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Abstract

The author derives the same null condition as in [1] for the nonlinear elastodynamic system
in a simpler way and proves the equivalence of the null conditions introduced in [1] and [7]
respectively.
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§1. Introduction

It is well-known that, if there is no external force, the displacement u = (u1, u2, u3) =
u(t, x) of an isotropic, homogeneous hyperelastic material is governed by the following quasi-
linear hyperbolic system (cf. [9])

∂2
t u

i +

3∑
j,k,l=1

aklij (∇u)∂k∂lu
j = 0 (i = 1, 2, 3),

where ∇ = (∂1, ∂2, ∂3) and (aklij ) stands for the elastic tensor.
As in the theory of 3D nonlinear wave equations , the global existence of classical solutions

hinges on two basic assumptions. First, the initial deformation must be small. Second, the
nonlinear terms must obey a type of null condition. The omission of either of these two
assumptions may lead to the breakdown of classical solutions in finite time. For example,
the formation of singularities for large displacements was illustrated by Tahvildar-Zadeh[8].
Moreover, F. John[4] proved that in the spherically symmetric case, a genuine nonlinear
condition leads to the formation of singularities even for small initial data.

Klainerman[5] introduced the null condition for quasilinear wave equations and proved
the global existence of classical solutions with small initial data. Agemi[1] and Sideris[7]

introduced their null conditions respectively for nonlinear elastodynamic system in different
ways and proved the global existence of classical solutions to the initial value problem with
small initial data.

The first purpose of the present paper is to derive the null condition for the nonlinear
elastodynamic system by a simpler method. The second purpose is to prove the equivalence
of null conditions introduced in [1] and [7] respectively.
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§2. Null Conditions for the Nonlinear Elastodynamic System

We now consider the following more general system
3∑

j=1

3∑
α,β=0

aαβij (∂u)∂α∂βu
j = 0 (i = 1, 2, 3), (2.1)

where ∂ = (∂0,∇), ∂0 = ∂t, a
αβ
ij (∂u) = aβαij (∂u), and

a00ii (0) = 1, aiiii(0) = −c21, a
jj
ii (0) = −c22 (i ̸= j),

aijij(0) = −(c21 − c22)/2 (i ̸= j), i, j = 1, 2, 3,

aαβij (0) = 0, otherwise.

(2.2)

For infinitesimal u , equation (2.1) reduces to the linear elastic system

∂2u

∂t2
− c22△u− (c21 − c22)∇divu = 0,

where the material constants c1 and c2 (c1 > c2 > 0), which correspond to the propagation
speeds of longitudinal and transverse waves, respectively, are connected with the Lame
constants λ and µ by

c21 = λ+ 2µ, c22 = µ.

Agemi[1] introduced v = (v1, v2, v3), where vi = (∂ui), i = 1, 2, 3. Then v ∈ R12 satisfies
a first order system containing 12 equations.

As in [4], we consider the plane wave solution of (2.1):

u(t, x) = w(t, s),

where s = ζ · x stands for the inner product of ζ, x ∈ R3 and ζ = (ζ1, ζ2, ζ3) with |ζ| = 1.
It is easy to see that w(t, s) satisfies the following system in one space dimension

3∑
j=1

(a00ij ∂
2
0w

j + 2
3∑

k=1

ak0ij ζk∂k∂0w
j +

3∑
k,l=1

aklij ζkζl∂
2
1w

j) = 0 (i = 1, 2, 3).

Let

v = ∂w = (∂tw, ∂sw) = (∂0w, ∂1w) = (∂0w
1, ∂0w

2, ∂0w
3, ∂1w

1, ∂1w
2, ∂1w

3).

Thus, v ∈ R6 satisfies the following first order system

∂0v + a(v)∂1v = 0, (2.3)

where a(v) = a0(v)
−1a1(v) with

a0(v) =

(
(a00ij )3×3 0

0 I3×3

)
6×6

,

a1(v) =

(
2

3∑
k=1

ak0ij ζk

)
3×3

( 3∑
k=1

aklij ζkζl

)
3×3

−I3×3 0


6×6

.

Since c1 > c2 > 0, we have λ + µ > 0 and µ > 0. Therefore, the linear elastic tensor

(aαβij (0)) satisfies the strong-ellipticity condition by [10]. Since |∂u| is small, by continuity,

the elastic tensor (aαβij (∂u)) satisfies the strong-ellipticity condition in a neighborhood of

∂u = 0. From the proof of Theorem 5.1 in [10], we can get that System (2.3) is hyperbolic
in a neighborhood of v = 0, that is, a(v) has 6 real eigenvalues and 6 linearly independent
eigenvectors in a neighborhood of v = 0.
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We shall investigate the eigenvalues λ = λ(v) of a(v) and the corresponding right eigen-
vector r = r(v) in a neighborhood of v = 0. Since

det(a0(v)λ− a1(v)) = det
(
a00ij λ

2 − 2λ
3∑

k=1

ak0ij ζk +
3∑

k,l=1

aklij ζkζl

)
3×3

, (2.4)

by assumption (2.2) on aαβij (0), we get, at v = 0,

det(a0(0)λ− a1(0)) = (c21 − λ2)(λ2 − c22)
2.

