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The author constructs the Casimir element of Hall algebras. By the method of Gabber-Kac

theorem (see [4]), it is proved that the Serre relations are the defining relations in composition
algebra.
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§0. Introduction

Let g be symmetrizable Kac-Moody algebra (see [7]), and Uq(g) be the quantized en-
veloping algebra of g. There are several ways to realize Uq(g). A successful model is the
Hall algebra associated to a hereditary algebra (see [2, 8, 9]). Ringel in [8] proved that the
quantum Serre relation is a zero relation in Ringel-Hall algebra. Therefore, if Λ and g enjoy
a common Cartan datum of finite type, the generic form of H(Λ) gives a realization of the
positive part of Uq(g). Green in [2] proved (depending on Lusztig [3] ) that the positive part
of Uq(g) is canonically isomorphic to the generic composition algebra of Λ if g and Λ enjoy
a common Cartan datum (of any type).

According to Xiao’s work[9], the double Ringel-Hall algebra, more precisely, the (reduced)
Drinfeld double of composition algebra of Ringel-Hall algebra gives a realization of Uq(g).
This approach can provide a global method to study the quantum group Uq(g). In this
paper, we first construct the Casimir element of the Hall algebra. Applying the method of
Gabber-Kac theorem, we shall prove that the Serre relations are the defining relations of
the composition algebra. At this point of view, the Ringel-Green isomorphism theorem still
holds for standard composition algebras. This means that the Drinfeld double of composition
algebra (where v is not an indeterminate) is naturally isomorphic to the quantum groups in
the sense of Drinfeld-Jimbo.

§1. Preliminaries

For the basic facts about Hopf algebras, their skew Hopf pairing and corresponding Drin-
feld double, the readers can refer to [1, 5, 9]. Let k be a finite field, υ =

√
q, q =| k |, Q(υ)

be the field of rational functions of υ. We keep these notations throughout this paper.
Let (I, (−,−)) be a symmetrizable Cartan Datum in the sense of Lusztig and C be the

corresponding symmetrizable Cartan matrix, where aij = 2(i,j)
(i,i) . For basic concepts please

refer to [9], for example, the concept of a skew Hopf pairing (A+, A−, φ ) being a member of
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L(C), a restricted nondegenerate member of L(C), etc. By [9, Theorem 3.6], any restricted
nondegenerate skew-Hopf pairings in L(C) are canonically isomorphic for the same Cartan
Datum C = (I, (−,−)).

Let Λ be a finite dimensional hereditary k-algebra and P be the set of isomorphism
classes of finite dimensional Λ-modules. We denote by zero both the zero module and its
isomorphism class. Let P1 = P \ {0}, and for every α ∈ P, Vα be a representative in α.
Given α ∈ P, aα is the order of automorphism group of Vα, and for α, β, λ ∈ P, gλαβ is the

number of submodules B of Vλ such that B ≃ Vβ and Vλ/B ≃ Vα.
Given Λ -modules M,N, let

⟨M,N⟩R = dimkHom Λ(M,N)− dimkExt
1
Λ(M,N).

Since Λ is hereditary, ⟨M,N⟩R only depends on dimM and dimN . For α, β ∈ P, we
write ⟨α, β⟩ = ⟨Vα, Vβ⟩R. The form ⟨−,−⟩ is naturally defined on Z[I], where I is the set
of isomorphism classes of simple Λ-modules. Let (α, β) = ⟨α, β⟩R + ⟨β, α⟩R. Set ⟨uα⟩ =

υ−dimVα+⟨α,α⟩uα.

Let H+(Λ) be a free Q(υ) - module with basis {Kα⟨u+λ ⟩ | α ∈ Z[I], λ ∈ P}. According
to [9, Theorem 4.5], H+(Λ) is of a Hopf algebra structure (see [10] for detail). Obviously,
H+(Λ) is an N[I]-graded algebra.

Dually, let H−(Λ) be the free Q(υ) -module with the basis {Kα⟨u−λ ⟩ | α ∈ Z[I], λ ∈ P}.
It is also of Hopf algebra structure (see [10]).

By [9, Proposition 5.3], there is a skew Hopf pairing: φ : H+(Λ) × H−(Λ) 7−→ Q(υ)
defined by

φ(Kα ⟨u+β ⟩,Kα′ ⟨u−
β′ ⟩) = υ−(α,α

′
)−(β,α

′
)+(α,β

′
)+(β,β

′
)a−1

β δββ′ (1.1)

for all α, α
′ ∈ Z[I] and β, β

′ ∈ P. Accordingly, we have the reduced Drinfeld double,
which is denoted by D(Λ). Let C+(A) (resp. C−(A)) be the subalgebra of H+(Λ) (resp.
H−(A)) generated by u+i , i ∈ I (resp. u−i ) and T. Restricting the Skew Hopf pairing to
φ : C+(Λ) × C−(Λ) 7−→ Q(υ), we see that (C+(A), C−(A), φ) is the member of L(C).
Therefore, we have the reduced Drinfeld double of the skew Hopf pairing (C+(Λ), C−(Λ), φ),
which we denote by Dc(Λ). Obviously, Dc(Λ) is a Hopf subalgebra of D(Λ) and has the
triangular decomposition Dc(Λ) = C<(Λ) ⊗ T ⊗ C>(Λ), where C<(Λ) and C>(Λ) are the
subalgebras generated by u−i and u+i (i ∈ I), respectively.

