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Abstract

The authors study homogenization of some nonlinear partial differential equations of the
form −div

(
a
(
hx, h2x,Duh

))
= f, where a is periodic in the first two arguments and monotone

in the third. In particular the case where a satisfies degenerated structure conditions is studied.

It is proved that uh converges weakly in W 1,1
0 (Ω) to the unique solution of a limit problem as

h → ∞. Moreover, explicit expressions for the limit problem are obtained.
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§1. Introduction

This paper is devoted to homogenization of partial differential operators including several
periodically oscillating length scales. This type of equations appear in many fields of physics
and engineering sciences where the physical phenomena occur in highly heterogeneous media.
One example is heat conduction in composite materials involving two different materials
which are periodically distributed. The local characteristics are then described by rapidly
oscillating functions. A direct numerical treatment of such problems is often impossible due
to the rapidly oscillating functions and one has to apply some type of asymptotic analysis.
The branch of mathematics developed for the analysis of these types of problems is known
as homogenization. For more information concerning the homogenization theory, the reader
is referred to [1, 2, 7, 10] and [12].

We will now give a short overview of previous results connected to this work and explain
what our contribution is. Let us consider the class of partial differential equations of the
form

−div(ah(x,Duh)) = f on Ω, uh ∈ W 1,p
0 (Ω), (1.1)

where ah is increasingly oscillating as h → ∞, Ω is an open bounded subset of Rn, 1 < p <
∞, 1/p+ 1/q = 1 and f ∈ W−1,q(Ω). The homogenization problem for (1.1) consists of the
study of the asymptotic behavior of solutions uh as h → ∞. In many important cases uh

converges weakly in W 1,p
0 (Ω) to the solution u of the homogenized problem

−div(b(Du) = f on Ω, u ∈ W 1,p
0 (Ω).

In [6] and [11] the following situation was studied: ah is of the form ah(x, ξ) = a(hx, ξ),
where a is monotone, continuous and satisfies suitable coerciveness and growth conditions in
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the second argument and is periodic in the first argument. A corresponding homogenization
result, with the difference that a only satisfies degenerate structure conditions, was obtained
in [9]. In this situation it is natural to work with weighted spaces which means that instead
of (1.1) we have

−div(a(hx,Duh)) = f on Ω, uh ∈ W 1,p
0 (Ω, λh),

where (λh) is a sequence of periodic weights.
In the case when ah(x, ξ) = a(hx, h2x, ξ), where a is periodic in the first two variables,

one speaks about reiterated homogenization. This concept was introduced by Bensoussan,
Lions and Papanicolaou in [1], where it was stated a result for linear operators. Concerning
reiterated homogenization of nonlinear problems we refer to [13] and [14]. One important
application of reiterated homogenization is that it has been an indispensable tool in the
construction of structures with extreme effective material properties. Concerning this topic
we refer to the collection of classical papers in [5], where the introduction gives a good
selection of references. We remark that some of the homogenization problems above also
have been studied by Γ-convergence for the corresponding variational problems and by two-
scale convergence, but leave out this discussion since it is out of the scope of this work.

In this paper we study reiterated homogenization where a only satisfies degenerate struc-
ture conditions. More precisely we prove that the solutions uh of

−div(a(hx, h2x,Duh)) = f on Ω, uh ∈ W 1,p
0 (Ω, λh),

converges weakly to u in W 1,1
0 (Ω), where u is the solution of a homogenized problem

−div(b(Du) = f on Ω, u ∈ W 1,p
0 (Ω).

This paper is organized in the following way: In Section 2 we fix some notation and present
necessary preliminary results. Section 3 contains the homogenization result described above,
which also is the main result of this paper. In Section 4 we derive a homogenization result for
an auxiliary problem. A key ingredient in the proof of the main result is that the solutions
of the auxiliary problem are used to define a special type of test function. Finally, in Section
5 we give some properties of the homogenized operator b.

§2. Preliminaries and Notation

Let Ω be a regular bounded open subset of Rn and |E| denote the Lebesgue measure of
the set E in Rn. Moreover let ⟨·, ·⟩ denote the Euclidean scalar product on Rn and χE the
characteristic function of the set E. Let p be a real constant 1 < p < ∞ and let q be its
conjugate exponent, 1/p+1/q = 1. We will denote by C and Ci constants that may change
from one place to another.

