) dx
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for every η ∈ C(R). Under these conditions the result of Liu and Pierre[26] and the remark
allow us to identify v as the unique entropy solution with initial data ϕ, v(t) = Stϕ.

(iii) Unfortunately, the condition of belonging to L1(R) is not fulfilled in our case. But
the above uniqueness result can still be used, arguing as follows. Let us take a radius R > 0,
a time T > 0 and work in the cylinder Z = B(0, R) × (0, T ). By the local estimates (7.3)
the values of the functions un on Z are only determined by the initial data in B(0, R1) with
R1 = R + NT . Therefore, we may replace the data u0,n by functions u′0,n which coincide
with u0,n on B(0, R1) and are zero for |x| > R1. The solutions u′n(x, t) will vanish outside
an expanding cone K = {(x, t) : |x| > R1+Nt} according again to estimate (7.3). Summing
up, we may assume that our functions un belong to the space C([0,∞) : L1(R)) without
altering their value on Z.

Remark About Riemann Problems. A typical problem in scalar conservation laws
is the Riemann Problem, which consists of taking initial data of the step or Heaviside
type, (2.2), in which case the solution has the form of a shock or a rarefaction wave, or
combinations of these two types. We observe that for data u0 whose G∞ limit is a Heaviside
function, G∞(u0) = {H}, we obtain convergence of the rescaled solution to the profile at
time t = 1 of the solution of the Riemann problem with data H(x). This is well-known, but
we can also consider initial data whose G∞ limit contains any number of Heaviside functions,
so that the rescaled orbit oscillates infinitely many times among the corresponding profiles.

7.2. Several Space Dimensions
We look now at the scalar conservation law in several dimensions,

∂u

∂t
+

N∑
i=1

∂

∂xi
fi(u) = 0, (7.4)

where u(x, t) is a scalar function and f = (f1, · · · , fN ) is a locally Lipschitz continuous
vector function. We may assume that f(0) = 0. The proper concept of solution is given
again by the entropy solutions with a formula similar to (7.2) (cf. [19, 20]). The above
theory applies almost literally with the following changes:

(i) The compactness property has been established by Lions, Perthame and Tadmor[25]

under the following non-degeneracy condition on the non-linearity: for every (τ, ζ) ∈ R×RN
which is not (0, 0) there holds

meas {ξ : τ + ζ · f ′(ξ) = 0} = 0, (7.5)

where meas refers to the Lebesgue measure in R. Their method relies on the kinetic formu-
lation of the equation, a powerful tool for the several dimensional problem introduced by
the authors.

(ii) The uniqueness of entropy solutions taking bounded data in the weak sense has been
recently proved by A. Vasseur[32] using also the kinetic formulation of the equation. The
result needs the following regularity on the nonlinearity: f ∈ (C3(R))N . We conjecture that
this requirement is technical.

Theorem 7.2. With these two requirements on f , Theorem 7.1 holds with R replaced by
RN and equation (7.1) by (7.4).

§8. Lack of Compactness

The property of continuity in the weak topology needed for the semigroup is difficult
to establish in the case of nonlinear equations unless we also have compactness, i.e., a
regularizing semigroup. This last property holds for the PME and the PLE and we imposed
conditions of non-degeneracy to have it in the scalar conservation law. However, the Main
Asymptotic Formula holds for many equations without compactness. We list below two
instances.
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I. Linear Equations. One of the simplest examples is the case of linear operators, like
the scalar conservation law ut + a ux = 0, even in N dimensions,

ut +
N∑
i=1

aiuxi = 0.

By means of the explicit representation of solutions it is easy to see that no regularization
happens but the semigroup has the desired properties, hence R∞ = S1G∞.

The argument applies of course in the heat equation, but also for the wave equation,
where the representation is also explicit and no regularization holds.

II. Scalar Conservation Laws. But the result also holds for some nonlinear evolution
equations without compactness. Thus, we can study the scalar conservation law (7.1) of
previous section with the assumption of local Lipschitz continuity on f but no condition of
non-degeneracy. In this case a result of Tartar[30, p.202] states that

Weak Continuity. Whenever un is a sequence of entropy solutions of equation (7.1)
which are uniformly bounded (|un(x, t)| ≤ C for every n, x, t) and un ⇀ u in L∞-w∗, then
f(un)⇀ f(u) in the same sense. On the other hand, f ′(un) converges to f

′(u) locally in Lp

strong.
Using this result we can perform the asymptotic study of the scalar conservation law in

one dimension for any locally Lipschitz continuous real function f . The scaling law is linear,
σ(λ) = λ. But, as far as we know, the weak-continuity result is not known in several space
dimensions, and the asymptotic analysis cannot proceed for equation (7.4) with general
Lipschitz fi. The question seems difficult and needs further study.

