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§1. Introduction

Consider the following first order quasilinear strictly hyperbolic system

∂u

∂t
+A(u)

∂u

∂x
= 0, (1.1)

where u = (u1, · · · , un)
T is the unknown vector function of (t, x) and A(u) = (aij(u)) is an

n× n matrix with suitably smooth elements aij(u)(i, j = 1, · · · , n).
By the strict hyperbolicity, for any given u on the domain under consideration, A(u) has

n distinct real eigenvalues:

λ1(u) < λ2(u) < · · · < λn(u). (1.2)

Let li(u) = (li1(u), · · · , lin(u))(resp. ri(u) = (ri1(u), · · · , rin(u))T ) be a left (resp. right)
eigenvector corresponding to λi(u)(i = 1, · · · , n):

li(u)A(u) = λi(u)li(u) (resp. A(u)ri(u) = λi(u)ri(u)). (1.3)

We have

det |lij(u)| ̸= 0 (equivalently, det|rij(u)| ̸= 0). (1.4)

All λi(u), lij(u) and rij(u)(i, j = 1, · · · , n) have the same regularity as aij(u)(i, j =
1, · · · , n).

Without loss of generality, we may suppose that

li(u)rj(u) ≡ δij (i, j = 1 · · · , n), (1.5)

rTi (u)ri(u) ≡ 1 (i, j = 1 · · · , n), (1.6)
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where δij stands for the Kronecker’s symbol.
For the following initial data

t = 0 : u = φ(x), (1.7)

where φ(x) is a “small” C1 vector function of x. If φ(x) possesses certain decay properties
as |x| → +∞ and System (1.1) is weakly linearly degenerate, Li Ta-tsien, Zhou Yi and
Kong De-xing have given in [1, 2] a complete result on the global existence of C1 solution
to Cauchy problem (1.1) and (1.7). Later, by means of the continuous Glimm functional,
Li Ta-tsien and Kong De-xing in [3] simplified the proof of the global existence given in [2].
By constructing a counter example, Kong De-xing showed in [4] that the necessary decay
property of initial data is essential for guaranteeing the global existence of classical solution
to Cauchy problem (1.1) and (1.7). Moreover, in the case that φ(x) possesses compact
support and small initial total variation, when system (1.1) is strictly hyperbolic and linearly
degenerate in the sense of P.D.Lax, A.Bressan also gave in [5] the global existence of classical
solution to Cauchy problem (1.1) and (1.7).

The main aim of this paper is to generalize the result of [5] to the case that system (1.1)
is weakly linearly degenerate.

First of all, we recall the concept of weak linear degeneracy (see [1, 2]) as follows.
Definition 1.1. The i-th characteristic λi(u) is weakly linearly degenerate, if along the

i-th characteristic trajectory u = u(i)(s) passing through u = 0, defined by{ du
ds = ri(u),

s = 0 : u = 0,
(1.8)

we have

∇λi(u)ri(u) ≡ 0, ∀|u| small, (1.9)

namely,

λi(u
(i)(s)) ≡ λi(0), ∀|s| small. (1.10)

If all characteristics are weakly linearly degenerate, System (1.1) is called to be weakly linearly
degenerate.

The main result of this paper is the following
Theorem 1.1. Suppose that in a neighbourhood of u = 0, A(u) ∈ c2 and System (1.1) is

strictly hyperbolic and weakly linearly degenerate. Suppose furthermore that the initial data
φ(x) satisfy the following properties:

(i) φ(x) ∈ C1;
(ii) φ(x) has compact support: suppφ(x) ∈ [α0, β0],where α0 < β0;
(iii) The initial total variation is small enough, namely,

θ
△
=

∫ +∞

−∞
|φ′(x)|dx << 1. (1.11)

Then there exists θ0 > 0 so small that for any given θ ∈ [0, θ0], Cauchy problem (1.1) and
(1.7) admits a unique global C1 solution u = u(t, x) for all t ∈ R.