§2. Casimir Element

Let B+ and B− be the Q(υ)-bases of C+(Λ) and C−(Λ), respectively. Let

C+(Λ) =
⊕

ν∈N[I]

C+(Λ)ν , C−(Λ) =
⊕

ν∈N[I]

C−(Λ)ν ,

where C±(Λ)ν = C±(Λ) ∩H±(Λ)ν . Take a basis {νx+α1
,ν x

+
α2
, . . . ,ν x

+
αr(ν)

} = B+ ∩ C+(Λ)ν

of C+(Λ)ν and the dual basis {νx−α1
,ν x

−
α2
, . . . ,ν x

−
αr(ν)

} = B−(Λ)∩C−(Λ)ν of C−(Λ)ν with

respect to the skew Hopf pairing φ : C+(Λ)×C−(Λ) 7−→ Q(v), where r(ν) = dimkC
±(Λ)ν .

Note that, for any ν ∈ N[I], the subspace C±(Λ)ν is finite dimensional. Set

Θν =

r(ν)∑
j=1

νx
−
j ⊗ν x

+
j ∈ C−(Λ)ν ⊗ C+(Λ)ν .

The following result is easy to prove.
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Lemma 2.1. (a) For any νx
+
α ∈ C+(Λ)ν and νx

−
α ∈ C−(Λ)ν , we have

νx
+
α =

r(ν)∑
i=1

φ(νx
+
αi
,ν x

−
α )νx

+
αi
, (2.1)

νx
−
α =

r(ν)∑
i=1

φ(νx
+
α ,ν x

−
αi
)νx

−
αi
. (2.2)

(b) For any i ∈ I and ν ∈ N[I], we have

(u+i ⊗ 1)Θν + (Ki ⊗ u+i )Θν−i = Θν(u
+
i ⊗ 1) + Θν−i(K−i ⊗ u+i ), (2.3)

(1⊗ u−i )Θν + (u−i ⊗K−i)Θν−i = Θν(1⊗ u−i ) + Θν−i(u
−
i ⊗Ki), (2.4)

where Θν−i = 0 if νi = 0.

Set Θ≤p =
∑
ν

tr ν≤p

Θν , where p is a nonnegative integer, trν =
n∑

s=1
νs if ν =

n∑
s=1

νsis. Using

this Lemma and noting
∑
ν

tr ν≤p

(Θν − Θν−i) =
∑
ν

tr ν≤p

Θν −
∑
ν

tr ν≤p

Θν−i, if νi = 0, Θν−i = 0,

Θν |tr ν=p−1= Θν−i |tr ν=p, we get

Proposition 2.1.

(a) (u+i ⊗ 1 +Ki ⊗ u+i )Θ≤p −Θ≤p(u
+
i ⊗ 1 +K−i ⊗ u+i )

=
∑

ν
tr ν≤p

(Ki ⊗ u+i )Θν −
∑

ν
tr ν≤p

Θν(K−i ⊗ u+i ),

(b) (1⊗ u−i + u−i ⊗K−i)Θ≤p −Θ≤p(1⊗ u−i + u−i ⊗Ki)

=
∑

ν
trν≤p

(u−i ⊗K−i)Θν −
∑

ν
tr ν≤p

Θν(u
−
i ⊗Ki).

Applying m(σ ⊗ 1) to both sides of the identities (a) and (b) in Proposition 2.1, we get

∑
ν

tr ν≤p

r(ν)∑
j=1

[K−iu
+
i σ(νx

−
j )νx

+
j −Kiσ(νx

−
j )νx

+
j u

+
i ]

=
∑

ν
tr ν=p

r(ν)∑
j=1

[σ(νx
−
j )K−iu

+
i νx

+
j −Kiσ(νx

−
j )νx

+
j u

+
i ],

∑
ν

tr ν≤p

r(ν)∑
j=1

[u−i Kiσ(νx
−
j )νx

+
j Ki − σ(νx

−
j )νx

+
j u

−
i ]

=
∑

ν
tr ν=p

r(ν)∑
j=1

[σ(u−i νx
−
j )K−iνx

+
j − σ(νx

−
j u

−
i )νx

+
j Ki],

where m is the multiplication, σ is the antipode. Setting Ω≤p =
∑
ν

tr ν≤p

r(ν)∑
i=1

(νx
−
j )νx

+
j , we have
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(1) K−iu
+
i Ω≤p −KiΩ≤pu

+
i =

∑
ν

trν=p

r(ν)∑
j=1

[σ(νx
−
j )K−iu

+
i νx

+
j −Kiσ(νx

−
j )νx

+
j u

+
i ],

(2) u−i KiΩ≤pKi − Ω≤pu
−
i =

∑
ν

trν=p

r(ν)∑
j=1

[σ(u−i νx
−
j )K−iνx

+
j − σ(νx

−
j u

−
i )νx

+
j Ki].

It is easy to see that Ω≤p =
∑
ν

tr ν≤p

r(ν)∑
i=1

σ(νu
−
i )νx

+
i is independent of basis.

The Dc(Λ)-module M is called the highest weight module if M =
⊕
λ∈X

Mλ where X is

the weight lattice of M , for any m ∈ Mλ, Kµm = v(µ,λ)m for all µ ∈ Z[I], and there is
N > 0 such that for any s > N, i ∈ I, we have (u+i )

sm = 0. Let λ be a weight,

Jλ =
∑
i∈I

Dc(Λ)u
+
i +

∑
µ∈Z[I]

Dc(Λ)(Kµ − v(µ,λ))

and Mλ = Dc(Λ)
/
Jλ. The module M =

⊕
λ∈X

Mλ, where Mλ = {m ∈ M |Kµm = v(µ,λ)m,

for all µ ∈ Z[I]} is called the integrable module on Dc(Λ), if for any m ∈M and i ∈ I, there

is N0 ≥ 1 such that for any n > No, we have u+i
n
m = u−i

n
m = 0.

