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Abstract

This paper is a continuation of the authors’ previous paper [1]. In this paper the authors
prove, assuming additional conditions on the initial data, some results about the existence and
uniqueness of the entropy weak solutions of the Cauchy problem for the singular hyperbolic
system

z>0,t>0.

at + (au)z + QaT“ =0,
ur + % (a? +u?)y =0,
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§1. Introduction and Main Results

We consider the Cauchy problem for the quasilinear hyperbolic system
ar + (au), + 2‘17“ =0,
x>0, t>0, (1.1)
U + % (a? +u?), =0,
with the initial data
(a(z,0),u(z,0)) = (ap(x), up(x)), = > 0. (1.2)

The system (1.1) appears in the study of the radial symetric solutions in R? x R, for a
conservative system modelling the isentropic flow introduced by G.B.Whitham in [7, Chap.9]
where @ is the sound speed and u is the radial velocity. If f : R?> — R? is defined by
f(a,u) = (au, 3(a® + u?)), then two eingenvalues of V f are

M=u—a, X=u+ta (1.3)
and so the strict hyperbolicity fails if a = 0, but the system is genuinely nonlinear with
Riemann invariants

l=—u+a, r=u+a (1.4)
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which satisfy the equivalent system (for classical solutions) :

r2—?

Tt+%(’r2)x+ 5% :0,

z>0,t>0, (1.5)
2_g2

lt_%(l2)$+rgz =0,

with initial data
(r(2,0),U(2,0)) = (ro(x), lo(x)), >0, (1.6)
with ro = ug + ag, lop = —ug + agp.
Following [1], if ag,up € H} (R4 ), we will say that
v = (a,u) € (L5 ([0, +00[x[0, +00]))”
is a weak solution for the Cauchy problem (1.1),(1.2) in Ry x [0,4o0[ if, for each pair
¢ € C°(Ry x [0, +00[), ¢ € C5°([0, +-00[x [0, +-00]),

2 1
/ (a% + aup, — = sa) dx dt + / (uwt + —(a® + u2)¢x) dx dt
R x[0,+00 z R x[0,+00] 2

—i—/R ap(z)p(z,0) dx—i—/R uo(x)Y(x,0) dx = 0. (1.7)

A weak notion of null boundary condition for v (at = 0) is contained in (1.7). Moreover, we
will say that v = (a,u) verifying (1.7) is an entropy weak solution if, for every pair of smooth
functions 7, q : R? — R, n convex (entropy/entropy flux pair) such that V- Vf = Vq in
R?2, we have
0 v 201 ) < ¢ 1.8

Sn(v) + 5o a(v) + V(o) - (52,0) < (18)
in D'(Ry x R4). By applying the compensated compacteness method of Tartar, Murat and
DiPerna (cf. [2] and [3]) and some ideas of M.E.Schonbek in [6] we have proved in [1] the
following result:

Theorem 1.1. Assume ag,ug € H}(Ry), uo(z) > ag(z) > 0,2 € Ry. Then, there
exists v = (a,u) € (L (Ry x [0,400]))?, withu>a >0 a.e. in Ry x [0, +00[, which is an
entropy weak solution for the Cauchy problem (1.1),(1.2) in Ry x [0, +oo[. Moreover there
ezists a sequence v, = (a-,u.) € (C([0,400[; H* N Hy) N C'([0,+00[; H') N L‘X’(Ri))2 such
that 0 < a < ue < M, ve — v a.e. in Ry X [0,400[ and in (LOO(R%F))2 weak *,

ve(.,0) — v(.,0) in (HE(Ry))? and v. is the solution of the approzimate parabolic system

2a.ue
aet + (acte)y + rre — € Oexz,

x>0,1t>0, (1.9)
Ugt + % (ag + Uf)z = EUegx,
with initial data
2
vo: = (aoe,uoe) € (H*(Ry) N HG (Ry))™, woe > age > 0.

