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Abstract

This paper studies the properties of solutions of quasilinear equations involving the p-
laplacian type operator in general Carnot-Carathéodory spaces. The authors show some com-

parison results for solutions of the relevant differential inequalities and use them to get some
symmetry and monotonicity properties of solutions, in bounded or unbounded domains.
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§1. Introduction

Let X = (X1, · · · , Xk) be a C∞ Hörmander field in Rn, namely

rankLie[X1, · · · , Xk](x) = n for any x ∈ Rn. (1.1)

Let H be the space of horizontal curves, i.e. each such curve is a piecewise C1 function
γ : [0, T ] −→ Rn such that, whenever γ′(t) exists,

γ′(t) =
k∑

j=1

cj(t)Xj(γ(t)) verifying
k∑

j=1

cj(t)
2 ≤ 1. (1.2)
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T is called the horizontal length of γ. For any x, y ∈ Rn, define

d(x, y) = inf
γ∈H

{T ; γ(0) = x, γ(T ) = y}. (1.3)

It was proved by Chow[4], Nagel, Stein and Wainger[18] that the following basic properties

are satisfied:

(H1) (Rn, d) is a metric space, i.e. d(x, y) < ∞ for any x, y ∈ Rn.

(H2) ∀ U bounded open set of Rn, there exist C1 and R0 > 0 such that

for any x0 ∈ U,R ≤ R0, |Bd(x0, 2R)| ≤ C1|Bd(x0, R)| (doubling condition),

where | · | denotes Lebesgue’s measure on Rn and Bd denotes the metric ball in (Rn, d).

Let u be a Lipschitz function. We denote by |Xu| =
[ ∑
1≤j≤k

(Xju)
2
]1/2

the length of

horizontal gradient Xu = (X1u, . . . ,Xku), and then we can introduce the corresponding
Sobolev spaces. For any U open set of Rn and 1 ≤ p < ∞, define

∥u∥W 1,p =
(∫

U

|Xu|p + |u|pdx
)1/p

(1.4)

and define W 1,p
0 (U) (resp. W 1,p(U)) as the completion of C∞

0 (U) (resp. that of {u ∈
C∞(U), ∥u∥W 1,p < ∞}) under the norm ∥ · ∥W 1,p .

Clearly, all the definitions (1.2), (1.3) and (1.4) can be generalized for any real valued,

locally Lipschitz vector fields

Xj =

n∑
l=1

ajl
∂

∂xl
(1 ≤ j ≤ k), (1.5)

and for any u ∈ W 1,p(U), Xju is understood in the sense of distribution

⟨Xju, φ⟩ =
∫
U

uX∗
j φdx, ∀ φ ∈ C∞

0 (U), (1.6)

where X∗
j = −

∑
1≤l≤n

∂l(ajl·) denotes the formal adjoint of Xj . Throughout the paper we

assume that (H1) and (H2) hold always true and we call (Rn, d) the Carnot-Carathéodory
metric space associated to (Xj)1≤j≤k.

Many works have been done to understand the density of regular functions, Sobolev
embedding properties or isoperimetric inequalities in Carnot-Carathéodory spaces (see [13,

16] and references therein). Assume that

(H) X = (X1, · · · , Xk) is a system of vector fields given by (1.5) which satisfies (H1),
(H2) and there exist C2, R0 > 0 and α ≥ 1 such that for any x0 ∈ U , R ≤ R0 and any

Lipschitz function u defined on Bd(x0, αR), we have

|{x ∈ Bd(x0, R); |u(x)− ūB | > λ}| ≤ C2R

λ

∫
Bd(x0,αR)

|Xu|dx for all λ > 0, (1.7)

where ūB stands for the average of u over Bd(x0, R). Moreover, (Rn, d) is complete homeo-
morphic to (Rn, | · |), i.e. (Rn, d) defines the usual topology in Rn.

Under such assumptions, the following generalized Sobolev embedding inequalities were

proved in [13].

Lemma 1.1. (see [13] and [11]). Given any bounded open set U ⊂ Rn, let Q = log2 C1 (C1

is the constant in the doubling condition (H2)), called the local homogeneous dimension

relative to U . We suppose that Q ≥ 2. Then there exist R1, C > 0 such that for any metric
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ball B = Bd(x0, R) with x0 ∈ U and R ≤ R1, one has ∀ 1 ≤ p < Q, 1 ≤ k < Q/(Q− p) and
u ∈ W 1,p(B) ( 1

|B|

∫
B

|u− ūB |kpdx
)1/kp

≤ CR
( 1

|B|

∫
B

|Xu|pdx
)1/p

, (1.8)

and for any u ∈ W 1,p
0 (B)( 1

|B|

∫
B

|u|kpdx
)1/kp

≤ C
( 1

|B|

∫
B

|Xu|pdx
)1/p

. (1.9)

If p ≥ Q, then for any u ∈ W 1,p(B) and 1 ≤ q < ∞, one has( 1

|B|

∫
B

|u− ūB |qdx
)1/q

≤ CR
( 1

|B|

∫
B

|Xu|pdx
)1/p

. (1.10)

These inequalities play an important role for analysis in Carnot-Carathéodory spaces. We

know that (H) is satisfied for a very large class of spaces and a lot of interesting examples
have been given in [13, 16] (see also [11]) and the references therein.