Now we are given a highest weight module M . For m ∈ M, if p is sufficiently large,
Ω≤p(m) is independent of p. Thus, we can denote Ω≤p(m) by Ω(m). Clearly, as an operator
on M, we have

Ω(m) =
∑

ν∈N[I]

r(ν)∑
i=1

S(νx
−
i )νx

+
i (m), K−iu

+
i Ω = KiΩu

+
i ,

u−i KiΩKi = Ωu−i , KµΩ = ΩKµ.

Therefore,

Ωu+i (m) = v−2(i,λ+i)u+i , Ωu−i (m) = v2(i,λ)u−i Ω(m).

Obviously, Z[I] is a subgroup of X (as an abelian group). Let Y be a fixed coset of Z[I]
corresponding to X, i.e.

Y = {a+ x1i1 + x2i2 + · · ·+ xnin | xi ∈ Z, a ∈ X}.
Lemma 2.2. There is a function G : Y 7−→ Z, such that G(λ) −G(λ − i) = 2(i, λ), for

all λ ∈ Y and i ∈ I, and if there are two such functions, their difference is only a scalar.
Proof. First take G(a) ∈ Z arbitrarily. Let λ = a + x1i1 + x2i2 + · · · + xnin (xi ∈ Z).

Define

G(λ) = G(a+ x1i1 + x2i2 + · · ·+ xnin)

= G(a) + 2
(
i1, x1λ−

x1−1∑
s=1

s
)
+ 2

(
i2, x2(λ− x1i1)− i2

x2−1∑
s=1

s
)

+ · · ·+ 2
(
in, xn(λ− x1i1 − · · · − xn−1in−1)− in

xn−1∑
s=1

s
)
.

Then G is a function from Y to Z, and for any is ∈ I, we have G(λ)−G(λ− is) = 2(is, λ).
The second statement in the lemma is clear.

We set Ξ : M 7−→M,m 7→ vG(λ)m, for all m ∈Mλ and λ ∈ Y. The composition operator
ΩΞ : M 7−→M is called Casimir element. Using 2.5, we have following two propositions.
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Proposition 2.2. Casimir element commutes with Dc(Λ).
Proposition 2.3. Let M be a quotient of Verma module Mλ′ , then ΩΞ : M 7−→ M is

vG(λ′) times of identity morphism.

§3. Construction of Q(υ)-Algebras C̃+(Λ) and C̃−(Λ)

Let C̃+
0 (Λ) (resp. C̃−

0 (Λ)) be a Q(υ)-algebra freely generated by u+i (i ∈ I) (resp. u−i ) and

C̃+(Λ) be a Q(υ) - algebra generated by C̃+
0 (Λ) and Kα (α ∈ Z[I]) such that the relation

Kαu
+
i = υ(i,α)u+i Kα (resp. Kαu

−
i = υ(i,α)u−i Kα) is satisfied.

For any ν ∈ N[I], ν =
∑
i

νii, we denote the T -submodule generated by the monomials

u+i1u
+
i2
· · ·u+ir (resp. u

−
i1
u−i2 · · ·u

−
ir
) by C̃+(Λ)ν (resp. C̃−(Λ)ν), where the number of occurrence

of any i ∈ I in the sequence i1, i2, · · · ir is νi. C̃+(Λ)ν (resp. C̃−(Λ)ν) is a finite dimensional

free T -submodule and C̃+(Λ) =
⊕

ν∈N[I]
C̃+(Λ)ν (resp. C̃−(Λ) =

⊕
ν∈N[I]

C̃−(Λ)ν). Clearly,

C̃+(Λ)ν1 C̃+(Λ)ν2 ⊂ C̃+(Λ)ν1+ν2 and C̃+(Λ)0 = T (resp. C̃−(Λ)ν1 C̃−(Λ)ν2 ⊂ C̃−(Λ)ν1+ν2 and

C̃−(Λ)0 = T ). We define

∆(u+i ) = u+i ⊗ 1 +Ki ⊗ u+i , ∆(Kα) = Kα ⊗Kα,

ε(u+i ) = 0, ε(Kα) = 1, σ(u+i ) = −K−iu
+
i , σ(Kα) = −Kα,

where i ∈ I, α ∈ N[I]. Then, C̃+(Λ) is a Hopf algebra. Similarly, we define

∆(u−i ) = u+i ⊗ 1 +Ki ⊗ u−i , ∆(Kα) = Kα ⊗Kα,

ε(u−i ) = 0, ε(Kα) = 1, σ(u−i ) = −K−iu
−
i , σ(Kα) = −Kα,

where i ∈ I, α ∈ N[I]. Then, C̃−(Λ) is a Hopf algebra.

We define a bilinear form φ̃ : C̃+(Λ)× C̃−(Λ) 7−→ Q(υ) on C̃+(Λ)× C̃−(Λ) as follows

φ̃(Kαu
+
i ,Kβu

−
j ) = υ−(α,β)−(i,β)+(α,j) | ui | a−1

i δij

for all α, β ∈ Z[I], i, j ∈ I, where | ui | is the cardinality of simple module ui, δij is the

Kronecker sign. By [9], (C̃+(Λ), C̃−(Λ), φ̃) is a skew Hopf pairing and is a member of L(C).
Therefore, we have the reduced Dinfeld double D̃C(Λ) and triangular decomposition

D̃C(Λ) = C̃+
0 (Λ)⊗ T ⊗ C̃−

0 (Λ).