For the sake of completeness, in Section 2 we will briefly recall F. John’s formulas on the
decomposition of waves with some supplements (see [6,1]), which will play an important role
in the sequel. In Section 3, we shall establish a uniform a priori estimate on the C1 norm of
C1 solution u = u(t, x) to Cauchy problem (1.1) and (1.7), and then prove Theorem 1.1.

§2. Decomposition of Waves

Suppose that A(u) ∈ Ck, where k is an integer ≥ 1. By Lemma 2.5 in [1], there exists a
Ck+1 local diffeomorphism u = u(ũ)(u(0) = 0), such that in ũ-space, for each i = 1, · · · , n,
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the i-th characteristic trajectory passing through ũ = 0 coincides with the ũ-axis at least
for |ũ| small, namely,

r̃i(ũiei)∥ei, ∀|ui| small (i = 1, · · · , n), (2.1)

where

ei = (0, · · · , 0,
(i)

1 , 0, · · · , 0)T . (2.2)

Such a diffeomorphism is called the normalized transformation and the corresponding un-
known variables ũ = (ũ1, · · · , ũn) are called the normalized variables or normalized coordi-
nates.

Let

vi = li(u)u (i = 1, · · · , n), (2.3)

wi = li(u)ux (i = 1, · · · , n), (2.4)

where li(u) denotes the i-th left eigenvector.
By (1.5), it is easy to see that

u =

n∑
k=1

vkrk(u), (2.5)

ux =
n∑

k=1

wkrk(u). (2.6)

Let
d

dit
=

∂

∂t
+ λi(u)

∂

∂x
(2.7)

be the directional derivative along the i-th characteristic. We have (see [6,1])

dvi
dit

=
n∑

j,k=1

βijk(u)vjwk (i = 1, · · · , n), (2.8)

where

βijk(u) = (λk(u)− λi(u))li(u)∇rj(u)rk(u). (2.9)

Hence, we have

βiji(u) ≡ 0, ∀j, (2.10)

and in normalized coordinates

βijj(ujej) ≡ 0, ∀|uj | small, ∀i, j. (2.11)

It follows from (2.8) that

∂vi
∂t

+
∂(λi(u)vi)

∂x
=

n∑
j,k=1

Bijk(u)vjwk (i = 1, · · · , n), (2.12)

where

Bijk(u) = βijk(u) +∇λi(u)rk(u)δij . (2.13)

By (2.11), in normalized coordinates

Bijj(ujej) ≡ 0, ∀|uj | small, ∀j ̸= i, (2.14)

and, when the i-th characteristic λi(u) is weakly linearly degenerate,

Biii(uiei) ≡ 0, ∀|ui| small, ∀i. (2.15)
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Moreover

Biji(u) ≡ 0, ∀j ̸= i; (2.16)

while

Biii(u) = ∇λi(u)ri(u), (2.17)

and only in the case that λi(u) is linearly degenerate in the sense of P.D.Lax, we have

Biii(u) ≡ 0, ∀i. (2.18)

On the other hand, we have (see [6,1])

dwi

dit
=

n∑
j,k=1

γijk(u)wjwk (i = 1, · · · , n), (2.19)

where

γijk(u) =
1

2
[(λj(u)− λk(u))li(u)∇rk(u)rj(u)−∇λk(u)rj(u)δik + (j|k)], (2.20)

in which (j|k) stands for all terms obtained by changing j and k in the previous terms. We
have

γijj(u) ≡ 0, ∀j ̸= i, (2.21)

γiii(u) = −∇λi(u)ri(u), ∀i. (2.22)

When the i-th characteristic λi(u) is linearly degenerate in the sense of P.D.Lax, we have

γiii(u) ≡ 0, ∀i; (2.23)

while, when λi(u) is weakly linearly degenerate, in normalized coordinates we have

γiii(uiei) ≡ 0, ∀|u| small, ∀i. (2.24)

It follows from (2.19) that

∂wi

∂t
+

∂(λi(u)wi)

∂x
=

n∑
j,k=1

Γijk(u)wjwk (i = 1, · · · , n), (2.25)

where

Γijk(u) = γijk(u) +
1

2
[∇λj(u)rk(u)δij + (j|k)]

=
1

2
(λj(u)− λk(u))li(u)[∇rk(u)rj(u)−∇rj(u)rk(u)].