§9. Extending the Scope of the Theory

The general setting outlined above for the application to the heat equations and scalar
conservation laws in L∞(RN ) admits three kinds of extensions where the Main Asymptotic
Formula R∞(u0) = S1(G∞(u0)) still holds when suitably interpreted:

(i) it can be applied to a number of other equations,
(ii) it can be modified to include cases where scale invariance is not strictly respected,
(iii) it can be extended so as to include asymptotic results in other functional settings

under the cover of the same formula.
The L1 Setting. Leaving aside for the moment points (i) and (ii), we will devote this

section to showing how to adapt the setting of Section 4 to recover the well-known results on
asymptotic behaviour of heat equations and conservation laws in the framework of L1(RN ).
Indeed, we can keep the semigroup setting of Sections 3, 4 with the following modifications.

• The proper concept of scaling of the data in L1(RN ) is given by the group G(1) =

{G(1)
λ } acting by G

(1)
λ (f) = λNf(λx). Again, this group is continuous in the weak topology

σ(L1, L∞). We must now note that L1(RN ) is not closed in this topology, its closure
being the space of bounded measures M(RN ), which is endowed with the so-called narrow
convergence. Indeed, with a definition of G(1)-omega-limit as in Section 3, it is easy to see
that

Lemma 9.1. For every f ∈ L∞(RN ) we have a simple omega-limit, G
(1)
∞ (f) = {c δ},

where c =
∫
f(x) dx ∈ R and δ is the Dirac mass located at x = 0.

• The equation generates a semigroup acting on X = L1(RN ). We ask that
(I) The map S is separately continuous in both variables. X is endowed with the weak

topology. We also need the semigroup to extend continuously to include the space of mea-
sures, or at least, the Dirac deltas.

(II) Scale invariance is formulated in the new setting as

uλ(x, t) = λNu(λx, λαt),
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with suitable exponent α. We want uλ to be a solution of the equation if u is, i.e., we need
the commutation rule StGλu0 = GλSλαt.

Under these conditions we define the rescaled orbit corresponding to a standard orbit
u(·, t) = Stu0 as

U(y, t) = tN/α u(t1/αy, t), (9.1)

and the renormalized semigroup as (Rt u0)(y) = U(y, t), which implies the identity

Rtu0 = Gt1/αStu0. (9.2)

The R-omega-limit is defined as in Section 4, and it stays in L1(RN ) if we make sure that
convergence takes place in the strong topology (otherwise, it might become a measure).

Theorem 9.1. Under the above assumptions the Main Asymptotic Formula holds true.
It means that the R-omega-limit of the orbits of the semigroup is given by the unique profile
at t = 1 of the fundamental solution of the equation.

If the semigroup is regularizing, i.e., if the map St sends bounded subsets of L1(RN ) into
relatively compact subsets in the strong topology, then the convergence of the rescaled orbit
to the R∞-limit holds in the strong topology.

Applications. Indeed, the four types of equations already considered generate a regu-
larizing semigroup acting on L1(RN ).

(i) In the case of the heat equation the solution with a Dirac delta exists, is unique,
and has the necessary continuity property. It is called the fundamental solution and is
given by formula (1.1). Let us remark that the L1 norm is conserved by the semigroup,∫
u(x, t) dx = u0(x) dx. The exponent α in the scaling law is 1/2 as in the L∞ case. The

regularizing effect takes L1(RN ) into bounded subsets of Ck for all k (regularity both in
space and time). The theorem states the well-known fact that for every u0 ∈ L1(RN ) we
have

lim
t→∞

tN/2u(
√
tx, t) = c (4π)−N/2 exp

(
− x2

4

)
,

and the convergence is uniform in RN .
(ii) For the Porous Medium Equation we have a fundamental solution, usually called

Barenblatt solution, if m > m∗ = (N −1)/N , and the scaling exponent is α = N(m−1)+2.
Again the semigroup is regularizing into Cβ for some 0 < β < 1 (regularity both in space
and time). In this parameter range the theorem applies (cf. [34]).

(iii) For the p-Laplacian equation we have α = N(p−2)+p, and we impose the restriction
p > 2N/(N + 1) in order to obtain a fundamental solution, also called Barenblatt solution.
Regularization occurs into C1,α in space, Cβ in time.

(iv) For the scalar conservation law we must take f(u) = up with p ≥ 1 and then
α = N(p− 1) + 1.

In all cases the L1 norm is conserved∫
uλ(x, t) dx =

∫
u(x, t) dx =

∫
u0(x) dx.

Note however that the existence of fundamental entropy solutions for scalar hyperbolic
conservation laws is only known in one space dimension. It is unique in the class of constant
sign solutions, but the occurrence of N -waves may produce non-uniqueness phenomena,
dependending on whether the nonlinearity f is even or odd (cf. [26]).

