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The author constructs the Casimir element of Hall algebras. By the method of Gabber-Kac
theorem (see [4]), it is proved that the Serre relations are the defining relations in composition
algebra.
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60. Introduction

Let g be symmetrizable Kac-Moody algebra (see [7]), and U,(g) be the quantized en-
veloping algebra of g. There are several ways to realize U,(g). A successful model is the
Hall algebra associated to a hereditary algebra (see [2, 8, 9]). Ringel in [8] proved that the
quantum Serre relation is a zero relation in Ringel-Hall algebra. Therefore, if A and g enjoy
a common Cartan datum of finite type, the generic form of H(A) gives a realization of the
positive part of Uy(g). Green in [2] proved (depending on Lusztig [3] ) that the positive part
of U,(g) is canonically isomorphic to the generic composition algebra of A if g and A enjoy
a common Cartan datum (of any type).

According to Xiao’s work!®)| the double Ringel-Hall algebra, more precisely, the (reduced)
Drinfeld double of composition algebra of Ringel-Hall algebra gives a realization of U,(g).
This approach can provide a global method to study the quantum group U,(g). In this
paper, we first construct the Casimir element of the Hall algebra. Applying the method of
Gabber-Kac theorem, we shall prove that the Serre relations are the defining relations of
the composition algebra. At this point of view, the Ringel-Green isomorphism theorem still
holds for standard composition algebras. This means that the Drinfeld double of composition
algebra (where v is not an indeterminate) is naturally isomorphic to the quantum groups in
the sense of Drinfeld-Jimbo.

§1. Preliminaries

For the basic facts about Hopf algebras, their skew Hopf pairing and corresponding Drin-
feld double, the readers can refer to [1, 5, 9]. Let k be a finite field, v = /g, ¢ =[ k |, Q(v)
be the field of rational functions of v. We keep these notations throughout this paper.

Let (I,(—,—)) be a symmetrizable Cartan Datum in the sense of Lusztig and C be the

corresponding symmetrizable Cartan matrix, where a;; = 2((5’1%). For basic concepts please

refer to [9], for example, the concept of a skew Hopf pairing (AT, A~, ¢ ) being a member of
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L(C), a restricted nondegenerate member of £(C'), etc. By [9, Theorem 3.6], any restricted
nondegenerate skew-Hopf pairings in £(C) are canonically isomorphic for the same Cartan
Datum C = (I,(—,—)).

Let A be a finite dimensional hereditary k-algebra and P be the set of isomorphism
classes of finite dimensional A-modules. We denote by zero both the zero module and its
isomorphism class. Let P; = P\ {0}, and for every o € P, V,, be a representative in «.

Given a € P, a, is the order of automorphism group of V,, and for «a, 8, A € P, g;\ﬂ is the
number of submodules B of V) such that B ~ V3 and V\/B ~ V,,.
Given A -modules M, N, let

(M,N) = dim;Hom 5 (M, N) — dimgExt } (M, N).

Since A is hereditary, (M, N), only depends on dim M and dimN. For o, € P, we
write (o, 8) = (Va, Vp) . The form (—,—) is naturally defined on Z[I], where I is the set
of isomorphism classes of simple A-modules. Let (o, ) = (o, 8)x + (B, ) z. Set (uq) =
U—dimVa+<o¢7a>ua.

Let H*(A) be a free Q(v) - module with basis {Ka(u)) | a € Z[I],\ € P}. According
to [9, Theorem 4.5], H(A) is of a Hopf algebra structure (see [10] for detail). Obviously,
H*(A) is an N[I]-graded algebra.

Dually, let H~(A) be the free Q(v) -module with the basis {K,(uy) | a € Z[I], X € P}.
It is also of Hopf algebra structure (see [10]).