(2.26)

We have

Γijj(u) ≡ 0, ∀i, j. (2.27)

In order to prove Theorem 1.1, we need Lemma 2.1 in [3] as follows.

Lemma 2.1 Suppose that u = u(t, x) is a C1 solution to System (1.1), τ1 and τ2 are
two C1 arcs which are never tangent to the i-th characteristic direction, and D is the domain
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bounded by τ1, τ2 and two i-th characteristic curves L−
i and L+

i . Then we have∫
τ1

|vi(dx− λi(u)dt)| ≤
∫
τ2

|vi(dx− λi(u)dt)|

+

∫∫
D

n∑
j,k=1

|Bijk(u)vjwk|dtdx, (2.28)∫
τ1

|wi(dx− λi(u)dt)| ≤
∫
τ2

|wi(dx− λi(u)dt)|

+

∫∫
D

n∑
j,k=1,j ̸=k

|Γijk(u)wjwk|dtdx, (2.29)

where vi, wi, Bijk(u) and Γijk(u) are defined by (2.3), (2.4), (2.13) and (2.26) respectively.

§3. Global Existence of C1 Solution—Proof of Theorem 1.1

Without loss of generality, we will prove our result in normalized coordinates. We may
also assume that

0 < λ1(0) < λ2(0) < · · · < λn(0). (3.1)

It is easy to know that there exist positive constants δ and δ0 so small that

λi+1(u)− λi(u) ≥ 4δ0, ∀|u| ≤ δ (i = 1, · · · , n− 1), (3.2)

|λi(u)− λi(v)| ≤
δ0
2
, ∀|u|, |v| ≤ δ (i = 1, · · · , n). (3.3)

Suppose that u = u(t, x) is the C1 solution to Cauchy problem (1.1) and (1.7) on the
domain D(T ) = {(t, x)|0 ≤ t ≤ T, |x| < ∞}. Let

L(u(t)) =

n∑
i=1

Li(u(t)) =

n∑
i=1

∫
R
|wi(t, x)|dx, (3.4)

Q(u(t)) =
∑
i<j

Qij(u(t)) =
∑
i<j

∫ ∫
x>y

|wi(t, x)||wj(t, y)|dxdy. (3.5)

By Lemma 3.3 in [3], we have
Lemma 3.1. Suppose that System (1.1) is strictly hyperbolic in a neighbourhood of u = 0

and (1.5), (1.6) hold. Suppose furthermore that u = u(t, x) is the C1 solution to Cauchy
problem (1.1) and (1.7) on the domain D(T ) = {(t, x)|0 ≤ t ≤ T, |x| < ∞}, and the initial
data φ(x) satisfy the assumptions given in Theorem 1.1. Let

γ
△
= L(φ). (3.6)

Then there exists γ0 > 0 so small that for any given γ ∈ [0, γ0], there exist two positive con-
stants κ1 and κ2 independent of γ and T , such that the following uniform a priori estimates
hold:

∥u(t, ·)∥C0 = sup
x∈R

|u(t, x)| ≤ κ1γ, ∀t ∈ [0, T ], (3.7)

L(u(t)) ≤ γ + κ2γ
2, ∀t ∈ [0, T ]. (3.8)

Remark 3.1. By (3.4) and (3.6), there exists θ0 > 0 so small that for any given θ ∈ [0, θ0],
we have

γ ≤ C0θ, (3.9)

where θ is defined by (1.11) and C0 is a positive constant independent of φ.
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Remark 3.2. By (3.8), (3.9), there exists θ0 > 0 so small that for any given θ ∈ [0, θ0],
we have

L(u(t)) ≤ Cθ, ∀t ∈ [0, T ], (3.10)

where C is a positive constant independent of φ.