Furthermore, let Y = Z = (0, 1)
n
be the unit cube in Rn. Let {Ωi ⊂ Y : i = 1, · · · , N}

be a family of disjoint open sets such that
∣∣Y \

N∪
i=1

Ωi

∣∣ = 0 and |∂Ωi| = 0.

Let λ be a weight on Rn, i.e. λ is measurable and
λ > 0 a.e., λ and λ−1/(p−1) are in L1

loc (R
n) . (2.1)

We denote by Lp (Ω, λ) the set of real functions u in L1
loc (Ω) such that uλ1/p is in Lp (Ω),

by W 1,p (Ω, λ) the set of the functions u in W 1,1
loc (Ω) such that u ∈ Lp (Ω, λ) and Du ∈

[Lp (Ω, λ)]
n
. Moreover, we denote by W 1,p

0 (Ω, λ) the completion of C1
0 (Ω) with respect to

the norm in W 1,p (Ω, λ), i.e.

∥u∥W 1,p(Ω,λ) =
(∫

Ω

(
|u|p + |Du|p

)
λ dx

)1/p

.

By C1
per (Y ) we mean the set of all Y -periodic functions in C1 (Rn) with mean value zero.

We also define W 1,p
per (Ω, λ) as the set of real functions u in W 1,1

loc (Rn) with mean value zero

such that u is Y -periodic and u ∈ W 1,p (Y, λ) .
We now define the Muckenhoupt Ap class:
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Definition 2.1. Let p > 1, K ≥ 1 and let λ be a weight on Rn. Then λ is in the class
Ap (K) if ( 1

|Q|

∫
Q

λ dz
)( 1

|Q|

∫
Q

λ− 1
p−1 dz

)p−1

≤ K

for every cube Q ∈ Rn with faces parallel to the coordinate planes. We set Ap =
∪

K≥1

Ap (K) .

Let λi be a Y -periodic weight on Rn, i.e. λi satisfies (2.1) and is Y -periodic. We define
the weights λh and λh as

λh (x) =
N∑
i=1

χΩi (x)λi (hx) , λh (x) =
N∑
i=1

χΩi (hx)λi

(
h2x

)
. (2.2)

Then it follows that λh, λh
−1/(p−1), λh and λh

−1/(p−1) all are in L1
loc (R

n) . Moreover, we

assume that λi, λh and λh are in Ap (K) for some K.
Let a : Rn ×Rn ×Rn → Rn be a function such that

a (y, z, ξ) =
N∑
i=1

χΩi (y) ai (z, ξ) . (2.3)

We assume that a (·, z, ξ) is Y -periodic and a (y, ·, ξ) is Z-periodic. We also assume that a
satisfies certain continuity and monotonicity conditions. To be more specific, assume that
there exist constants ci1, c

i
2 > 0 and constants α and β with 0 ≤ α ≤ min (1, p− 1) and

max (p, 2) ≤ β < ∞ such that
|ai (z, ξ1)− ai (z, ξ2)| ≤ ci1λi (z) (1 + |ξ1|+ |ξ2|)p−1−α |ξ1 − ξ2|α , (2.4)

⟨ai (z, ξ1)− ai (z, ξ2) , ξ1 − ξ2⟩ ≥ ci2λi (z) (1 + |ξ1|+ |ξ2|)p−β |ξ1 − ξ2|β , (2.5)

for a.e. z ∈ Rn, every ξ ∈ Rn. Moreover we assume that
ai (z, 0) = 0 (2.6)

for a.e. z ∈ Rn.
As a direct consequence of (2.4), (2.5), and (2.6) the following inequalities hold:

|ai (z, ξ)| ≤ ciaλi (z)
(
1 + |ξ|p−1

)
, (2.7)

λi (z) |ξ|p ≤ cib (λi (z) + ⟨ai (z, ξ) , ξ⟩) , (2.8)∫
Z

|ξ +Dvξi |
pλi (z) dz ≤ cic (1 + |ξ|p) . (2.9)

In [8] the following result is proved.
Lemma 2.1. Let p > 1 and K ≥ 1. Then there exist two positive constants δ = δ (n, p,K)

and C = C (n, p,K) such that( 1

|Q|

∫
Q

λ1+δdy
) 1

1+δ ≤ C
1

|Q|

∫
Q

λ dy, (2.10)( 1

|Q|

∫
Q

λ−(1+δ)/(p−1)dy
) 1

1+δ ≤ C
1

|Q|

∫
Q

λ−1/(p−1)dy, (2.11)

for every cube with faces parallel to the coordinate planes and every λ ∈ Ap (K) .
In [9] the following weighted compensated compactness result is proved.
Lemma 2.2. Let ν ∈ Ap, K ≥ 1, let (λh) be a family in Ap (K) and let Ω be an open

bounded set. Let (uh) be a family of functions satisfying
(1)