Therefore, a(v) has 6 eigenvalues : λ±
1 (v), λ

±
2,1(v), and λ±

2,2(v) such that

λ±
1 (0) = ±c1, λ±

2,1(0) = λ±
2,2(0) = ±c2.

Moreover, the eigenvectors r±1 and r±2 corresponding to ±c1 and ±c2 are

r±1 = (∓c1ζ1,∓c1ζ2,∓c1ζ3, ζ1, ζ2, ζ3), (2.5)

r±2 = (∓c2ξ1,∓c2ξ2,∓c2ξ3, ξ1, ξ2, ξ3), for any ξ ∈ R3 satisfying ξ · ζ = 0.
(2.6)

From (2.4), the same calculation as in [1] gives

±2c1(Dλ±
1 )(0) = −

∑
i,j

ζiζj

{
c21(Da00ij (0)∓ 2c1

∑
k

(Dak0ij )(0)ζk +
∑
k,l

(Daklij )(0)ζkζl

}
, (2.7)

± 2c2D(λ±
2,1(v) + λ±

2,2(v))|v=0

= −
∑
i

(1− ζ2i )
{
c22(Da00ii )(0)∓ c2

∑
k

(Dak0ii )(0)ζk +
∑
k,l

(Daklii )(0)ζkζl

}
−

∑
i̸=j

ζiζj

{
c22(Da00ij )(0)∓ c2

∑
k

(Dak0ij )(0)ζk +
∑
k,l

(Daklij )(0)ζkζl

}
,

(2.8)

where D = ∂
∂viα

= ∂
∂(∂αw

i)
(α = 0, 1 and i = 1, 2, 3).

Definition 2.1. For any fixed ζ ̸= 0, |ζ| = 1, System (2.3) is not genuinely nonlinear if

r±1 · ∇vλ
±
1 |v=0 = 0, r±2 · ∇v(λ

±
2,1 + λ±

2,2)|v=0 = 0. (2.9)

Then we have the following
Theorem 2.1. For any fixed ζ ̸= 0, |ζ| = 1, System (2.3) is not genuinely nonlinear if

and only if

(N)1

3∑
i,j,k=1

3∑
α,β,γ=0

∂aαβij (∂u)

∂(∂γuk)
|∂u=0XiXjXkXαXβXγ = 0,

∀ (X0, X1, X2, X3) satisfying X2
0 − c21|X|2 = 0,

(N)2

3∑
i,k=1

3∑
α,β,γ=0

∂aαβii (∂u)

∂(∂γu
k)

|∂u=0(|X|2 −X2
i )ξkXαXβXγ

−
3∑

i,j,k=1,i̸=j

3∑
α,β,γ=0

∂aαβij (∂u)

∂(∂γu
k)

|∂u=0XiXjξkXαXβXγ = 0,

∀ ξ, (X0, X1, X2, X3) satisfying X2
0 − c22|X|2 = 0, ξ ·X = 0.

Proof. Let

ζi =
Xi

|X|
, X0 = ∓c1|X| (i = 1, 2, 3).
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By (2.5), we rewrite r±1 as

r±1 = (X0X1, X0X2, X0X3, |X|X1, |X|X2, |X|X3).

Note

∂aαβij (v)

∂vk0
=

∂aαβij (∂u)

∂uk
0

,

∂aαβij (v)

∂vk1
=

3∑
h=1

∂aαβij (∂u)

∂uk
h

ζh =
3∑

h=1

∂aαβij (∂u)

∂uk
h

Xh

|X|
(k = 1, 2, 3),

where uk
α = ∂αu

k (α = 0, 1, 2, 3 and k = 1, 2, 3). It follows from (2.7) and the first condition
of (2.9) that

0 = r±1 · ∇vλ
±
1 |v=0

=
3∑

k=1

X0Xk
∂λ±

1 (v)

∂vk0
(0) +

3∑
k=1

|X|Xk
∂λ±

1 (v)

∂vk1
(0)

=
1

∓2c1

{ 3∑
k=1

X0Xk

3∑
i,j=1

Xi

|X|
Xj

|X|

3∑
α,β=0

∂aαβij (v)

∂vk0
(0)

Xα

|X|
Xβ

|X|

+
3∑

k=1

|X|Xk

3∑
i,j=1

Xi

|X|
Xj

|X|

3∑
α,β=0

∂aαβij (v)

∂vk1
(0)

Xα

|X|
Xβ

|X|

}

=
1

|X|4
{ 3∑

i,j,k=1

3∑
α,β=0

∂aαβij (∂u)

∂uk
0

(0)XαXβX0XiXjXk

+
3∑

i,j,k=1

3∑
α,β=0

3∑
h=1

∂aαβij (∂u)

∂uk
h

(0)XαXβXhXiXjXk

}

=
1

|X|4
3∑

i,j,k=1

3∑
α,β,γ=0

∂aαβij (∂u)

∂uk
γ

(0)XiXjXkXαXβXγ .

So

r±1 · ∇vλ
±
1 |v=0 = 0 if and only if (N)1 holds.