Remark 3.3. By (3.7) and (3.9), there exists θ0 > 0 so small that for any given θ ∈ [0, θ0],
on any existence domain D(T ) of C1 solution u = u(t, x), we have

|u(t, x)| ≤ δ. (3.11)

This is the uniform a priori estimate on the C0 norm of C1 solution u = u(t, x).

Noting (3.11), by (3.1), it is easy to see that, when δ > 0 is small enough, on the existence
domain D(T ) of C1 solution u = u(t, x), we have

0 < λ1(u) < · · · < λn(u). (3.12)

For any fixed T > 0, let

DT
+ = {(t, x)|0 ≤ t ≤ T, x ≥ (λn(0) + δ0)t}, (3.13)

DT
− = {(t, x)|0 ≤ t ≤ T, x ≤ (λ1(0)− δ0)t}, (3.14)

DT = {(t, x)|0 ≤ t ≤ T, (λ1(0)− δ0)t ≤ x ≤ (λn(0) + δ0)t}, (3.15)

and for i = 1, · · · , n,

DT
i = {(t, x)|0 ≤ t ≤ T,

−[δ0 + η(λi(0)− λ1(0))]t ≤ x− λi(0)t ≤ [δ0 + η(λn(0)− λi(0))]t},
(3.16)

where η > 0 is suitably small (see Fig. 1).

Since η > 0 is small, by (3.2) we have

DT
i ∩DT

j = ∅, ∀i ̸= j, (3.17)
n∪

i=1

DT
i ⊂ DT . (3.18)

Fig. 1
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For any fixed constant µ > 0, let

V (DT
±) = max

i=1,··· ,n
∥(1 + t)2+µvi(t, x)∥L∞(DT

±), (3.19)

W (DT
±) = max

i=1,··· ,n
∥(1 + t)2+µwi(t, x)∥L∞(DT

±), (3.20)

V c
∞(T ) = max

i=1,··· ,n
sup

(t,x)∈DT /DT
i

(1 + t)2+µ|vi(t, x)|, (3.21)

W c
∞(T ) = max

i=1,··· ,n
sup

(t,x)∈DT /DT
i

(1 + t)2+µ|wi(t, x)|, (3.22)

U c
∞(T ) = max

i=1,··· ,n
sup

(t,x)∈DT /DT
i

(1 + t)2+µ|ui(t, x)|, (3.23)

Ṽ1(T ) = max
i=1,··· ,n

max
j ̸=i

sup
c̃j

∫
c̃j

|vi(t, x)|dx, (3.24)

where c̃j stands for any given j-th characteristic in DT
i ,˜̃

W 1(T ) = max
i=1,··· ,n

max
j ̸=i

sup
˜̃cj

∫
˜̃cj

|wi(t, x)|dx, (3.25)

where ˜̃cj stands for any given j-th characteristic in DT ,

V∞(T ) = max
i=1,··· ,n

sup
0≤t≤T,x∈R

|vi(t, x)|, (3.26)

U∞(T ) = max
i=1,··· ,n

sup
0≤t≤T,x∈R

|ui(t, x)|, (3.27)

W∞(T ) = max
i=1,··· ,n

sup
0≤t≤T,x∈R

|wi(t, x)|. (3.28)

Remark 3.4. By (3.7) and (3.9), and noting (2.3), there exists a constant C > 0 such
that

U∞(T ), V∞(T ) ≤ Cθ. (3.29)

Lemma 3.2. Suppose A(u) ∈ C2 in a neighbourhood of u = 0, and φ(x) satisfies the
assumptions given in Theorem 1.1. Then there exists θ0 > 0 so small that for any given
θ ∈ [0, θ0], on any existence domain D(T ) of C1 solution u = u(t, x) to Cauchy problem
(1.1) and (1.7), there exist two positive constants κ3 and κ4 independent of T and θ such
that

V (DT
±) ≤ κ3θ, (3.30)

W (DT
±) ≤ κ4. (3.31)

Remark 3.5. Since wi(0, x) = li(φ)φ
′(x)(i = 1, · · · , n) are not small, we should modify

the corresponding proof in [3].
Proof of Lemma 3.2. First of all, on any existence domain D(T ) of C1 solution

u = u(t, x), suppose that there exists a positive constant M such that

∥w(t, ·)∥C0 ≤ M, ∀t ∈ [0, T ]. (3.32)