Set

I+
0 = {x ∈ C̃+

0 (Λ) | φ̃(x, C̃−
0 (Λ)) = 0} = {x ∈ C̃+

0 (Λ) | φ̃(x, C̃−(Λ)) = 0}

and I+ = TI+
0 ≃ T ⊗I+

0 . It is easy to see that I+ is a Hopf ideal of C̃+(Λ). Dually, setting

I−
0 = {y ∈ C̃−

0 (Λ) | φ̃(C̃+
0 (Λ), y) = 0} = {y ∈ C̃−

0 (Λ) | φ̃(C̃−(Λ), y) = 0}

and I− = TI−
0 ≃ T ⊗ I−

0 , we have that I− is a Hopf ideal of C̃−(Λ) (see for example [9]).
We set

C+
0 (Λ) = C̃+

0 (Λ)/I+
0 , C+(Λ) = C̃+(Λ)/I+, C−

0 (Λ) = C̃−
0 (Λ)/I−

0 , C−(Λ) = C̃−(Λ)/I−.

One sees that φ̃ induces a skew Hopf pairing φ : C+(Λ) × C−(Λ) 7−→ Q(υ) which is a

nondegenerate member of L(C). Therefore, we have DC(Λ) = D̃C(Λ)/I, where I = I+ ⊗
C−(Λ)+C+(Λ)⊗I−. From the construction, we also know that DC(Λ) = C+

0 (Λ)⊗T⊗C−
0 (Λ).

We set
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u+ij =

n(i,j)∑
t=0

(−1)t
[
n(i, j)
t

]
i

υdi(t−1)tu+i
n(i,j)−t

u+j u
+
i

t
,

u−ij =

n(i,j)∑
t=0

(−1)t
[
n(i, j)
t

]
i

υdj(t−1)tu−i
n(i,j)−t

u−j u
−
i

t
,

where n(i, j) = 1 + e(i,j)
di

, e(i, j) = dimkExt(Vi, Vj), di = dimkEnd(Vi). By trivial computa-
tion, we can get

∆(u+ij) = u+ij ⊗ 1 +K
n(i,j)
i Kj ⊗ u+ij ,

∆(u−ij) = 1⊗ u−ij + u−ij ⊗K
−n(i,j)
i K−1

j .

Lemma 3.1. For any x ∈ C−(Λ) and y ∈ C+(Λ) ,we have

(a) φ(u+ij , x) = 0, (b) φ(y, u−ij) = 0.

Proof. (a) Since deg(u+ij) = n(i, j)i + j, if deg(x) ̸= n(i, j)i + j, we have φ(u+ij , x) = 0,

by [9, 2.9.3]. Assume deg(x) = n(i, j)i + j, x = u−s y, where s ∈ {i, j}, y ∈ C−(Λ), deg(y) =
deg(x)− s. Obviously, deg(y) ̸= 0, deg(y) ̸= deg(x).

φ(u+ij , x) = φ(u+ij , u
−
s y) = φ(∆(u+ij), u

−
s ⊗ y)

= φ(u+ij ⊗ 1 +K
n(i,j)
i Kj ⊗ u+ij , ⟨u

−
s ⟩ ⊗ y)

= φ(u+ij ⊗ 1, u−s ⊗ y) + φ(K
n(i,j)
i Kj ⊗ u+ij , u

−
s ⊗ y)

= φ(u+iju
−
s )φ(1, y) + φ(K

n(i,j)
i Kj , u

−
s )φ(u

+
ij , y) = 0,

since φ(1, y) = φ(K
n(i,j)
i Kj , u

−
s ) = 0. Similarly, we can prove (b).

The category O consisits of DC(Λ)-modules such that each object M has direct sum
decomposition M =

⊕
λ∈X

Mλ, and there are finitely many λ1, λ2, . . . , λn ∈ X such that for

any λ ∈ X , λ ≤ λi for some 1 ≤ i ≤ n, where X is the weight lattice of DC(Λ)-module.
Let M ∈ O. A vector x ∈ M is called primitive vector, if there is a submodule N ⊂ M

such that x ̸∈ N, but C+
0 (Λ) · x ⊂ N.

Lemma 3.2. DC(Λ)-module M in O is spanned by its primitive vectors (even being a
C+
0 (Λ)-module).
Proof. Let M ∈ O.
We claim that x is not a primitive vector if and only if x ∈ ⟨C+

0 (Λ) · x⟩, where ⟨C+
0 (Λ) · x⟩

is an ideal spanned by C+
0 (Λ) · x.

In fact, assume x is not a primitive vector. If x ̸∈ ⟨C+
0 (Λ) ·x⟩, we get a contradiction since

C+
0 (Λ) · x ⊆ ⟨C+

0 (Λ) · x)⟩. Therefore, x ∈ ⟨C+
0 (Λ) · x⟩ and there is a submodule N such that

x ̸∈ N, but C+
0 (Λ) ·x ⊂ N and x ∈ ⟨C+

0 (Λ) ·x⟩, we also get a contradiction. This means that
x is not a primitive vector, and we get the claim.