§10. Quasi-Invariance

We may go back to the abstract setting of Section 4 and relax both aspects of the as-
sumption list and still follow the argument advanced in Section 2. We introduce next the



308 CHIN. ANN. OF MATH. Vol.23 Ser.B

concepts of qasi-invariance and limit equation and arrive at a generalized version of the Main
Asymptotic Formula.

Quasi-Invariance and Limit Equation. A simple case of this project is exemplified
with the viscous approximation to a conservation law, governed by equation

ut + f(u)x = εuxx, (10.1)

with ε > 0 which approximates and regularizes the solutions of the scalar conservation law
(7.1). When we perform the scaling uλ(x, t) = u(λx, λt), we see that uλ does not satisfy the
same equation, it satisfies instead

uλ,t + f(uλ)x =
ε

λ
uλ,xx.

Using the same definition of rescaled orbit and passing to the limit λ → ∞ along a subse-
quence we get as in Section 7 a limit function v that satisfies the limit equation

vt + f(v)x = 0. (10.2)

This is called quasi-invariance, a concept that relates the scaling of equation (10.1) to (7.1).
The compactness argument of Tartar applies to the family of equations and we get in the
limit an entropy solution with initial data ϕ = limn u0,λn . Summing up, we have

Theorem 10.1. The main asymptotic formula R∞(u0) = S1G∞(u0) holds if R∞ is the
omega-limit of the rescaled orbit and St is the semigroup generated by the entropy solution
of the limit equation (10.2).

Limit Families of Equations. The situation can be more involved when the limit
equation is not unique. Such a situation arises in Homogenization Problems. We consider
next the heat equation

ρ(x)ut = ∆u, (10.3)

where ρ ∈ L∞(RN ) is such that 0 < c1 ≤ ρ(x) ≤ c2. Let St(u0; ρ) denote the heat semigroup
with weight ρ. When we re-scale the solutions by means of formula (2.3),

uλ(x, t) = u(λx, λ2t),

we get the equation satisfied by uλ, ρλ(x)uλ,t = ∆uλ, where ρλ(x) = ρ(λx). Let us now
pass to a subsequence where

u0(λx)⇀ ϕ, ρλ ⇀ a, uλ(x, t) → v(x, t).

We easily see that such a limit v satisfies the homogenized equation

a(x)vt = ∆v(x), (10.4)

where a ranges over all the elements in G∞(ρ). In this case we have a situation where,
instead of a limit equation, there exists in general a family of limit equations. Note however
that in the important case of periodic coefficients the limit equation is unique since a is a
constant, the average of ρ. This happens also for almost periodic coefficients.

We have then the following theorem.
Theorem 10.2. The set of accumulation points of the rescaled orbit satisfies

R∞(u0) ⊂ {S1(ϕ; a) : ϕ ∈ G∞(u0), a ∈ G∞(ρ)}. (10.5)

Equality of the sets in the theorem is not necessarily true since ρ and u0 may be coupled.
If we take for instance u0 = ρ then we only obtain R-omega-limits of the form S1(a; a).
Depending on how independent are the oscillations of u0 and ρ we may obtain larger R-
omega-limit sets, even equality in the formula.

About an Asymptotic Theory with Quasi-Invariance. The general evolution set-
ting introduced in Section 4 for invariant semigroups can be easily modified to cover the
case of quasi-invariant semi-groups and their limits according to the above two examples.
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Since there are no special novelties we leave the details to the reader and delay the detailed
study of this aspect until other relevant examples have been examined. Actually, the ideas of
quasi-invariance can be applied to study the asymptotic behavior of numerous processes ap-
pearing in the physical sciences. This is the case for equations combining nonlinear diffusion,
reaction and convection.

Diffusion-convection equations of the form

ut = ∆u+
∂

∂x1
f(u), (10.6)

where f is a scalar function, are studied in [13, 14] in the setting of L1 data. Convergence of
the rescaled solutions is proved towards the solutions of the equation with partial diffusivity

ut = ∆′u+
∂

∂x1
f(u), (10.7)

where ∆′ denotes the Laplacian with respect to the variables x′ = (x2, · · · , xn). In order to
extend the results of this paper to this model for L∞(RN ) data we need a different scaling

uλ(x, t) = u(λx1,
√
λx′, λt).

Proving the asymptotic result should offer only difficulties related to compactness and iden-
tification of the limit solution (cf. Section 7). Besides, the scaling of the initial data in
Section 3 has to be adapted to this anisotropic formula. In any case, Theorem 2.2 still holds
in this setting, which guarantees the occurrence of the complexity we want to describe.

Further interesting lines of application concern the equations of fluid mechanics and the
kinetic equations, but the technical difficulties are greater.
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