At the end of the proof of Lemma 3.3 we shall explain that this hypothesis is reasonable.
We now prove (3.30), (3.31) for DT

+. The proof of (3.30), (3.31) for DT
− is similar. Let

W 1(T ) = max
i=1,··· ,n

max
j ̸=i

sup
c̄j

∫
c̄j

|wi(t, x)|dx, (3.33)

where c̄j : x = xj(t) stands for any given j-th characteristic in DT
+.

Noting that the initial data possess compact support, it is sufficient to estimate the
integral on the right-hand side of (3.33) in a finite time interval 0 ≤ t ≤ T0. By Lemma 2.1,
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noting (3.2) and (3.11), and using (3.10) and (3.32), we have (see Fig. 2, where both P1A1

and P2A2 are i-th characteristics)∫
c̄j

|wi(t, x)|dt =
∫ t2

t1

|wi(t, xj(t))|dt

=

∫ t2

t1

|λj(u(t, xj(t)))− λi(u(t, xj(t)))|
|λj(u(t, xj(t)))− λi(u(t, xj(t)))|

|wi(t, xj(t))|dt

≤ 1

4δ0

∫ t2

t1

|wi(t, xj(t))||λj(u(t, xj(t)))− λi(u(t, xj(t)))|dt

≤ 1

4δ0

∫ x2

x1

|wi(0, x)|dx+
1

4δ0

∫∫
A1A2P2P1

∑
j ̸=k

|Γijk(u)wjwk|dtdx

≤ C1{L(u(0)) +
∫ T0

0

∫ +∞

−∞

∑
j ̸=k

|Γijk(u)wjwk|dxdt}

≤ C2(1 +MT0)θ ≤ C3θ, (3.34)

henceforth Cj (j = 1, 2, · · · ) will denote positive constants independent of θ and T . So we
have

W 1(T ) ≤ C3θ. (3.35)

Fig.2

We now estimate V (DT
+) and W (DT

+).

For any given point (t, x) ∈ DT
+ with 0 ≤ t ≤ T0, we draw the i-th characteristic passing

through the point (t, x), which intersects the x-axis at a point (0, xi). Integrating (2.8) and
(2.19) along this i-th characteristic, we get

vi(t, x) = vi(0, xi) +

∫ t

0

n∑
j,k=1,k ̸=i

βijk(u)vjwkdτ, (3.36)

wi(t, x) = wi(0, xi) +

∫ t

0

n∑
j,k=1

γijk(u)wjwkdτ. (3.37)

Multiplying (1 + t)(2+µ) on both sides of (3.36), and noting 0 ≤ t ≤ T0 and (3.11), by
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(3.29) and (3.35), we get

(1 + t)(2+µ)|vi(t, x)|

≤ (1 + T0)
(2+µ){|vi(0, xi)|+

∫ T0

0

n∑
j,k=1,k ̸=i

|βijk(u)wjwk|dτ}

≤ C4(1 + T0)
(2+µ){V∞(T ) + V∞(T )W 1(T )}

≤ C5θ. (3.38)

Then, choosing κ3 ≥ C5, we have

V (DT
+) ≤ κ3θ. (3.39)

Similarly, multiplying (1 + t)(2+µ) on both sides of (3.37), and noting (2.21) and (2.24),
we have

(1 + t)(2+µ)|wi(t, x)| ≤ (1 + T0)
(2+µ){|wi(0, xi)|+

∫ T0

0

∑
j ̸=k

|γijk(u)wjwk|dτ

+

∫ T0

0

|γiii(u)− γiii(uiei)||wi|2dτ}. (3.40)

For Hadamard’s formula, we have

γiii(u)− γiii(uiei) =

∫ 1

0

∑
j ̸=i

∂riii
∂uj

(su1, · · · , suj−1, uj , suj+1, · · · , sun)ujds. (3.41)

Noting (3.11) and that φ(x) is a C1 function with compact support, and using (3.29), (3.32)
and (3.35), when θ > 0 is suitably small, it comes from (3.40) that

(1 + t)(2+µ)|wi(t, x)| ≤ C6{1 +MW 1(T ) +M2T0V∞(T )}
≤ C6 + C7M(1 +MT0)θ

≤ 2C6. (3.42)

Hence, choosing κ4 ≥ 2C6,we get

W (DT
+) ≤ κ4. (3.43)

Remark 3.6. κ4 can be chosen to be independent of M , provided that θ > 0 is suitably
small.