Let x ∈ M. If x is not a primitive vector, then x ∈ ⟨C+
0 (Λ) · x⟩ by the claim. So x is

generated by the elements in C+
0 (Λ) ·x. For any x1 ∈ C+

0 (Λ) ·x, if x1 is not a primitive vector,
then x1 ∈ ⟨C+

0 (Λ) · x1⟩. Thus, x1 is generated by the elements in C+
0 (Λ) · x1. Repeating the

above process finitely many times, we can get C+
0 (Λ) · xn = 0, where xn is an element in

⟨C+
0 (Λ) · xn−1⟩. By definition, xn is a primitive vector. Therefore, xn−1 is generated by

primitive vectors, and hence x is generated by primitive vectors.
Lemma 3.3. Let M ∈ O, m ∈M be a primitive vector, and λ is its weight. Then, there

is a submodule N ⊂M such that m ̸∈ N, and ΩΞ(m) = υG(λ)m (modN), where ΩΞ is the
Casimir operator, G is the function in Lemma 2.2.
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Proof. Since m is a primitive vector, there is a submodule N ⊂ M such that m ̸∈ N,
but C+

0 (Λ) ·m ⊂ N. Thus, if m = m + N ∈ (M/N)λ, we have C+
0 (Λ) ·m = 0. There is a

unique DC(Λ)-module homomorphism φ :M(λ) 7−→M/N such that φ(mλ) = m, where mλ

is the highest weight vector of Verma module M(λ). Hence Jm ≃ M(λ)/kerφ, where Jm is
the submodule spanned by m. We get

ΩΞ(m) = υG(λ) ·m (mod : N)

by the action of ΩE on Jm.

Proposition 3.1. As an ideal of C+
0 (Λ) (resp. C−

0 (Λ)), I+
0 (resp. I−

0 ) is generated by
those I+

λ0 (resp. I−
λ0), where λ ∈ N[I]\I, and if λ =

∑
i∈I

kii, then (λ, λ) =
∑
i∈I

ki(i, i), where

I+
λ0 = I+

0 ∩ C+
0 (Λ)λ (resp. I−

λ0 = I−
0 ∩ C−

0 (Λ)λ).
Proof. We set

M(λ) = D̃C(Λ)
/(∑

i∈I

D̃C(Λ)u
+
i + D̃C(Λ)(Ki − υ(λ,i))

)
,

then we have

M(0) = D̃C(Λ)
/(∑

i∈I

D̃C(Λ)u
+
i + D̃C(Λ)(Ki − 1)

)
.

Since u+i ·m0 = 0 (here m0 is the highest weight vector of M(0)), we have

u+j (u
−
i ·m0) = u−i (u

+
j ·m0) = 0, if i ̸= j,

u+i (u
−
i ·m0) = (u−i u

+
i − | ui |

ai
(Ki −K−1

i )) ·m0

= u−i u
+
i ·m0 −

| ui |
ai

(Kim0 −K−1
i m0)

= 0− | ui |
ai

(m0 −m0) = 0, if i = j.

Therefore, there is a unique D̃C(Λ)-module homomorphism ψ : M(−i) 7−→ M(0) such that
m−i 7−→ u−i ·m0, where m−i is the highest weight vector of the Verma module M(−i). For
any xα ∈ DC(Λ), if ψ(xαm−i) = xαψ(m−i) = xαu

−
i m0 = 0, then xαu

−
i = 0 and xα = 0.

Thus the map ψ : M(−i) 7−→ M(0) is an injective. We can regard M(−i) and hence⊕
i∈I

M(−i) as a submodule of M(0). One sees that M(0)
/(⊕

i∈I

M(−i)
)
is a simple module.

Therefore,
⊕
i∈I

M(−i) is a maximal submodule of M(0). We denote it by M
′
(0). Now, we

have D̃C(Λ)-module isomorphisms:

DC(Λ)
⊗

D̃C(Λ)

M
′
(0) ≃ DC(Λ)

⊗
D̃C(Λ)

(⊕
i∈I

M(−i)
)

≃
⊕
i∈I

DC(Λ)
⊗

D̃C(Λ)

M(−i)≃
⊕
i∈I

M(−i),

where M(−i) is a Verma DC(Λ)-module corresponding to M(−i). We denote by τ the
composition of these isomorphisms. Let

π : D̃C(Λ) 7−→ D̃C(Λ)/(I+ ⊗ C̃−(Λ) + C̃+(Λ)⊗ I−)

be the canonical projection. Since I−
0 ·m0 is a submodule ofM(0), we have I−

0 ·m0 ⊂M
′
(0).
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We define the action of D̃C(Λ) on I−
0 as follows

C̃+(Λ) · I−
0 = 0, Kα · x = x, α ∈ Z[I], x ∈ I−

0 ,

where C̃+(Λ) · I−
0 is the multiplication in D̃C(Λ). We have a well-defined map

φ1 : I−
0 7−→ D̃C(Λ)

⊗
D̃C(Λ)

M
′
(0),

a 7−→ 1⊗ a(m0),

and φ1 is a D̃C(Λ)-module homomorphism. For any x ∈ D̃C(Λ) and a ∈ I−
0 , we have

φ1(x · a) = 1
⊗

D̃C(Λ)

(x · a)(m0) = π(x)
⊗

D̃C(Λ)

a(m0) = x(φ1(a)).

Clearly, I−
0

∑
i∈I

C̃−
0 (Λ)u−i is a D̃C(Λ)-submodule of I−

0 Dc(Λ), and φ1(I−
0

∑
i∈I

C̃−
0 (Λ)u−i ) = 0.