By [9, Proposition 5.3|, there is a skew Hopf pairing: ¢ : HT(A) x H=(A) — Q(v)
defined by

o(K, <UE>aKO/ <“g'>) = p—(@a)=(Ba )+(.f )+(8.8 )agléwz (1.1)

for all o, € Z[I] and 8,8 € P. Accordingly, we have the reduced Drinfeld double,
which is denoted by D(A). Let C*(A) (resp. C~(A)) be the subalgebra of HT(A) (resp.
H~(A)) generated by u;,i € I (resp. u;) and T. Restricting the Skew Hopf pairing to
@ :CT(A) x C7(A) — Q(v), we see that (CT(A),C~(A),p) is the member of L(C).
Therefore, we have the reduced Drinfeld double of the skew Hopf pairing (CT(A), C~(A), ),
which we denote by D.(A). Obviously, D.(A) is a Hopf subalgebra of D(A) and has the
triangular decomposition D.(A) = C<(A) @ T ® C~(A), where C<(A) and C~(A) are the
subalgebras generated by u; and u:r (i € I), respectively.

§2. Casimir Element

Let BT and B~ be the Q(v)-bases of CT(A) and C~(A), respectively. Let
cr) = P CcT), CT() = @ o (M),

veN[I] veN[I]

where C*(A), = C*(A) N H*(A),. Take a basis {,z ,, o ad.,, =BT NCT(A),

agr v Lo,

of C*(A), and the dual basis {, 25, %5,,--- w Loy} =B (A)NC™(A), of C(A), with

respect to the skew Hopf pairing ¢ : CF(A) x C~(A) — Q(v), where r(v) = dimzC*(A),.
Note that, for any v € N[I], the subspace C*(A) , is finite dimensional. Set

r(v)
0, =Y a; ® af € CT(A), ®CT(A),.

j=1

The following result is easy to prove.
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Lemma 2.1. (a) For any ,x} € C*(A), and ,z, € C~(A),, we have

<
—~
-

v

x; ga(l,x;ri,yx;)um;ri, (2'1)

I
—

=3 =,

—~
X
-

vTo =D Pl w T, )vTq,- (2.2)

«
Il
—

(b) For any i € I and v € N[I], we have
(uf ®1)0, + (Ki @ uf )Oy—; = Oy (u; @ 1) +O0,—i(K_; @ u]), (2:3)
1®u; )0, + (u; ®K_;)0,_; =0,(1Qu; )+ 0,_;(u; ®K;), (2.4)

where ©,_; =0 if v; = 0.

Set O<, = E O,, where p is a nonnegative integer, trv = 21 vsif v = 21 vgis. Using
s= s=
tr V<p

this Lemma and noting . (0, — 0,_;) = Z 0,— > O,,ifty,=0,0,_; =0,
trlrgp trV<p trljgp
91/ |tI‘V:p71: 91/71' |trV:p7 we get
Proposition 2.1.

(a) (uf @1+ K; ®u)O<, — O<,(uf @14+ K_; @ u))
=) (Kiou))o,— ) 6, (K_;®u),
trv<p trv<p
(b) 1®u; +u; K_;)O<p —O0<,(1®u; +u; ®K,)
=Y (uy @K )0, — > 0,(u; ® K;).
trv<p trv<p

Applying m(o ® 1) to both sides of the identities (a) and (b) in Proposition 2.1, we get

Z ZK_Z’U, o Ux o j‘ Kio(uz] )V:cj'u"']

trl/<p

r(v)
Z Z l,x VK _u;t l,x —Ka(l,x Yoriufl,
trlj p

r(v)
ZZ'LLKO’VCU ,,mK o,z )xu]
tI’l/<pj

r(v)
Z Z u; T K_“,m a(l,mj_ui_)uacjl(i],
trl/ p] !

r(v)
where m is the multiplication, o is the antipode. Setting Q<, = Z > (@ )y a:j',we have

tr u<p i=
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(1) K_uf Qcp — KiQcpuf = Z Z o(va; VK _uf Vm - Kio(vz; ),,3:+u+]
tru—p]
(2) u; K<, K — Q<pu; Z Z up Ty “,x;r - U(Vﬂc;u;)l,xj[(i].
tr;_p

r(v)
It is easy to see that Q<, = > > o(,u; )2 is independent of basis.