In the framework of Theorem 2.1, we have, for
le = —ue tas, re=1uc+a,
l=—u+a, r=u+a: (1.10)
I.<0, 0<r.<M;, 72—-12>0, 1<0,0<r<M;, 7—1*>0, ae,
ret + 2 (r3)a + ;(111; = € Teqas
x>0, t>0, (1.11)

P22
let — % (l?:)m + Q(EIJEE) = ¢legs,
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with (re,le) € (C([0,4o00[; H3 N H{) N C([0, +o0]; Hl))2 and
TE('a 0) =Tpe = Upe +Qoe — T0,
e—=0
la('7 0) = lpe = —Upe + age ;)) lp in Hol(R+) (1.12)

We will prove the following estimate:
Theorem 1.2. In the framework of Theorem 1.1, assume %2, “o € L>°(Ry ). Then, we
have, for eacht >0,

2520 < [l <[ (113)
Tr+e T +e€
Hence,

e i e N

T+elloo Il x+€ llo

I(-,t -t

and, a.e. int € [0, +o0], %, % € L™ (Ry) with

2 < 2 <[

x
Now, by an adaptation of Kruzkov’s methods (cf. [5]), we can prove the following theorem.
Theorem 1.3. Under the hypothesis of Theorems 1.1 and 1.2 assume
ag, ug € BV(Ry) = {w € L'(Ry) | TV (w) < +oo}
where TV denotes the total variation in R+. Then, we have

%5, 1

t) 1t
< ce® t>0 1.14
ot Hlfce ’ - ( )

R TV (ap), TV(uO)) >0 and ¢; = cl(

ag Yo ag
T ’ T T

where ¢ = C(”CLOHooa l[2olloos

9]
Ug

) > 0 do not depend on €.

o0

From Theorem 1.3 it is easy to derive

Corollary 1.1. Under the assumptions of Theorem 1.3, the weak entropy solution
(a, u) of the Cauchy problem (1.1), (1.2) obtained by the vanishing viscosity method verifies
a(,t), u(-,t) € LY(Ry) a.e. int and there exists E C [0, +oo[ such that m([0, +oo[\E) = 0
and

lim (la(z,t) — ao(z)| + |u(z,t) — up(x)|) dz = 0.

t—0t JR
teE +

Finally, also by adaptation of Kruzkov’s method (cf. [5]), we will prove the following
theorem.

Theorem 1.4. Let the initial conditions ag, ug be in Hj(Ry) and such that %, “0 €
L>*(Ry), and let (aj,uy), (az,us) be two weak entropy solutions of the Cauchy problem
(1.1), (1.2) such that, fori=1,2,

a; u;

%8 € L (10, +oo[x [0, o)

and there exists E C [0, 4o00[, with m([0, +oo[\E) = 0, such that for each R > 0,

lim (lai(z,t) — ao(z)] + |ui(x,t) — up(z)]) de = 0. (1.15)

t—0F
e E 0<z<R

Then, (a1,u1) = (az,uz) a.e. in Ry x [0, +o0l.
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§2. Proof of Theorem 1.2.
With r = 7., 0 < e < 1, let us consider the first equation of (1.11):

7.2_[2

re T +2(.13—|—6) eT (2.1)

With re btain, multiplying (2.1) by — d since 12 — 12 > 0

ith v = v. = —=— we obtain, multiplying (2. ———, and since r? —
€ ($+E)2 ? py g y (.CC—‘,—E)2’ - Y
Tl r? r2

2 a:_8 6 2 L < xx - 2.2
vy + 201 E(x+5)3+ E(x+s)4+ 5(I+€)2_sv (2.2)

If we multiply (2.2) by vP, p > 1, and integrate in Ry, we obtain with [ - = fR+ -dx,

1 0 rruP
p+1 2 p+1 -8 T
er1875/11 + /v T 8/(9:+5)3

+6€/r2@p+26/r§1ﬂ7+ 6/(11)22)p+1<0 (2.3)
(@ +e) (wrep PO T =T '
We have

2 0 1 4 1
= —— (P 3 _ y4 3
3 ax(” )(a:Jre)ZT +3/U (:z:+€)3r

2 4
:fg/%(vp)w+§/v”v3/2
— —gp/vpvmr_’_%/,up-‘r?)/?

2 4
=22 ﬁ(vpﬂ)rJr g/v?’”’/2

and so

Moreover,

78/ Ty T0P /59 _ 12/ r2uP +4/T28‘1(UT’)
(x +¢)3 (x + (x + &) (x +¢)3
/ p'H /Tzvp_lvx
(z+¢)3
ff12/ ”pH P /aaz(v”“)
(x +¢)? p+ 1 (x+¢)
_12/ vt P / vPtt
(x4 ¢)? p+ 1) (x+¢)?

pPtl

—86/%2(—124—4;0_1;1)5/(m_’_&_)z. (2.5)

and so
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We have also

2

Vyp =

and so, with p > 2,

(x +¢)?