∫
Ω
|Duh|p λh dy ≤ C1 < ∞ for every h ∈ N,

(2) there exists a function u ∈ W 1,p (Ω, ν) such that uh → u in L1 (Ω) .
Moreover, let (ah) be a family of vector functions in Rn such that

(3)
∫
Ω
|ah|q λ−1/(p−1)

h dy ≤ C2 < ∞ for every h ∈ N,

(4) div (ah) = f ∈ L∞ (Ω) on C1
0 (Ω) for every h ∈ N,
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(5) there exists a ∈
[
Lq

(
Ω, ν−1/(p−1)

)]n
such that ah → a weakly in

[
L1 (Ω)

]n
.

Then ∫
Ω

⟨ah, Duh⟩ϕdy →
∫
Ω

⟨a,Du⟩ϕdy

for every ϕ ∈ C∞
0 (Ω) .

In [15] the following convergence result for periodic functions is proved.
Lemma 2.3. Let 1 ≤ p ≤ ∞ and let uh ∈ Lp

loc (R
n) be Y -periodic for h ∈ N. More-

over, suppose that uh → u weakly in Lp (Y ) (weakly∗ if p = ∞) as h → ∞. Let wh be
defined by wh (x) = uh (hx) . Then as h → ∞ it holds that wh → 1

|Y |
∫
Y
u (y) dy weakly in

Lp (Ω) (weakly∗ if p = ∞).
We end this section with a simple extension lemma.
Lemma 2.4. Let λ be a Y -periodic weight on Rn; let g : Y → Rn be a function such

that

g ∈ [Lq(Y, λ−1/(p−1)]n,

∫
Y

⟨g,Dw⟩ dy = 0, ∀w ∈ W 1,p
per (Y, λ) ,

and let g̃ be the Y -periodic extension to Rn of g. Then we have

g̃ ∈ [Lq
loc(R

n, λ−1/(p−1))]n,

∫
Rn

⟨g̃, Dv⟩ dy = 0, ∀v ∈ C1
0 (R

n) .

In situations where no confusion can occur we will use the same notation for the extended
function as for the original one.

§3. The Main Theorem

Let us consider the following Dirichlet problems:{∫
Ω

⟨
a
(
hx, h2x,Duh

)
, Dϕ

⟩
dx =

∫
Ω
fϕ dx, ∀ϕ ∈ W 1,p

0 (Ω, λh) ,

uh ∈ W 1,p
0 (Ω, λh) ,

(3.1)

where f ∈ L∞ (Ω) . By standard results in existence theory there exist unique solutions for
each h. Below we state the main result of this paper.

Theorem 3.1. Let (uh) be the solutions of (3.1). Then
uh → u weakly in W 1,1

0 (Ω) ,

a
(
hx, h2x,Duh

)
→ b (Du) weakly in

[
L1 (Ω)

]n
,

as h → ∞, where u is the unique solution of{∫
Ω
⟨b (Du) , Dϕ⟩ dx =

∫
Ω
fϕ dx for every ϕ ∈ W 1,p

0 (Ω) ,

u ∈ W 1,p
0 (Ω) .

(3.2)

The operator b : Rn → Rn is defined as

b (ξ) =
1

|Y |

∫
Y

bY
(
y, ξ +Duξ (y)

)
dy,

where uξ is the unique solution of the Y -cell problem{∫
Y

⟨
bY

(
y, ξ +Duξ (y)

)
, Dϕ

⟩
dy = 0 for every ϕ ∈ W 1,p

per (Y ) ,

uξ ∈ W 1,p
per (Y ) .