v =1
trv<p
The D.(A)-module M is called the highest weight module if M = @ M?* where X is
AEX
the weight lattice of M, for any m € M*, K,m = v+ Nm for all € Z[I], and there is
N > 0 such that for any s > N, ¢ € I, we have (u +) = 0. Let A be a weight,
In=> D(Muf + D De(A) (K, —v"V)
i€l REL[T]
and My = D,(A)/Jx. The module M = @ M?*, where M* = {m € M|K,m = v»Mm
AEX

for all p € Z[I]} is called the integrable module on D.(A), 1f for any m € M and i € I, there
is No > 1 such that for any n > N,, we have u; 'm =u; 'm = 0.

Now we are given a highest weight module M. For m 6 M, if p is sufficiently large,
Q<,(m) is independent of p. Thus, we can denote Q<,(m) by Q(m). Clearly, as an operator
on M, we have

r(v)
Z ZS VT Ux (m), K_iuj'ﬂ = KiQuj',
veN[I] i=1
Therefore,
Quf (m) = v 20M 0t Quy (m) = 0?0 Ny Q(m).

Obviously, Z[I] is a subgroup of X (as an abelian group). Let Y be a fixed coset of Z[I]
corresponding to X, i.e.

Y={a+ i1 +x2i0+ - F+anin| 2z, €Z, ac X}

Lemma 2.2. There is a function G : Y — Z, such that G(A) — G(A — i) = 2(i, A), for
all N\ €Y and i € I, and if there are two such functions, their difference is only a scalar.

Proof. First take G(a) € Z arbitrarily. Let A = a 4+ z1i1 + xais + -+ - + zpiy (x; € Z).
Define

G(\) = G(a+ x1iy + x2is + - + Xpiy)

Ilfl 1271
= G(a) +2(i1,$1)\ — Z 5) +2(22,$2()\ - Z'lil) - ig Z S
s=1 s=1
xrn—1
+~-~+2(in,xn()\—x1i1 T tin) — 0 3 s)
s=1

Then G is a function from Y to Z, and for any is € I, we have G(A\) — G(\ — i5) = 2(is, A).
The second statement in the lemma is clear.

We set Z: M — M, m +— v“Nm, for all m € M* and A € Y. The composition operator
Q=: M +—— M is called Casimir element. Using 2.5, we have following two propositions.
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Proposition 2.2. Casimir element commutes with D.(A).
Proposition 2.3. Let M be a quotient of Verma module My:, then Q= : M —— M is
VG times of identity morphism.

§3. Construction of Q(v)-Algebras C*+(A) and C~(A)

Let Cj (A) (resp. Cj (A)) be a Q(v)-algebra freely generated by u; (i € I) (resp. u]) and
Ct(A) be a Q(v) - algebra generated by CNSF(A) and K, (a € Z[I]) such that the relation
Kaui+ = v(i’a)u:rKa (resp. Kqu; = U(i’o‘)u;K@) is satisfied.

For any v € N[I], v = > v;i, we denote the T-submodule generated by the monomials

+,,+ +
uug - uf (resp. u

Uy, - ug ) by C*(A), (resp. C~(A),), where the number of occurrence

of any i € I in the sequence i1, iy, - - - iy is v;. CT(A), (resp. C~(A),) is a finite dimensional

free T-submodule and C*(A) = @ CH(A), (resp. C(A) @ C (A),). Clearly,
veN[I] veN[I]

CH(A)u CF(A)yy € CF(A)yy4v, and CH(A)g = T (resp. € (A)y,C~ (A, C C™(A)y, 4, and
C (Ao =T). We define
Aul) =uf @1+ K;@uf, A(Ka) =Ko ® K,