Since I−
0 I−

0 ⊂ I−
0

∑
i∈I

C̃−
0 (Λ)u−i , I

−
0 /(I

−
0

∑
i∈I

C̃−
0 (Λ)u−i ) is a C−

0 (Λ)-module in a natural way.

We have C(Λ)-module homomorphism

φ2 : I−
0

/(
I−
0

∑
i∈I

C̃−
0 (Λ)u−i

)
7−→

⊕
i∈I

M(−i).

More precisely, φ2 is given in the following way: for any u−i ̸∈ I−
0 , we write a ∈ I−

0 in the

form a =
∑
i∈I

xi · u−i , where xi ∈
∑
i∈I

C̃−
0 (Λ)u−i , then

φ2

(
a+ I−

0

∑
i∈I

C̃−
0 (Λ)u−i

)
=

∑
i∈I

τφ1(xi · u−i ) =
∑
i∈I

τ
(
1

⊗
D̃C(Λ)

(xi · u−i ) ·m0

)
=

∑
i∈I

τ(π(xi)⊗m−i) =
∑
i∈I

π(xi)m−i,

where m−i is the highest weight vector of M(−i). If

φ2(a) = φ2

(
a+ I−

0

∑
i∈I

C̃−
0 (Λ)u−i

)
= 0,

we have π(xi) = 0 for all i ∈ I, and it follows that a = a + I−
0

∑
i∈I

C̃−
0 (Λ)u−i = 0. Thus we

have an embedding

φ2 : I−
0

/(
I−
0

∑
i∈I

C̃−
0 (Λ)u−i

)
7−→

⊕
i∈I

M(−i).

If we define the action of C+
0 (Λ) and T on I−

0 /(I
−
0

∑
i∈I C̃

−
0 (Λ)u−i ) as zero, then

I−
0

/(
I−
0

∑
i∈I

C̃−
0 (Λ)u−i

)
becomes a DC(Λ)-module. As DC(Λ)-module, both I−

0

/(
I−
0

∑
i∈I

C̃−
0 (Λ)u−i

)
and

⊕
i∈I

M(−i)

belong to O.
Now, let −β be the primitive weight of I−

0

/(
I−
0

∑
i∈I

C̃−
0 (Λ)u−i

)
. Note that β ̸∈ I since

for any (i ∈ I), u−i ̸∈ I−
0 . We know that −β is a primitive weight of some M(−i) by the

injectivity of φ2. Thus, −β < −i, or i < β. Let m be a primitive vector corresponding to
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the weight −β, then there is a submodule N ⊂M(−i) such that m ̸∈ N and by Lemma 3.3

ΩΞ(m) = υG(−β)m (mod N), ΩΞ(m) = υG(−i)m (mod N).

Thus vG(−i)m = υG(−β)m (modN). However, m ̸∈ N, so we get vG(−i) = υG(−β) and
G(−i) = G(−β). By Lemma 3.2, we know that I−

0 is generated by those I−
−β0 with β ̸∈

I,G(−i) = G(−β) for some i ∈ I.

Let −β = −
n∑

j=1

kjij , where ij ∈ I, kj ∈ N ∩ {0}. Let i = ij (for some j). Since β > i, we

have kj ̸= 0. So we can write −β in the form

−β = −ij − k1i1 − k2i2 − · · · − kj−1ij−1 − (kj − 1)ij − kj+1ij+1 − · · · − knin

= −i− γ1 − γ2 − · · · − γm,

where m =
n∑

i=1

ki − 1, and for each p ∈ {1, 2, · · · ,m}, there are kp of ip (p ̸= j), and kj − 1

of ij in γ1, γ2, . . . , γm. By Lemma 2.2, we get

0 = G(−i)−G(−β) = G(−ij)−G(−ij − γ1 − γ2 − · · · − γm)

=

m∑
p=1

(γp, γp)⟨γp,−ij⟩ −
∑

1≤p ̸=q≤m

(γp, γq) = 2

m∑
p=1

(γp,−ij)−
∑

1≤p ̸=q≤m

(γp, γq)

= −2
m∑

p=1

(γp, ij) +
m∑

p=1

(γp, γp)−
( m∑

p=1

γp,
m∑

p=1

γp

)
= −2(β − ij , ij) +

∑
s̸=j

ks(is, is) + (kj − 1)(ij , ij)− (β − ij , β − ij)

= −2(β, ij) + 2(ij , ij) +
∑
s̸=j

ks(is, is) + (kj − 1)(ij , ij)− (β, β) + 2(β, ij)− (ij , ij)

=
m∑

p=1

kp(ip, ip)− (β, β).

Therefore, (β, β) =
m∑

p=1
kp(ip, ip).

§4. Main Result

In this section, we prove the following result.

Theorem 4.1. Let DC(Λ) = C+
0 (Λ)⊗T⊗C−

0 (Λ), where C̃+
0 (Λ)/I+

0 = C+
0 (Λ), C̃−

0 (Λ)/I−
0 =

C−
0 (Λ). Then the elements

u+ij =

n(i,j)∑
t=0

(−1)t
[
n(i, j)
t

]
αi

vdi(t−1)tu+i
n(i,j)−t

u+j u
+
i

t
,

u−ij =

n(i,j)∑
t=0

(−1)t
[
n(i, j)
t

]
αi

vdj(t−1)tu−i
n(i,j)−t

u−j u
−
i

t

generate the ideals I+
0 and I−

0 , respectively.