The operator bY : Y ×Rn → Rn is defined as bY (y, ξ) =
N∑
i=1

χΩi (y) bi (ξ) , where

bi (ξ) =
1

|Z|

∫
Z

ai

(
z, ξ +Dvξi (z)

)
dz,

and vξi are the unique solutions of the Z-cell problems{∫
Z

⟨
ai

(
z, ξ +Dvξi (z)

)
, Dϕ (z)

⟩
dz = 0 for every ϕ ∈ W 1,p

per (Z, λi) ,

vξi ∈ W 1,p
per (Z, λi) .
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Proof. Let us first prove that ∥Duh∥Lp(Ω,λh)
≤ C. By periodicity it follows that∫

Ω

λh (x) dx ≤ C,

∫
Ω

(λh (x))
−1/(p−1)

dx ≤ C. (3.3)

Thus, by (2.8), (3.1), (3.3), Poincare’s and Hölder’s inequalities we obtain∫
Ω

|Duh|p λh (x) dx ≤ cb

(∫
Ω

λh (x) dx+

∫
Ω

fuh dx
)

≤ C
(∫

Ω

λh (x) dx+ ∥f∥L∞(Ω)

∫
Ω

|Duh| dx
)
≤ C

(
1 +

(∫
Ω

|Duh|pλh(x)dx
)1/p)

.

Hence it is clear that
∥Duh∥Lp(Ω,λh)

≤ C. (3.4)

Let ηh be defined as ηh = a
(
hx, h2x,Duh

)
. Then (2.7) and (3.4) implies

∥ηh∥[Lq(Ω,λ
−1/(p−1)
h )]n

≤ C. (3.5)

Take δ > 0 such that (2.11) holds. Now choose σ1 such that
1 + σ1

p− 1− σ1
=

1 + δ

p− 1
.

Then σ1 > 0 and p− 1− σ1 > 0. Let Q be a cube in Rn containing Ω. Hölder’s inequality
and (3.4) then gives∫

Ω

|Duh|1+σ1 dx ≤
(∫

Ω

|Duh|p λhdx
) 1+σ1

p
(∫

Ω

λh
− 1+σ1

p−1−σ1 dx
) p−1−σ1

p

≤ C
(∫

Ω

λh
− 1+δ

p−1 dx
) p−1

p+δ ≤ C
(∫

Q

λh
− 1+δ

p−1 dx
) p−1

p+δ

.

By applying (2.11) and (3.3) in the inequality above, we obtain∫
Ω

|Duh|1+σ1 dx ≤ C
(∫

Q

λh
1/(1−p) dx

)(p−1)(1+δ)/(p+δ)

≤ C. (3.6)

Next, choose δ > 0 such that (2.10) holds and choose σ2 such that

1 + δ = (1 + σ2)
q − 1

q − 1− σ2
.

Then σ2 > 0 and q−1−σ2 > 0. By using (2.10) and arguing similarly as for (3.6) we obtain∫
Ω

|ηh|1+σ2 dx ≤ C.

This means that (uh) and (ηh) are bounded inW 1,1+σ1

0 (Ω) and
[
L1+σ2 (Ω)

]n
respectively.

Since these spaces are reflexive, we have that there exist subsequences, still denoted by (uh)
and (ηh), such that

uh → u∗ weakly in W 1,1+σ1

0 (Ω) , (3.7)

ηh → η∗ weakly in
[
L1+σ2 (Ω)

]n
. (3.8)

From (3.7) and (3.8) it follows that

uh → u∗ weakly in W 1,1
0 (Ω) , (3.9)

ηh → η∗ weakly in
[
L1 (Ω)

]n
. (3.10)

From our original problem (3.1) we have∫
Ω

⟨ηh, Dϕ⟩ dx =

∫
Ω

fϕ dx for every ϕ ∈ W 1,p
0 (Ω, λh) . (3.11)

By using the fact C1
0 (Ω) ⊂ W 1,p

0 (Ω, λh) and (3.10) we can pass to the limit in (3.11), thus∫
Ω

⟨η∗, Dϕ⟩ dx =

∫
Ω

fϕ dx for every ϕ ∈ C1
0 (Ω) .
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Density and the fact that η∗ ∈ [Lq (Ω)]
n
(see (3.17)) then gives∫

Ω

⟨η∗, Dϕ⟩ dx =

∫
Ω

fϕ dx for every ϕ ∈ W 1,p
0 (Ω) . (3.12)

Let us now observe that by (3.9), (3.10) and (3.12) the theorem is proved if we show that

u∗ ∈ W 1,p
0 (Ω) , (3.13)

η∗ = b (Du∗) a.e. on Ω, (3.14)

since the uniqueness of the solution of the homogenized problem (3.2) then implies that
u∗ = u a.e. on Ω.