E(u;r) =0, ¢(Ko)=1, o(u)= —K,iuj, 0(Ky) = —Ka,

%

where i € I, o € N[I]. Then, ct (A) is a Hopf algebra. Similarly, we define
Alwy)=uf @1+ K; @u;, A(K,) =K, ® K,,

e(u; ) =0, e(Ky) =1, ou;)=—-K_u;, o(K.) =—-Kg,

where i € I, € N[I]. Then, C~(A) is a Hopf algebra.
We define a bilinear form @: Ct(A) x C~(A) — Q(v) on CT(A) x C~(A) as follows
P(Kauf, Kguy) = v~ @D=GOHD |y | 0716
for all o, 8 € Z[I],i,j € ~I , wher~e | w; | is the cardinality of simple module u;, J;; is the
Kronecker sign. By [9], (CT(A),C™(A),9) is a skew Hopf pairing and is a member of L(C).
Therefore, we have the reduced Dinfeld double D¢ (A) and triangular decomposition

De(A) = Cf (M) @ T @ Cy (A).
Set
13 = {z € CJ (M) | B(a,Cy (A)) = 0} = {w € G5 (A) | P, C (A)) = 0}
and Zt =TT ~ T ®Z;. It is easy to see that Z is a Hopf ideal of C*(A). Dually, setting
Ty ={y € Cy (A) | 3(C (A),y) = 0} = {y € Cy (A) | §(C (M), y) = 0}

and T~ = TZy ~ T @I , we have that Z~ is a Hopf ideal of C~(A) (see for example [9]).
We set

Ci(A) = Cf (A)/Z,CH(A) =CH(A) /T, Gy (M) =Cy (M)/Ty, C(A)=C(A)/T".
One sees that @ induces a skew Hopf pairing ¢ : CT(A) x C~(A) — Q(v) which is a
nondegenerate member of £(C'). Therefore, we have D¢(A) = D¢(A)/Z, where T = It ®

C~(A)+C*(A)®Z~. From the construction, we also know that D¢ (A) = Cf (A)@T®Cy (A).
We set
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nivj n(i,j)—t t

uj;: Z(_l)t|: (t )] di(t=1)ty,+ *Uf,
t=0 2

g t V)

) . .
u = (_1)t |:n(lvj):| Udj(t—l)tui—n(w)*tu—u—t

where n(i,j) =1+ 6(1’3) e(i,j) = dimpExt(V;, V;), d; = dim;End(V;). By trivial computa-
tion, we can get

A(u;;) = u ®1 —|—Kn(m)K ®u”7

Alug) =1@ug +u; @ K" n(t ’J)Kj L
Lemma 3.1. For any z € C~(A) and y € C*(A) ,we have
(8) p(ufyz) = 0. (b) ply.uz) = 0.
Proof. (a) Since deg(u +) =n(i,5)i + j, if deg(z) # n(i, )i + j, we have o(u;: ul,x) =0,

by [9, 2.9.3]. Assume deg(z) = n(i,5)i + j, = u; y, where s € {i,5},y € C7(A),deg(y) =
deg(x) — s. Obv1ously, deg(y) # 0, deg(y) # deg(x).

o(uf, x) = w)(u;S,us y) = o(Auf), uy ©y)

(uf @1+ K"K @ uf, (u7) @ y)
(

(

uf; @ Luy @y) + oK VK @ ufug @)

¥
¥
plufuyo(Ly) + (KK u)p(uf,y) = 0,

since ¢(1,y) = @(K{L(z’J)Kﬁu;) = 0. Similarly, we can prove (b).

The category O counsisits of D¢ (A)-modules such that each object M has direct sum

decomposition M = @ M,, and there are finitely many A, A2,... , A, € X such that for
AEX
any A € X | A < \; for some 1 < i < n, where X is the weight lattice of D¢(A)-module.

Let M € O. A vector x € M is called primitive vector, if there is a submodule N ¢ M
such that = € N, but Cg (A) - C N.

Lemma 3.2. D¢(A)-module M in O is spanned by its primitive vectors (even being a
Ca (N)-module).

Proof. Let M € O.

We claim that z is not a primitive vector if and only if x € (Cf (A) - ), where (C (A) - x)
is an ideal spanned by Cq (A) - .