Similarly, it comes from (2.8) and the second condition of (2.9) that

r±2 · ∇v(λ
±
2,1 + λ±

2,2)|v=0 = 0 if and only if (N)2 holds.

In [1], (N)1 and (N)2 are referenced as the null condition for System (2.1). We now get
the same result in the previous simpler way.

§3. Conditions (N)1 and (N)2 are Equivalent to
(N)1 for the Nonlinear Elastodynamic System

We now prove that for the nonlinear elastodynamic system, condition (N)2 always holds.

Let φ(t, x) be a smooth deformation . The unknown u is a displacement from the reference
configuration:

u(t, x) = φ(t, x)− x.
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Then, the deformation gradient F = ∇φ = (∂lφ
i) and the displacement gradient G =

F − I = ∇u = (Gil). Thus,the stored energy function can be written as

W = W (F ) = V (G).

The displacement u then satisfies the following system

∂2
t u− div

∂V

∂G
= 0, (3.1)

that is,

∂2
t u

i −
3∑

l=1

∂

∂xl

∂V

∂Gil
= 0 (i = 1, 2, 3).

System (3.1) can be written as

∂2
t u

i − c22△ui − (c21 − c22)∂idivu = F i(∇u,∇2u) + higher terms of ∂u, (3.2)

where

F i(∇u,∇2u) =
∑

j,k,l,m,n

Blmn
ijk F i(∇u,∇2u)∂l∂muj∂nu

k.

It is easy to get the following
Proposition 3.1. The null condition for System (3.2) holds if and only if

(N)
′
1

3∑
ijklmn=1

Blmn
ijk XiXjXkXlXmXn = 0, ∀ X ∈ R3,

(N)
′
2

3∑
iklmn=1

Blmn
ijk (|X|2 −X2

i )ξkXlXmXn −
3∑

i ̸=j,klmn=1

Blmn
ijk XiXjξkXlXmXn = 0,

∀ ξ,X ∈ R3, ξ ·X = 0.

Let k1, k2, k3 be the principal invariants of the strain matrix C = G+GT +GGT , where
GT denotes the transpose of G. Then the stored energy function can be given by

V (G) = σ(k1, k2, k3).

Theorem 3.1. (N)′2 is always satisfied for the nonlinear elastodynamic system. In other
words, (N)′1 is the only null condition for the nonlinear elastodynamic system.

Proof. By Proposition 3.2 in [1], for the nonlinear term F (∇u,∇2u) in (3.2) we have

F (∇u,∇2u) = 2(2σ111 + 3σ11)∇(divu)2

+ 2(σ11 − σ12)(∇|rotu|2 − 2rot(divu rotu)) +Q(u,∇u),

where σ11 = ∂2

∂k2
1
σ(0, 0, 0), σ12 = ∂2

∂k1∂k2
σ(0, 0, 0).

From Lemma 3.1 (i) in [1], we can verify that Q(u,∇u) satisfies (N)′2. From (iii) of the
same lemma, we can also verify that ∇u|rotu|2 satisfies (N)′2. On the other hand, it is easy
to see that rot(divu rotu) and ∇(divu)2 satisfy (N)′2. Thus, F (∇u,∇2u) satisfies (N)′2,
namely, (N)′2 is always satisfied for the nonlinear elastodynamic system.

§4. Equivalence of the Null Conditions
Introduced by Agemi[1] and Sideris[7]

We impose σ1 = ∂
∂k1

σ(0, 0, 0) = 0, which implies that the reference configuration is a

stress free state. Then from Theorem 3.1 and Theorem 3.1 in [1], we have
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Corollary 4.1. (N)′1 holds if and only if

2σ111 + 3σ11 = 0, (4.1)

where σ111 = ∂3

∂k3
1
σ(0, 0, 0).

The deformation is given in [7] as φ(t, x) = λx+u(t, x), where λ > 0. The corresponding
deformation gradient and displacement gradient are F (λ) = ∇φ and G(λ), respectively.
Then, the stored energy function can be expressed as

W = W (F (λ)) = V (G(λ)) = τ(λ, s) = τ(λ, s1, s2, s3),

where s1, s2, s3 are the principal invariants of the matrix
√
FTF − λI. The null condition

introduced by [7] is

τ111(λ, 0) = 0, (4.2)

where τ111(λ, 0) =
∂3

∂s31
τ(λ, 0, 0, 0).

Theorem 4.1. The null condition given by Agemi is equivalent to that given by Sideris.
Proof. From (2.2c) in [7], we know that when λ = 1,

k1 = 2s1 + s21 − 2s2,

k2 = 4s2 + 2s1s2 − 6s3 + s22 − 2s1s3,

k3 = 8s3 + 4s1s3 + 2s2s3 + s23.

Then

τ111(1, 0) =
∂3τ

∂s31

∣∣∣
s=0

=
∂3σ(k1, k2, k3)

∂s31

∣∣∣
s=0

= 8
∂3σ

∂k31

∣∣∣
k=0

+ 12
∂2σ

∂k21

∣∣∣
k=0

= 4(2σ111 + 3σ11).

So (4.1) is equivalent to (4.2).
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