We start with the proof of (3.13). We observe that since Ω is a regular bounded open set
it is sufficient to show that Du∗ ∈ [Lp (Ω)]

n
. Let ϕ ∈ C0 (Ω) . Then Hölder’s inequality and

(3.4) gives

∥Duhϕ∥[L1(Ω)]n ≤
(∫

Ω

|Duh|p λh(x) dx
) 1

p
(∫

Ω

(λh (x))
− 1

p−1 |ϕ|q dx
) 1

q

≤ C
(∫

Ω

(λh (x))
− 1

p−1 |ϕ|q dx
) 1

q

. (3.15)

Applying lim inf on both sides of (3.15) and using the weak lower semicontinuity of the norm
on the left hand side and periodicity on the right hand side we obtain∫

Ω

|Du∗| |ϕ| dx ≤ C ∥ϕ∥Lq(Ω) for every ϕ ∈ C0 (Ω) .

By density and Landau’s theorem we then have that

Du∗ ∈ [Lp (Ω)]
n
. (3.16)

By using (3.5) and arguments similar to those employed in the proof of (3.16) it can also be
deduced that

η∗ ∈ [Lq (Ω)]
n
. (3.17)

It remains to prove (3.14). For this purpose let us define the test function

wξ
h (x) = (ξ, x) +

1

h
uξ
h (hx) ,

where uξ
h is defined as in the auxiliary problem (see Section 4). To be able to apply the

compensated compactness result (Lemma 2.2) we have to prove certain facts about wξ
h and

a
(
hx, h2x,Dwξ

h

)
. Therefore, by periodicity, (4.5) and the fact that λh (x) = λh (hx) we get∫

Ω

∣∣∣Dwξ
h

∣∣∣p λh(x) dx ≤ C. (3.18)

Moreover, by using (2.7) and (3.18) we obtain∫
Ω

|a(hx, h2x,Dwξ
h)|

q (λh (x))
−1/(p−1)

dx ≤ C.

By periodicity and Lemma 2.3 we have that

wξ
h (·) → (ξ, ·) in L1 (Ω) ,

a
(
hx, h2x,Dwξ

h

)
→ 1

|Y |

∫
Y

bY
(
y, ξ +Duξ

)
dy = b (ξ) weakly in

[
L1 (Ω)

]n
.

Finally, due to (4.6), we can apply Lemma 2.4 on (4.1) and obtain

div
(
a
(
hx, h2x,Dwξ

h

))
= 0 on C1

0 (Ω) ,
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and we are now ready to apply the compensated compactness result. Indeed, by the mono-
tonicity of a we have for a fixed ξ that∫

Ω

⟨
ηh − a

(
hx, h2x,Dwξ

h (x)
)
, Duh (x)−Dwξ

h (x)
⟩
ϕ (x) dx ≥ 0

for every ϕ ∈ C∞
0 (Ω), ϕ ≥ 0. By the compensated compactness lemma (Lemma 2.2) with

the weight ν = 1, we get in the limit∫
Ω

⟨η∗ − b (ξ) , Du∗ (x)− ξ⟩ϕ (x) dx ≥ 0

for every ϕ ∈ C∞
0 (Ω) , ϕ ≥ 0. Hence for our fixed ξ ∈ Rn we have that

⟨η∗ − b (ξ) , Du∗ (x)− ξ⟩ ≥ 0 for a.e. x ∈ Ω.

By density and the continuity of b (see Lemma 5.2), it follows that

⟨η∗ − b (ξ) , Du∗ (x)− ξ⟩ ≥ 0 for a.e. x ∈ Ω and every ξ ∈ Rn.

Since b is monotone (5.3) and continuous (5.4), we have that b is maximal monotone and
hence (3.14) follows. Finally, let us observe that we have proved the theorem only up to
a subsequence, but since the homogenized operator is uniquely defined and the solution of
the homogenized problem is unique we can conclude that the theorem holds for the whole
sequence.

§4. An Auxiliary Problem

In this section we prove a homogenization result for the auxiliary problem. This result
was used in the definition of the special type of test functions defined in the proof of the
main result (Theorem 3.1) of this paper.

Fix ξ and consider the following Dirichlet problems:{∫
Y
⟨a(y, hy, ξ +Duξ

h), Dϕ⟩dy = 0, ∀ϕ ∈ W 1,p
per

(
Y, λh

)
,

uξ
h ∈ W 1,p

per

(
Y, λh

)
.

(4.1)

By standard results in existence theory there exist unique solutions for each h. Below we
state the auxiliary result of this paper.