Lemma 3.3. Under the assumptions of Theorem 1.1, there exists θ0 so small that for
any given θ ∈ [0, θ0], on any existence domain D(T ) of C1 solution to Cauchy problem (1.1)
and (1.7), there exist positive constants κi(i = 5, 6, 7, 8, 9) independent of θ and T , such that

W c
∞(T ) ≤ κ5,

˜̃
W 1(T ) ≤ κ6θ, (3.44)

V c
∞(T ) ≤ κ7θ, Ṽ1(T ) ≤ κ8θ, (3.45)

W∞(T ) ≤ κ9. (3.46)

Proof First of all, by (2.3) and (3.11), when δ > 0 is suitably small, we have

U c
∞(T ) ≤ C7V

c
∞(T ). (3.47)

We now estimate
˜̃
W 1(T ) (see Fig.3).
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Fig.3

Let

˜̃cj : x = xj(t) (0 ≤ t1 ≤ t ≤ t2 ≤ T ). (3.48)

Noting (3.11), for δ > 0 small enough, we have

λ1(0)− δ0 < λj(u) < λn(0) + δ0.

Then ˜̃cj intersects x = (λ1(0) − δ0)t and t = T at points P1(t1, xj(t1)) and P2(T, xj(T ))
respectively. Passing through the point P1 (resp. P2), we draw the i-th characteristic which
intersects the x-axis at a point A1(0, y1) (resp. A2(0, y2)). We have

∫
˜̃cj

|wi(t, x)|dx =

∫ T

t1

|wi(t, xj(t))|dt. (3.49)

In order to estimate
∫ T

t1
|wi(t, xj(t))|dt, similarly to (3.34), using (2.29) on the domain

P1A1A2P2 and noting (3.10) and (3.31), we see that

∫ T

t1

|wi(t, xj(t))|dt ≤
1

4δ0

∫ T

t1

|wi(t, xj(t))||λj(u(t, xj(t)))− λi(u(t, xj(t)))|dt

≤ 1

4δ0

∫ y2

0

|wi(0, x)|dx+
1

4δ0

∫ ∫
P1A1A2P2

∑
j ̸=k

|Γijk(u)wjwk|dtdx

≤ C8θ + C9(W (DT
+) +W c

∞(T ))

∫ T

0

(1 + τ)−(2+µ)L(u(τ))dτ

≤ C10θ(1 +W c
∞(T )). (3.50)

Thus, we have

˜̃
W 1(T ) ≤ C11θ(1 +W c

∞(T )). (3.51)
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Fig.4

We next estimate W c
∞(T ).

Passing through any given point (t, x) ∈ DT /DT
i , we draw the i-th characteristic which

never enters into DT
i . We may assume that this characteristic intersects the right bound-

ary x = (λn(0) + δ0)t of DT at a point (t0, y) (see Fig.4). Integrating (2.19) along this
characteristic and noting (2.21) and (2.24) yields

wi(t, x) = wi(t0, y) +

∫ t

t0

∑
j ̸=k

γijk(u)wjwkdτ +

∫ t

t0

(γiii(u)− γiii(uiei))w
2
i dτ. (3.52)

On the i-th characteristic x = xi(τ)(t0 ≤ τ ≤ t) passing through the point (t, x), by (3.2)
we have (see [2–3] and Fig.4)

t0 ≤ τ ≤ t ≤ 1

η
t0. (3.53)