2rry, T
-2
(x +¢)3

p+1

V0P 2 = 20 2, — 20 T

1
ST S——!
2
1
2 2 p—1
z Z’UE’U

2/ r2oP
(x+¢)?

p—2
2

<
%S

3
Il

pt1
r+uv 2,

(x4 )% + P 4 v 0P (2 + ¢),

+1 D (,p+l
1/qﬂ”—lvg’iJJ/ v 5+ 2 /(%(vp )
2 (x+e)? p+1 (x+¢)

P+l

r2yP 1 2
2e [ 2 = Ce [ur 2+ (2 )/ .
5/($+€)2 25/1} vy + +p+1 € EESE

By (2.3),---,(2.6), we obtain
1 0 P+ 4(p

+7+1)/v”+3/2< 2 s/ ot .
+3 “p+1 (x+¢)?

p+1ot 2p
But, since

Pt

p+1
v 2 p+l 1

= ./U2

(x +¢e)?

(x+¢) 7'(x+5)

and % + 2L 4+ 1 — 1, we derive by Holder’s inequality,

2p+3

2¢ Pt
p+1 / (z+¢)?

4p+6

o2 ( / vt ) z ( / p+3/2) B el/? ( / 1 ) e
v
T+ DN (w+e)? (p+1)2NJ (z+e)wto

2¢ / vt <2(/Up+3/2)3§1§ 1 1 2
p+1) (x+e)? p+1 (4p+ 52"

We derive, by the inequality b'/9c!/ 4 <

and so

26 / varl <2|:2p+2/vp+3/2+ 1 1 1 572(1”4“1)].
p+1) (x4+¢)? ~ 12p+3 2p+3(p+1)P+34p+5

If we fix n > 1, let p be such that

5_2(17""1)
n(p+1
R G

We deduce, from (2.8),

N

1
q 2p+27

2p+3

is, —loge < — "%
BT ) (nr2)

2e pPtl
/ <
p+1/) (z+¢)?

From (2.7) and (2.9) we derive

Q / pPt1
ot ~ (4p+5)(2p+3)

4(p+1) /vp+3/2 " 2 cn(p+1)
2p+3 (4p+5

)(2p +3)

2(p+ 1) n(erl)'

_ 4p+5
ip¥6

b+ %c, with ¢ = 2283 ¢/ = 2p + 3,

log(p + 1))

(2.8)

(2.9)

(2.10)
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Hence, for t > 0, we obtain

2(p+ 1)t
)Pt p+ n(p+1)
”Us(a )||p+1 = ” 06” +1 + (4p+5)<2p+3) €

< b+ ¢, we deduce
2p+ 1)t 15
Blprs < Dol + [ 20D _J5Hs
|| ( )Hp+1 H 0 ||P+1 (4p+5)(2p+3)
Letting p — +oo we obtain from (2.11), |[ve(:,#)|lcc < [|v0e|loo + ™. Now we let n — +oo
TE(',t) H2 T0e

and we derive
2
| <2
x4+ e x4+ e

Finally we let ¢ — 0 and we deduce a.e. on t € [0, +0o0], @ € L*°(Ry) and

520 <[

20, < 1220 < I

and this achieves the proof of Theorem 1.2.

and so, by the inequality (bP* + ap“)l/(pﬂ)

(2.11)

= [0 ) loo < llvnelloe = ||

and so

§3. Proofs of Theorems 1.3 and 1.4

3.1. Sketch of the proof of Theorem 1.3

We follow the lines of the proofs of Theorems 2.3 and 3.1 of Chap.II in [4], applying the
method of Kruzkov for the case of scalar conservation laws (cf. [5]). We take the ¢ derivative
in both equations of the approximate system (1.11) in r. and I.; we multiply the first equation
by sgn(re:), the second equation by sgn(l.;) and both equations by ¥g(x) = x(x/R), R > 0,
where sgn denotes the usual sign function and x is the cut function introduced in (2.25)
of Chap.Il in [4]. We integrate in R4 and we add the two equations. If we point out the
estimate

| /R ’"J”‘”E” sen(rer) + sgn(le)] ¥n(@) da| < e / (Ireel + llet) ¥r(2) da

R

by Theorem 1.2, we easﬂy deduce, with the help of Lemma 3.1 in Chap.IT of [4],

/ (Iree(@, O] + lleo(, 0)]) () de

Ry
<ot () [ [ Qratanl+late i vnte) dodr

where

co = co([laoloc, luolloo);

ap
e = c(llaollo, ol || 22|, |
xT

a=a(lZl 171

are positive constants not depending on €. The result follows if we apply Gronwall’s inequal-
ity and then let R — oo.

Before proving Theorem 1.4, we need the following lemma that can be proved like the
Lemma 4.2 in Chap.IT of [4] (cf. also the inequality (3.12) in [5]).