In fact, assume z is not a primitive vector. If x & (Cd (A)-z), we get a contradiction since
Cq (A) -z C (CS (A) - x)). Therefore, z € (Cj (A) - ) and there is a submodule N such that
x ¢ N,but Cf (A)-2 C N and x € (Cj (A) - z), we also get a contradiction. This means that
x is not a primitive vector, and we get the claim.

Let # € M. If z is not a primitive vector, then z € (C{ (A) - z) by the claim. So z is
generated by the elements in Cj (A) . For any z1 € C¢ (A)-x, if 71 is not a primitive vector,
then z; € (C (A) - x1). Thus, 71 is generated by the elements in Cj (A) - 1. Repeating the
above process finitely many times, we can get Cj (A) - 2, = 0, where z,, is an element in
(Car (A) - xp—1). By definition, z,, is a primitive vector. Therefore, x,,_1 is generated by
primitive vectors, and hence z is generated by primitive vectors.

Lemma 3.3. Let M € O, m € M be a primitive vector, and X is its weight. Then, there

is a submodule N C M such that m ¢ N, and Q=(m) = v¥Mm (mod N), where QF is the
Casimir operator, G is the function in Lemma 2.2.
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Proof. Since m is a primitive vector, there is a submodule N C M such that m ¢ N,
but Cj (A) -m C N. Thus, if m = m + N € (M/N),, we have Cg (A) - m = 0. There is a
unique D¢ (A)-module homomorphism ¢ : M(\) — M /N such that ¢(my) = 7, where m
is the highest weight vector of Verma module M ()). Hence Jm ~ M (A)/kery, where Jg is
the submodule spanned by m. We get

QZ(m) = oM .m  (mod : N)
by the action of QF on J.

Proposition 3.1. As an ideal of Cf (A) (resp. Cy (A)), Iy (resp. I ) is generated by

those Iy, (resp. I,,), where A\ € N[I\I, and if X = 3 ki, then (\,\) = > k;(i,4), where
i€l iel

T =I5 NCF (M) (resp. Ty =TIy NCy (A)r).

Proof. We set

M) = De(8) /(D De(A)uf + De(A)(K; = o)),
icl

then we have

M(0) = 5C(A)/( 3" De(A)u; + De(A)(K; — 1)).

iel
Since u;" - Mg = 0 (here Ty is the highest weight vector of M (0)), we have
ul (uy 7o) = uj (uf -7g) =0, ifi#j,
- _ (7 _ .
uf (g o) = (uj uf — la, |(Ki_Ki ) - mo
(2
— =0t ‘ Uq | — 1
=y uf Ty — — (K;mo — K; "myp)
_g- L |(mo—mo):07 if i = j.
a

Therefore, there is a unique D¢ (A)-module homomorphism t : M (—i) —s M(0) such that
m_; — u; -my, where m_; is the highest weight vector of the Verma module M(—z) For
any o € De(A), if Y(xoam_;) = 2o¥W(M—;) = zou; Mo = 0, then zou; = 0 and z, = 0.
Thus the map v : M(—i) — M(0) is an injective. We can regard M(—i) and hence
@ M(—i) as a submodule of M (0). One sees that M(O)/( ) M(—z)) is a simple module.
iel iel

Therefore, @ M (—i) is a maximal submodule of M (0). We denote it by MI(O). Now, we

iel
have D¢ (A)-module isomorphisms:

De(h) Q) T'(0)=De(d) @ (DM(-)

De(A) De(r) i€l
~@PDc(A) Q) M(—i)~ P M(-i),
i€l ﬁc(/\) i€l

where M (—i) is a Verma D¢ (A)-module corresponding to M(—i). We denote by 7 the
composition of these isomorphisms. Let

m: De(A) — De(A)/(ZTH @ C (M) +CHA)®T™)

be the canonical projection. Since Z; -y is a submodule of M (0), we have Z; -Tg C M/(O).
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We define the action of D¢(A) on Z; as follows
Ct(A)- Iy =0, Ko -z==x, acZl],zely,
where C*(A) -Zy is the multiplication in De(A). We have a well-defined map
p1: Iy — De(A) & M(0),
De(A)
a— 1® a(myp),

and ¢ is a De(A)-module homomorphism. For any 2 € De(A) and a € 7, , we have

pr(a-a) =1 Q) (z-a)(mo) = n(x) &) a(@o) = z(p1(a)).