Theorem 4.1. Let
(
uξ
h

)
be the solutions of (4.1). We then have that

uξ
h → uξ weakly in W 1,1

per (Y ) ,

a
(
y, hy, ξ +Duξ

h

)
→ bY

(
y, ξ +Duξ

)
weakly in

[
L1 (Y )

]n
,

as h → ∞, where uξ is the unique solution of{∫
Y

⟨
bY

(
y, ξ +Duξ

)
, Dϕ

⟩
dy = 0 for every ϕ ∈ W 1,p

per (Y ) ,

uξ ∈ W 1,p
per (Y ) .

(4.2)

The operator bY : Y ×Rn → Rn is defined as bY (y, τ) =
N∑
i=1

χΩi (y) bi (τ) , where

bi (τ) =
1

|Z|

∫
Z

ai (z, τ +Dvτi (z)) dz

and vτi are the unique solutions of the Z-cell problems{∫
Z
⟨ai (z, τ +Dvτi (z)) , Dϕ (z)⟩ dz = 0, ∀ϕ ∈ W 1,p

per (Z, λi) ,

vτi ∈ W 1,p
per (Z, λi) .

(4.3)

Proof. By (2.8), (4.1) and (2.7) we have that∫
Y

|ξ +Duξ
h|

pλh (y) dy ≤ Cb

(∫
Y

λh (y) dy + Ca

∫
Y

(
1 + |ξ +Duξ

h|
p−1

)
λh (y) |ξ| dy

)
.
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Moreover, if we use Young’s inequality on the right hand side and rearrange the resulting
inequality we obtain (

1− CaCb2
q−1η

q

)∫
Y

|ξ +Duξ
h|

pλh (y) dy

≤ Cb

(
1 +

Ca2
q−1η

q
+

Ca |ξ|p η−(p−1)

p

)∫
Y

λh (y) dy,

where η is a positive real number. By choosing η small enough we get that∫
Y

|ξ +Duξ
h|

pλh (y) dy ≤ C. (4.4)

In particular this implies ∫
Y

|Duξ
h|

pλh (y) dy ≤ C. (4.5)

Let us define ηih = ai(hy, ξ +Duξ
h). By using (2.7) and (4.4), it follows that∫

Ωi

∣∣ηih∣∣q (λi (hy))
−1/(p−1)

dy ≤ C. (4.6)

Moreover, by using (2.11), (4.5), (2.10), (4.6) and arguments similar to those employed in
the proof of (3.6), it can be deduced that∫

Y

∣∣∣Duξ
h

∣∣∣1+κ1

dy ≤ C,

∫
Ωi

∣∣ηih∣∣1+κ2
dy ≤ C.

Thus we have that
(
uξ
h

)
and

(
ηih

)
are bounded inW 1,1+κ1

per (Y ) and
[
L1+κ2 (Ωi)

]n
respectively.

Since these spaces are reflexive, there exist subsequences, still denoted by
(
uξ
h

)
and

(
ηih

)
,

such that

uξ
h → uξ

∗ weakly in W 1,1+κ1
per (Y ) , ηih → ηi∗ weakly in

[
L1+κ2 (Ωi)

]n
.

Hence we can conclude that

uξ
h → uξ

∗ weakly in W 1,1
per (Y ) , ηih → ηi∗ weakly in

[
L1 (Ωi)

]n
. (4.7)

Using similar ideas as in the proof of (3.16), it can be shown that

ηi∗ ∈ [Lq (Y )]
n
. (4.8)

From (4.1) and (4.7) it follows that

N∑
i=1

∫
Ωi

⟨
ηi∗, Dϕ

⟩
dy = 0 for every ϕ ∈ C1

per (Y ) .

Density arguments in conjunction with (4.8) then results in

N∑
i=1

∫
Ωi

⟨
ηi∗, Dϕ

⟩
dy = 0 for every ϕ ∈ W 1,p

per (Y ) .

Thus the theorem is proved if we show that

uξ
∗ ∈ W 1,p

per (Y ) , (4.9)

ηi∗ = bi
(
ξ +Duξ

∗
)
a.e. on Ωi, (4.10)

since the uniqueness of the solution of the homogenized problem (4.2) then implies that

uξ
∗ = uξ a.e. on Y.
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Let us start with (4.9). We observe that since Y is a regular bounded open set it is

sufficient to show that Duξ
∗ ∈ [Lp (Y )]

n
which is obtained using the same ideas as in the

proof of (3.16).