Multiplying (1 + t)(2+µ) on both sides of (3.52), noting (3.53) and (3.11) and using (3.31),
(3.51), (3.29) and Hadamard’s formula, we get

(1 + t)(2+µ)|wi(t, x)| ≤ (1 + t)(2+µ)|wi(t0, y)|+
∫ t

t0

(1 + t)(2+µ)
∑
j ̸=k

|γijk(u)wjwk|dτ

+

∫ t

t0

(1 + t)(2+µ)|γiii(u)− γiii(uiei)||w2
i |dτ

≤ C12 + C13
˜̃
W 1(T )W

c
∞(T ) + C14U∞(T )(W c

∞(T ))2

≤ C12 + C15θW
c
∞(T ) + C16θ(W

c
∞(T ))2, (3.54)

hence

W c
∞(T ) ≤ C17(1 + θ(W c

∞(T ))2). (3.55)

Noting that φ(x) is a C1 function with compact support, by (2.4) we have

|wi(0, x)| ≤ M0, ∀x ∈ R, (3.56)

where M0 is a positive constant. By continuity, there exists τ0 > 0 such that

(1 + t)(2+µ)|wi(t, x)| ≤ 2M0, 0 ≤ t ≤ τ0, (3.57)

then

W c
∞(t) ≤ 2M0, 0 ≤ t ≤ τ0. (3.58)
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In order to prove the first inequality in (3.44), it is sufficient to show that for any fixed
T0(0 ≤ T0 ≤ T ) and for any θ > 0 suitably small, we can choose κ5 ≥ M0 > 0 in such a way
that when

W c
∞(T0) ≤ 2κ5, (3.59)

we have

W c
∞(T0) ≤ κ5. (3.60)

Substituting (3.59) into (3.55), for θ > 0 suitably small, we have

W c
∞(T0) ≤ C17(1 + 4θκ2) ≤ 2C17. (3.61)

Hence, taking κ5 ≥ 2C17, we get (3.60), then the first inequality in (3.44) holds. Hence by
(3.51), there exists κ6 > 0 such that the second inequality in (3.44) also holds.

Remark 3.7. κ5 can be chosen to be independent of M .

We next estimate Ṽ1(T ).

Still denote c̃j by x = xj(t). By (3.3), the whole i-th characteristic passing through O(0, 0)
must be included in DT

i . Let P0(t0, xj(t0)) be the intersection point of this characteristic

with ˜̃cj . Similarly to the estimate of
˜̃
W 1(T ), it suffices to estimate

∫ t2
t0

|vi(t, xj(t))|dt, where
P2(t2, xj(t2)) is the intersection point of c̃j with the right boundary of DT

i . The estimate of∫ t0
t1

|vi(t, xj(t))|dt is similar. The i-th characteristic passing through the point P2 intersects

the line x = (λn(0) + δ0)t at a point A2(t̄2, y2), where t̄2 = y2

λn(0)+δ0
(see Fig.5).

Fig.5

Using Lemma 2.1 and noting (2.14), (2.15), similarly we have∫ t2

t0

|vi(t, xj(t))|dt ≤
1

4δ0

∫ t2

t0

|vi(t, xj(t))||λj(u(t, xj(t)))− λi(u(t, xj(t)))|dt

≤ 1

4δ0

∫ t̄2

0

|vi(t, (λn(0) + δ0)t)|(λn(0) + δ0 − λi(u(t, (λn(0) + δ0)t)))dt

+
1

4δ0

∫∫
P0OA2P2

∑
j ̸=k

|Bijk(u)vjwk|dtdx

+
1

4δ0

∫∫
P0OA2P2

n∑
j=1

|(Bijj(u)−Bijj(ujej))vjwj |dtdx. (3.62)
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Since for any point (t, x) ∈ DT we have

(λ1(0)− δ0)t ≤ x ≤ (λn(0) + δ0)t, (3.63)

noting (3.10), (3.11), and using Hadamard’s formula, (3.30),(3.44),(3.47) and (3.29), it fol-
lows from (3.62) that∫ t2

t0

|vi(t, xj(t))|dt ≤ C18V (DT
+) + C19V∞(T )W c

∞(T )