De(A) De(A)
Clearly, Zy 3" Cy (A)u; is a De(A)-submodule of Zg De(A), and o1 (Zy 32 Cy (A)u;) = 0.
i€l i€l
Since Z,Zy C Iy S Cy (Nu; , Zy [(Zy > Cy (A)u; ) is a Cj (A)-module in a natural way.

icl i€l
We have C(A)-module homomorphism

P2 Zg/(IgZ@g(A)u;) — @ M(-i).
el i€l

More precisely, 5 is given in the following way: for any u; € Z,, we write a € Z; in the
form a = > x; - u; , where z; € > Cq (A)u; , then

7

el iel
cpg(a—i—Ia ZCT;(A)u;) = ZT@l(IL‘i cup ) = Zr(l ® (- uy) -mo)
iel icl i€l Be(A)
= ZT(W(.IZ) QM_;) = Zﬂ(mi)m_i,
iel i€l
where m_; is the highest weight vector of M(—i). If
e2(@) =2 (a+ T DG (M ) =0,
iel

we have m(x;) = 0 for all ¢ € I, and it follows that @ = a +Z; ) CNO_ (A)u; = 0. Thus we
i€l

o2 Ty (T3 D0 Co Wy ) v D M(-).
iel i€l
If we define the action of Cg (A) and T on Zj /(Zy > ,e; 50_ (A)u; ) as zero, then
7y /(75 Yo G )
i€l

becomes a D¢ (A)-module. As D¢ (A)-module, both IO_/(IO_ > C:,_(A)ui_) and @ M(—1)
i€l i€l

have an embedding

belong to O.
Now, let —3 be the primitive weight of I(;/(I(; S Cy (A)u;). Note that 8 ¢ I since
i€l
for any (i € I),u; ¢ Z,. We know that —f is a primitive weight of some M (—i) by the
injectivity of ws. Thus, —f8 < —i, or i < . Let m be a primitive vector corresponding to
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the weight — 3, then there is a submodule N C M (—4) such that m ¢ N and by Lemma 3.3
Q=(m) = v¥Fm (mod N), QZ(m) = v I m (mod N).

Thus v“CIm = v¥Fm (mod N). However, m ¢ N, so we get v¢(—9) = ¢&(=F) and
G(f ) = G(—B). By Lemma 3.2, we know that Z; is generated by those Z" 5, with 8 &
G(—i) = G(— 5) for some i€ I.

Let —5 = — Zl kjij, where i; € I, k; € NN {0}. Let i = ¢, (for some j). Since 8 > i, we
i=

have k; # 0. So we can write —f in the form

=—l—mM—72— "= Tms
where m = 3 k; — 1, and for each p € {1,2,--- ,m}, there are k, of i, (p # j), and k; — 1
i=1
of 4; in y1,72,... , Ym. By Lemma 2.2, we get
0= G(~i) = G(=6) = Gliy) = Gli; = — 72 =~ m)
Z Yps Vo) (Vpy —15) — Z (V> Yq) = 22(’)’1)’ —ij) — Z (Yps Vq)
p=1 1<p#q<m = 1<p#q<m
:_22 'valj +Z 'Vpa'yp (Z'vaZ'Yp)
( — i, +Z’f isois) + (kj — 1)(i5,4;) — (B — 45,8 —ij)
s#j
—2(B,15) + 2(i5,5) + > kslis,is) + (kj — 1)(i5,45) — (B, 8) + 2(8,15) — (i5,45)
7
ka ipyip) — (B, B).
p=1
m
Therefore, (8,8) = > kp(ip,ip).
p=1