Proof. Set D′
C(Λ) = D̃C(Λ)/J , where J is the ideal generated by u+ij and u−ij (i, j ∈

I, i ̸= j). Then we have the induced N[I]-graded algebra D′
C(Λ) =

⊕
α∈N[I]

D′
C(Λ)α. Clearly,

J ⊂ I.
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Let 1I±
0 be the image of I±

0 under the canonical projection π : D̃C(Λ) 7−→ D′
C(Λ). We

assume that 1I+
0 ̸= 0 (the proof of 1I−

0 ̸= 0 can be obtained by using ω).
Now, since 1I+

0 =
⊕

α∈N[I]
1I+

0 ∩ D′
C(Λ)α =

⊕
α∈N[I]

1I+
α0 ̸= 0, there is α ∈ N[I] such that

1I+
α0 ̸= 0. We choose α =

n∑
t=1

ktet such that
n∑

t=1
kt is minimal. Obviously, 1I+

α0 must occur

in any system of homogeneous generators of 1I+
0 .

Let Ti be the Luzstig symmetry for each i ∈ I (see for example [6]). One easily sees that
for each i ∈ I, we have Ti ∈ AutD′

C(Λ) such that Ti(D′
C(Λ)α) = D′

C(Λ)si(α), where si is the
fundamental reflection (see for example [10]). Since

Ti(1I+
α0) = Ti(1I+

0 ∩ D′
C(Λ)α) = Ti(1I+

0 ) ∩ Ti(D′
C(Λ)α) = Ti(1I+

0 ) ∩ D′
C(Λ)si(α),

it follows that if Ti(1I+
0 ) ⊂ 1I+

0 , then

Ti(1I+
α0) = Ti(1I+

0 ) ∩ D′
C(Λ)si(α) ⊂ 1I+

0 ∩ D′
C(Λ)si(α) = 1I+

si(α)
.

Ti is an isomorphism and 1I+
α0 ̸= 0, so 1I+

si(α)
̸= 0. Hence, to prove 1I+

si(α)
̸= 0, it is enough

to prove Ti(1I+
0 ) ⊂ 1I+

0 .

Since φ̃(u+ij , C̃−(Λ)) = φ̃(C̃+(Λ), u−ij) = 0, φ̃ naturally induces a pairing

φ′ : C̃+(Λ)/J + × C̃−(Λ)/J− 7−→ Q(υ),

φ′(x+ J +, y + J−) = φ̃(x, y),

where J + and J− are the ideals generated by u+ij and u−ij respectively. Clearly, we have

1I+
0 = {x ∈ C̃+

0 (Λ)/J + | φ′(x, C̃−
0 (Λ)/J−) = 0},

1I−
0 = {y ∈ C̃−

0 (Λ)/J− | φ′(C̃+
0 (Λ)/J +, y) = 0}.

For any i ∈ I, u+i ̸∈ 1I+
0 and 1I+

0 ∩ D′
C(Λ)i = 1I+

i0 = 0. Hence

1I+
0 =

⊕
α∈N[I]
α ̸=i

1Iα0 ⊂
⊕

α∈N[I]
α ̸=i

(C̃+
0 (Λ)/J +)α ⊂ C̃+

0 (Λ)/J +.

Thus, we have

Ti(1I+
0 ) ⊂

⊕
α∈N[I]
α ̸=i

Ti((C̃+
0 (Λ)/J +)α) =

⊕
α∈N[I]
α ̸=i

(C̃+
0 (Λ)/J +)si(α) ⊂ C̃+

0 (Λ)/J +,

since when α ∈ N[I] and α ̸= i, si(α) ∈ N[I]. Similar to [6, 6.14], we have operators ri and

r′i on C̃+
0 (Λ)/J + satisfying

∆(x) = u+i ⊗
∑
i∈I

r′i(x) + (rest), ∆(x) =
∑
i∈I

ri(x)⊗ u+i + (rest),

where x ∈ (C̃+
0 (Λ)/J +)α. Furthermore,

ri(1) = r′i(1) = 0, ri(u
+
j ) = r′i(u

+
j ) = δij ,

ri(xy) = υ(α,i)ri(x)y + xri(y), r′i(xy) = r′(x)y + υ(i,β)xr′i(y),

where x ∈ (C̃+
0 (Λ)/J +)α, y ∈ C̃+

0 (Λ)/J +)β . It is easy to prove that

φ′(x, u−i y) = φ′(u+i , u
−
i )φ

′(r′i(x), y) φ′(x, yu−i ) = φ′(u+i , u
−
i )φ

′(r′i(x), y).

Let

(C̃+
0 (Λ)/J +)(i) = {x ∈ C̃+

0 (Λ)/J + | Ti(x) ∈ C̃+
0 (Λ)/J +},

(C̃−
0 (Λ)/J−)(i) = {x ∈ C̃−

0 (Λ)/J− | Ti(x) ∈ C̃−
0 (Λ)/J−}.
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Then we have 1I+
0 ⊂ (C̃+

0 (Λ)/J +)(i). Since u+i u
−
j = u−j u

+
i (i ̸= j), it follows that

(C̃+
0 (Λ)/J +) =

∑
t≥0

(C̃+
0 (Λ)/J +)(i), (C̃−

0 (Λ)/J−) =
∑
t≥0

(C̃−
0 (Λ)/J−)(i).

We claim that, if x ∈ (C̃+
0 (Λ)/J +)(i), then r′i(x) = 0.