U
2| TV(@), TV ().
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Lemma 3.1. Let (a;,u;) € (L ([0,+oo[><[0,—|—oo[)2,i = 1,2, be two solutions in

loc
D' (R4 xRy) of the system (1.1) verifying the entropy condition (1.8) and let r; = u;+a;, l; =
—u; + a;, t = 1,2. Then, we have, in D'(Ry x Ry) ,

0 1,4 5
a|7“1 —ro| + 9 [Sgn(rl - 7"2)5(7‘1 - 7”2)}

1
+sgu(r =)o [F — ) — (1 ~ )] < o,
0 ) 1,y
il — o] = = [sen(ly — )5 (1 — )]
togul — )53~ 1)~ (B~ B)] < 0.

3.2. Sketch of the proof of Theorem 1.4

We follow the lines of the proof of Theorem 4.1 in Chap.II of [4], applying the method
of Kruzkov for the case of scalar conservation laws (cf. [5]). With T" > 0, R > 0 and
W =L>(0,R+ MT +1[x [0,T + 1[), let us put

M = M(T,R) = mas (Irillw , [Lilw)

where r; = w; + a4, l; = —u; + a;, i = 1,2. For §,6,60 > 0, < § < min(1,7/3), 6 <
min(1l, R/2) and = > 0, we set

p(z,t) = (1 —hx/0)) (Ye(t —0) = Ye(t = T)) (1 = Yo(z — R— M(T — 1))
where Y_(t) f C(s)ds, ¢ € D(R) is a positive cut-off function with support in

[—e,¢], h € C’OO([O —|—oo[) 0<h<1 h(z)=0if x > 2 and h(z) =1 if x < 1. With
this choice of test function we deduce from the inequalities in Lemma 3.1:

+oo +oo
/‘ /‘ (I — 7ol + [l — la) (1 — h(/8)) (Co(t — 6) — Co(t — T)
-Yo(x — R— M(T —t))dxdt

+oo  ptoo
- [ A= hw/) e = 8) = Vil = ) [Mrs = el + 11~ o)

1
Fsgu(ry o) 3 (13— r3) — sau(la — 1) 1 0 ~ B)

“Colr — R— M(T —t))dxdt
/+oo /+oo lh/ (2/0) (Yo(t —6) = Yo(t = T)) (1 = Yy(z — R — M(T —t)))

.[sgn(rl—rg)z(rf— r2) —sgn(ly — ) = (z%-zg)} da di

+oo  ptoo
[ b i) - Vet = 1) (= Yoo — R M(T - 1)

1
- [sen(ry — 7o) +sgn(ly — I2)] % [(r2 = 12) = (r2 = 12)] dzdt > 0.
Now, we point out that in the third integral in the previous inequality we can put r% — r% =

1+
(Tl—’l"g)¥$, l%—lg:(ll—h)

can be estimated in modulus by

T+1 20 3
/ / Sdudt < co(T+1)50 — 0.

0—0+

I +1
M z. Hence, by the assumptions, this integral
x
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Moreover, regarding the last integral in the same inequality, we observe that

l l
‘7 _l2 (7"2—[%)] < |rlll_|r2|\r1 |1|+‘2

2 | ¢ Ml

S C(|7’1 —T2| + |ll — ZQD

We can now continue as in the proof of Theorem 4.1 in Chap.II of [4] to deduce, for almost
T and 9,

/| |<R(|r1(3:,T) —ro(z, T)| + |li(x,T) — la(z,T)|) dx
S/ (Ir1(z, 0) — ro(z, 8)| + l1 (2, 9) — la(,0)|) dx
|| <R+M(T—35)

T
e / / (1 (. 7) — o, )| + (0, 7) — l(, 7)) da
0 Jiz|<R+M(T—7)

with ¢ = ¢(T, R) > 0, increasing function of T" and R. Hence, by the assumption (1.15), we
derive, a.e. in T' > 0, since the two solutions have the same initial data,

/ |<R(|7“1(=’B,T) —ro(x, T)| + [li(x, T) — la(x, T)|) dx

T
Sc/ / (Ir1(z, 1) = ro(z, )| + |1 (2, 7) = la(z, 7)|) dz
0 Jiz|<R+M(T—1)

and this implies

/ (lIri(x, T) = ro(x, T)| + [l1(z,T) — lo(z, T)|) dx =0
|lz|<R
for all R > 0 and a.e. in T' > 0, which achieves the proof of Theorem 1.4.
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