§4. Main Result

In this section, we prove the following result. N N
Theorem 4.1. Let Dc(A) = Cf (A)@T®Cy (A), where Cf (A)/Z = Cf (A),Cy (A)/Iy =
Cy (A). Then the elements

n(i,j) o
n\e, n(e t t
ut = Z (_l)t[ ( J)] L% =Dty + (i,5)— ;ruj ’
t=0 @
- ) — —n(2,7)— - —
u; = Z (—l)t[ : ] vt 1)tui uju;
t=0 o
generate the ideals IS‘ and I, , respectively.
Proof. Set D;(A) = Dc(A)/T, where J is the ideal generated by ujj and u;; (i, €

I, i # j). Then we have the induced N[I]-graded algebra D.(A) = € Di(A)y. Clearly,
a€eN[I]
JCT.
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Let 1Z& be the image of Z; under the canonical projection 7 : De(A) — Dy (A). We
assume that 1Z # 0 (the proof of 1Z; # 0 can be obtained by using w).

Now, since 175 = @ 1Z5 NDL(A)a = @ 1Z1, # 0, there is o € N[I] such that
aeN[I] aeN[I]

n n
1I;r0 # 0. We choose a = Y kie; such that Y k; is minimal. Obviously, 1I;r0 must occur
t=1 t=1

in any system of homogeneous generators of 1Z, .

Let T; be the Luzstig symmetry for each ¢ € I (see for example [6]). One easily sees that
for each i € I, we have T; € AutD((A) such that T3(Dp(A)a) = Dp(A)s, (o), Where s; is the
fundamental reflection (see for example [10]). Since

T;(1Z0) = Ti(1Zg NDe(A)a) = T;(Z5) N Ti(De(A)a) = Ti(1Z5 ) N De(A)s, ()
it follows that if Tl-(lIar) C 1I0+, then
T;(1Z50) = Ti(1Zy ) N De(A)si(e) €125 NDe(A)si(a) = 1L -
T; is an isomorphism and 17, # 0, so 1I (@) # 0. Hence, to prove 1I () # 0, it is enough
to prove T;(1 Io )C 1Z
C—(A) = (C+(A), u;;) = 0, ¢ naturally induces a pairing
¢ CH)/TT xC(M)/T ™ — Q(v),
Yla+T y+T7)=o(y),

where J+ and J~ are the ideals generated by u ; and u;; respectively. Clearly, we have

I ={z e G (M) T | ‘P(xaco (A )/J ) =0},

Iy ={y €Co (W)/T | ¢(CT(N)/TT,y) = 0}.
For any 7 € I, u ¢ 1I+ and 1I+ NDL(A); = IO = 0. Hence

T

=P 1Zoc P )/ TN cCf N/ T
a€eN[I] a€eN[I]

aFi a;éz

Since @(u;},

Thus, we have

T.GIT) € D Tl (0)/ T )a) = @ (G5 (0)/T )iy € C (1)) T,

a€eN[I] a€EN[I]
a#i aFi

since when « € N[I] and « # i, s;(c) € N[I]. Similar to [6, 6.14], we have operators r; and
i on Cf (A )/JJr satisfying
=u ® Z (rest), A(z)= Zri(x) ® u; + (rest),
iel iel
where z € (Cj (A)/T ). Furthermore,
ri(1) =ri(1) =0, ri(uf) = ri(uf) = by,
ri(ey) = v i)y +ariy), riley) = @)y + o Pari(y),

where z € (CJ(A)/T)a,y € CH(A)/TH)5. It is easy to prove that

' (w,u;y) =@ (uf u ) (ri(@),y) @ (@ yu; ) = @' (uf,uy )@ (r (), y).

Let
(C (M)/TT)6) = {z € CF (N)/TT | Tu(x) € Cf (A)/T T},

(Co (M)/T7)@) = {z € Cy (A)/T ™ | Til=) € Cy (A)/T .
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it follows that

l

Thenwehave I5 C(CA )/j"’) (). Slnceuju =uj +( #
AN)/T) Z 8/THG), (o ()] T) =

L

We claim that, if x € (Cf 0(7)/‘7*)() thenr( )=0.