Noting that u+j u
−
i − u−i u

+
j =

Ki−K−1
i

ai
δij | ui |, we have for any x ∈ (C̃+

0 (Λ)/J +)(i),

(a) xu−i − u−i x =
ri(x)Ki −K−1

i r′i(x)

ai
| ui | .

Let
ri(x)

ai
| ui |=

∑
t≥0

(u+i )
tyt,

r′i(x)

ai
| ui |=

∑
t≥0

(u+i )
tzt,

where yt and zt ∈ (C̃+
0 (Λ)/J +)(i). Now, (a) can be written as

(a’) xu−i − u−i x =
∑
t≥0

(u+i )
tytKi −K−1

i

∑
t≥0

(u+i )
tzt.

By definition of (C̃+
0 (Λ)/J +)(i), Ti(yt), Ti(zt) ∈ (C̃+

0 (Λ)/J +)(i). Applying Ti to both sides
of (a′), we get

− Ti(x)u
+iK−i + u+i K−iTi(x)

=
∑
t≥0

[Ti((u
+
i )

t)Ti(yt)Ti(Ki)− Ti(K−i)Ti((u
+
i )

t)Ti(zt)]

=
∑
t≥0

(−1)tυ−t(i,i)[Kti(u
−
i )

tTi(Yt)K−i −KiKti(u
−
i )

tTi(zt)]

=
∑
t≥0

(−1)tυ−t(i,i)Kti(u
−
i )

t[Ti(yt)K−i − υt(i,i)KiTi(zt)].

The left side of the identity belongs to K−iC̃+
0 (Λ)/J +, so does the right hand side. By

the triangular decomposition, we get Ti(yt) = 0 and Ti(zt) = 0 for all t ≤ 0. Therefore,
r′i(x) = 0.

Since Ti(u
+
i ) = ν−(i,i)Kiu

−
i , we have u+i ̸∈ (C̃+

0 (Λ)/J +)(i). For any α ∈ N[I], we have

Ti((C̃+
0 (Λ)/J +)α) = C̃+

0 (Λ)/J +
si(α)

.

Thus, Ti(Ti((C̃+
0 (Λ)/J +)(i))) ⊆ C̃+

0 (Λ)/J +, and hence

Ti((C̃+
0 (Λ)/J +)(i)) ⊆ (C̃+

0 (Λ)/J +)(i).

So, Ti((C̃+
0 (Λ)/J +)(i)) = (C̃+

0 (Λ)/J +)(i).
By [10], x ∈ h+(A)⟨i⟩, y ∈ h−(A)⟨i⟩, we have φ(Ti(x), Ti(y)) = φ(x, y). Hence for any

x ∈ (C̃+
0 (Λ)/J +)(i) and y ∈ (C̃−

0 (Λ)/J−)(i), φ′(Ti(x), Ti(y)) = φ′(x, y). Therefore

φ′(Ti(1I+
0 ), C̃−

0 (Λ)/J−) = φ′(Ti(1I+
0 ),

∑
t≥

(u−i )
t(C̃−

0 (Λ)/J−)(i))

= φ′(Ti(1I+
0 ), (C̃+

0 (Λ)/J +)(i)) +
∑
t≥1

φ′(Ti(1I+
0 ), (u−i )

t(C̃−
0 (Λ)/J−)(i))

= φ′(Ti(1I+
0 ), Ti((C̃−

0 (Λ)/J−)(i)))

+
∑
t≥1

φ′(u+i , u
−
i )φ

′(r′i(Ti(1I+
0 ), (u−i )

t−1((C̃−
0 (Λ)/J−)(i))

· φ′(Ti(1I+
0 ), (C̃−

0 (Λ)/J−)(i)) + 0 = 0.
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This implies that Ti(1I+) ⊂ 1I+. By the choice of α and fundamental reflection (see for
example [10]), we know that

n∑
t=1

kt ≤
n∑

t=1

t ̸=i

ki +
∑
j∈Γ

dijkj − ki.

Thus, 0 ≤
∑
j∈Γ

djikj − 2ki. On the other hand,

⟨α, ei⟩ = (ki −
∑
j→i

djikj)εi, ⟨ei, α⟩ = (ki −
∑
i→j

djikj)εi.

So

(α, ei) = ⟨α, ei⟩+ ⟨ei, α⟩ = εi

(
2ki −

∑
j→i

djikj −
∑
i→j

djikj

)
,

∑
j∈Γ

djikj =
∑
j→i

djikj +
∑
i→j

djikj .

Thus, (α, ei))ε
−1
i ≤ 0. So for all i ∈ I, we have (α, ei) ≤ 0 (since εi > 0). Hence we

have (α, α) =
n∑

i=1

ki(α, ei) ≤ 0. By Proposition 3.1, (α, α) =
n∑

i=1

ki(ei, ei) > 0. This is a

contradiction. So, we have 1I+
0 = 0. This means that I+ ⊆ J +. Thus, I+ = J +. Hence,

I+ is generated by u+ij (i, j ∈ I, i ̸= j). The proof is completed.

By Theorem 4.1, we have C̃+(Λ)/I+ ≃ f+ (for f+ see [9]). Therefore, we can rewrite the
Green-Ringel isomorphism theorem for Double Ringel-Hall composition algebras (without
the condition ‘generic’).

Corollary 4.1. Keep notations as before, then the map Dc(Λ) 7−→ Uq(g) defined by

u+i 7−→ Ei, u
−
i 7−→ −υiFi,Ki 7−→ K̃i induces a Hopf algebra isomorphism.
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