It remains to prove (4.10). Therefore let us define the test function wτ,i
h by

wτ,i
h (y) = (τ, y) +

1

h
vτi (hy) , (4.11)

where vτi ∈ W 1,p
per (Z, λi) is defined as in (4.3). To be able to apply the compensated com-

pactness result (Lemma 2.2) we have to prove certain facts about wτ,i
h and ai

(
hy,Dwτ,i

h

)
.

Indeed, ∫
Ωi

|Dwτ,i
h |pλi (hy) dy ≤ C (4.12)

follows from (4.11). Moreover, we also have that∫
Ωi

|ai(hy,Dwτ,i
h )|q(λi(hy))

−1/(p−1)dy ≤ C

by (2.7) and (4.12). By periodicity we obtain

wτ,i
h (·) → (τ, ·) strongly in L1 (Ωi) ,

ai(hy,Dwτ,i
h ) → 1

|Z|

∫
Z

ai (z, τ +Dvτi (z)) dz = bi (τ) weakly in
[
L1 (Ωi)

]n
.

Application of Lemma 2.4 on (4.3) gives div(ai(hy,Dwτ,i
h )) = 0 on C1

0 (Ωi) . By the mono-
tonicity of ai we have for a fixed τ that∫

Ωi

⟨ηi∗ − ai(hy,Dwτ,i
h (y)), ξ +Duξ

h(y)−Dwτ,i
h (y)⟩ϕ (y) dy ≥ 0

for every ϕ ∈ C∞
0 (Ωi), ϕ ≥ 0. By the compensated compactness lemma (Lemma 2.2) with

ν = 1, we then get in the limit∫
Ωi

⟨
ηi∗ − bi (τ) , ξ +Duξ

∗ (y)− τ
⟩
ϕ (y) dy ≥ 0

for every ϕ ∈ C∞
0 (Ωi) , ϕ ≥ 0. Hence for our fixed τ ∈ Rn we have that⟨

ηi∗ − bi (τ) , ξ +Duξ
∗ (y)− τ

⟩
≥ 0 for a.e. y ∈ Ωi.

By density and the continuity of bi (5.2), it follows that⟨
a∗ − bi (τ) , ξ +Duξ

∗ (y)− τ
⟩
≥ 0 for a.e. y ∈ Ωi and every τ ∈ Rn.

Since bi is monotone (5.1) and continuous (5.2), we have that bi is maximal monotone and
hence (4.10) follows.

§5. Properties of the Homogenized Operators bi and b

In this section we list some properties of the homogenized operators bi and b. In particular
these properties imply the existence and uniqueness of the solution of the homogenized
problem (in the auxiliary and main problem respectively).

Lemma 5.1. Let bi be the homogenized operator defined in Theorem 4.1. Then
(a) bi (·) is strictly monotone. In particular, we have that

⟨bi (τ1)− bi (τ2) , τ1 − τ2⟩ ≥ c̃2 (1 + |τ1|+ |τ2|)p−β |τ1 − τ2|β (5.1)

for every τ1, τ2 ∈ Rn.
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(b) bi (·) is continuous. In particular, we have for γ = α
β−α that

|bi (τ1)− bi (τ2)| ≤ c̃1 (1 + |τ1|+ |τ2|)p−1−γ |τ1 − τ2|γ (5.2)

for every τ1, τ2 ∈ Rn.
(c) bi (0) = 0.
Proof. These properties follow by using the same ideas as in [3] and [4].
Lemma 5.2. Let b be the homogenized operator defined in Theorem 3.1. Then
(a) b (·) is strictly monotone. In particular, we have that

⟨b (ξ1)− b (ξ2) , ξ1 − ξ2⟩ ≥ C̃2 (1 + |ξ1|+ |ξ2|)p−β |ξ1 − ξ2|β (5.3)

for every ξ1, ξ2 ∈ Rn.
(b) b (·) is continuous. In particular, we have for δ = γ

β−γ = α
(β−α)β−α that

|b (ξ1)− b (ξ2)| ≤ C̃1 (1 + |ξ1|+ |ξ2|)p−1−δ |ξ1 − ξ2|δ (5.4)

for every ξ1, ξ2 ∈ Rn.
(c) b (0) = 0.
Proof. These properties follow by using (5.1) and (5.2) in the corresponding theorem

given in for example [3] and [4].
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