+ C20V
c
∞(T )

∫ T

0

(1 + t)−(2+µ)L(u(t))dt

+ C21(U
c
∞(T )V∞(T ) + U∞(T )V c

∞(T ))

∫ T

0

(1 + t)−(2+µ)L(u(t))dt

≤ C22θ(1 + V c
∞(T )). (3.64)

Similarly we can estimate
∫ t0
t1

|vi(t, xj(t))|dt. Hence

Ṽ1(T ) ≤ C23θ(1 + V c
∞(T )). (3.65)

We next estimate V c
∞(T ).

Similarly to (3.52), integrating (2.8) along the i-th characteristic expressed in Fig. 4 gives

vi(t, x) = vi(t0, y)+

∫ t

t0

∑
k ̸=i,j ̸=k

βijk(u)vjwkdτ +

∫ t

t0

n∑
j=1

(βijj(u)−βijj(ujej))vjwjdτ. (3.66)

Hence, similarly to (3.54), using Hadamard’s formula and (3.32) and noting (3.30),(3.44),
(3.65),(3.29) and (3.47), we have

(1 + t)(2+µ)|vi(t, x)| ≤ C24(1 + t0)
(2+µ)|vi(t0, y)|

+ C25

∫ t

t0

(1 + τ)(2+µ)
{ ∑

k ̸=i,j ̸=k

|vjwk|dτ +
∑
j ̸=k

|vjwjuk|
}
dτ

≤ C26{V (DT
+) + V c

∞(T )
˜̃
W 1(T ) + Ṽ1(T )W

c
∞(T ) + V∞(T )W c

∞(T )

+M(U∞(T )V c
∞(T ) + U c

∞(T )V∞(T ))}
≤ C27θ(1 + V c

∞(T )). (3.67)

Hence

V c
∞(T ) ≤ C27θ(1 + V c

∞(T )). (3.68)

Thus, when θ0 > 0 is suitably small, for any given θ ∈ [0, θ0] we have

V c
∞(T ) ≤ 2C27θ. (3.69)

Then by (3.65) it is easy to get (3.45).
We finally estimate W∞(T ).
Without loss of generality, suppose that the i-th characteristic passing through any given

point (t, x) ∈ DT
i intersects x = (λn(0) + δ0)t at a point (t0, y) (see Fig. 6). Integrating

(2.19) along this characteristic and noting (2.21) and (2.24), we get

wi(t, x) = wi

( y

λn(0) + δ0
, y
)

+

∫ t

y
λn(0)+δ0

∑
j ̸=k

γijk(u)wjwkdτ +

∫ t

y
λn(0)+δ0

(γiii(u)− γiii(uiei))w
2
i dτ.

(3.70)
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Noting (3.29),(3.31) and (3.32), and using (3.44), (3.45), (3.47) and Hadamard’s formula,
from (3.70) we have that for θ > 0 suitably small,

|wi(t, x)| ≤ W (DT
+) +M

˜̃
W 1(T ) +M2U c

∞(T ) + U∞(T )(W c
∞(T ))2

≤ κ4 + C28θ ≤ 2κ4. (3.71)

Fig. 6

On the other hand, for any given point (t, x) /∈ DT
i (i = 1, · · · , n), |wi(t, x)| can be

controlled by W c
∞(T ) or W (DT

±). Therefore, it follows from (3.31),(3.44) and (3.71) that

W∞(T ) ≤ max{2κ4, κ5}. (3.72)

Then taking κ9 ≥ max{2κ4, κ5}, we get (3.46).
Since κ4, κ5 and κ9 can be chosen to be independent of M , we may assume M ≥ 2κ9,

then by (3.46) we have

W∞(T ) ≤ κ9 ≤ M

2
. (3.73)

This shows the validity of hypothesis (3.32).
Thus, by (3.11) and (3.46), and using the existence and uniqueness of local C1 solution to

the Cauchy problem (cf. [7]) to extend the solution successively, we arrive at the conclusion
of Theorem 1.1.
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