Notlngthatu u; —u, +:£52 u; |, we have for any z € Ct TN (),
J J 0

a;

ri(z)K; — K7l (x) |

(a) TU; —U; T = m il -
Let
O e Y e S e Y
>0 >0
where y, and z € (Ci (A)/T+)(i). Now, (a) can be written as
(a”) TU; — U T = Z( Uy )y — Ki_l Z(U:r)t
>0 >0

By definition of (C& (A)/T 1) (i), Ty(y), Ti(z) € (C& (A)/TT)(i). Applying T; to both sides
of (a'), we get

— Ti(z)utiK_; +uf K_;T;(x)
= [T )V Tu(ye) T (K) = Ti(K ) Ti((w])") Ti(=)]
>0
= (=)' I [Ky (u) ) Ty (V) K i — KiKi(uy ) Ti(21)]
>0
=Y (=) OV Ky () [ To(yn) K — o' K Ti(24).
>0
The left side of the identity belongs to K,ZCVJ(A)/jﬂ so does the right hand side. By
the triangular decomposition, we get T;(y:) = 0 and T;(z;) = 0 for all ¢ < 0. Therefore,
ri(z) = 0.
Since T;(uj) = v~ ) Ku7 | we have ut & (Cf(A)/J+)(i). For any a € N[I], we have
Ti(Cf (M)/T)a) = CF (M) T 0
Thus, T;(T;((C (A)/T ) () € Co (A)/T+, and hence
Ti((Cy (M)/T (@) < (Cq (1)/TH)().

So, Ti((Cy (A)/TH)(#)) = (Cf (A )/J*)()
By [10], = € b*(A)(i),y € b (A)(i), we have ¢(Ti(a), T;(y))

T € (G (A)/T*)(@) and g € (Cy (A)/T)(@), ¢'(T:(@), Tu(7)) = ¢ (T,
¢(TiGIT).Co (N)/T7) = & (TLIE). Y (u;) (Cy (A)/

o(z,y). Hence for any
7). Therefore
J~

)(@))

= ¢(TiGIT), (CF (N)/T D) + Y @ (TGI), (uy) (Co (A)/T )(0))

= ¢(TiGIT), T(Cy (1)) T 7)(@))
+ > (i u ) (T GIT), () (Cy (8)/T 7))

t>1

¢(TiGIT), (Cy (A)/T7)(0) +0=0.
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This implies that T;(;Z7) C 1Z". By the choice of a and fundamental reflection (see for
example [10]), we know that

S k<> ki) dijk; — ki
t=1 fs;:élz jer

Thus, 0 < >° d;;k; — 2k;. On the other hand,
jer

<Oé,61'> = (k}1 — Zdjikj)si; <ei,oz> = (k)z — Zdﬂkj)az

Jj—1 i—7
So
(Oé, ei) = (a, €i> + <€Z', Oé> =¢&; (ka — Zdjikj — Zdjik’j),
i g
Z djik‘j = Zdﬂk] + Zdjikj.
jer J— i—J

Thus, (a,e;))e; ' < 0. So for all i € I, we have (a,e;) < 0 (since &; > 0). Hence we

?

have (a,a) = > ki(a,e;) < 0. By Proposition 3.1, (o, ) = > ksi(es,e;) > 0. This is a
i=1 i=1

contradiction. So, we have 1Z;” = 0. This means that Z+ C J+. Thus, Z+ = J+. Hence,
Z7 is generated by u;; (i,7 € 1,4 # j). The proof is completed.

By Theorem 4.1, we have CT(A)/ZT ~ f* (for f* see [9]). Therefore, we can rewrite the
Green-Ringel isomorphism theorem for Double Ringel-Hall composition algebras (without
the condition ‘generic’).

Corollary 4.1. Keep notations as before, then the map D.(A) — U,(g) defined by

uj — B, u; — vy Ko — I?Z induces a Hopf algebra isomorphism.
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