Here, we study the properties of solutions of quasilinear equations involving the p-

laplacian type operator in general Carnot-Carathéodory spaces. More precisely, we consider
the differential operator L as follows:

Lu =

k∑
j=1

X∗
jAj(x,Xu), (1.11)

where A(x, η) = (A1(x, η), · · · , Ak(x, η)) satisfies the following assumptions:
(H3) A ∈ C0(Rn × Rk;Rk) ∩ C1(Rn × (Rk \ {0});Rk) and A(x, 0) = 0 for any x ∈ Rn.
(H4) For any bounded domain U , there exist suitable constants Γ, γ > 0 such that

k∑
i,j=1

∣∣∣∂Ai

∂ηj
(x, η)

∣∣∣ ≤ Γ∥η∥p−2 for any x ∈ Ū , η ∈ Rk \ {0}, (1.12)

k∑
i,j=1

∂Ai

∂ηj
(x, η)ξiξj ≥ γ∥η∥p−2∥ξ∥2 for any x ∈ Ū , η ∈ Rk \ {0}, ξ ∈ Rk

(1.13)

with a fixed constant p ∈ (1,∞).

In this work, we establish several comparison results, then associating with some gener-
alizations of ”moving plane method” developped in [11] and [1] (see also [3, 5] and [14]), we
will prove some symmetry or monotonicity properties.

A major difficulty of studing solutions of p-laplacian type equations lies essentially in the
degeneracy of the operator L. On one hand, this degeneracy comes from the structure of
the operator if p ̸= 2; on the other hand, it is caused by the degeneracy of vector fields X,

that is, {X1(x), · · · , Xk(x)} does not span Rn in general.
Our paper is organized as follows. In Section 2, we prove various comparison results, in

particular we show a Harnack type inequality. Symmetry and monotonicity properties for

bounded domain case are established in Section 3. The last section is devoted to a symmetry
result for ground state solution in the whole space Rn. In all this paper, C denotes generic
positive constant independent of u, even if its value could be changed from one line to

another one.

§2. Comparison Principles and Harnack Inequality

In this section, we prove some comparison results for quasilinear degenerate elliptic oper-
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ators defined above in Carnot-Carathéodory spaces. In particular, a Harnack type inequal-
ity is established. We begin with the following weak comparison principles whose proof

is analogous to those of [5] for Euclidean spaces case (with general p > 1) and [11] for
Carnot-Carathéodory spaces case with p = 2.

2.1 Weak Comparison Principles

Theorem 2.1. Let Ω ⊂ U be bounded open sets in Rn and u, v be in W 1,∞(Ω) satisfying

Lu+ g(x, u)− Λu ≤ Lv + g(x, v)− Λv in Ω

with Λ ≥ 0 and g(x, s) ∈ C0(Ω̄ × R) is nondecreasing in s for |s| ≤ max(∥u∥∞, ∥v∥∞), for
any x ∈ Ω. Let Ω′ ⊆ Ω be open and suppose that u ≤ v on ∂Ω′. Then

(a) if Λ = 0, u ≤ v in Ω′,∀ p > 1;

(b) if Λ > 0 and 1 < p ≤ 2, there exists a constant δ1 > 0, depending on p,Λ, γ,Γ, |Ω|
and MΩ, such that if |Ω′| ≤ δ1, then u ≤ v in Ω′;

(c) if Λ > 0, mΩ > 0 and p > 2, there exists a constant δ2 > 0, depending on p, Λ, γ, Γ,
|Ω| and mΩ, such that if |Ω′| ≤ δ2, then u ≤ v in Ω′,

where we define MS = sup
S

(|Xu|+ |Xv|) and mS = inf
S
(|Xu|+ |Xv|) for any subset S of Ω.

To prove this theorem, we need the following basic estimates for A(x, η) satisfying con-

ditions (H3) and (H4), the proof of which is straightforward[5].

Lemma 2.1. There exist constants C3, C4, depending on p, γ and Γ such that for any

η, η′ ∈ Rn with |η|+ |η′| > 0 and any x ∈ Ω,

|A(x, η)−A(x, η′)| ≤ C3(|η|+ |η′|)p−2|η − η′|, (2.1)

⟨A(x, η)−A(x, η′), η − η′⟩ ≥ C4(|η|+ |η′|)p−2|η − η′|2. (2.2)

Consequently, we have

|A(x, η)−A(x, η′)| ≤ C3|η − η′|p−1 if 1 < p ≤ 2, (2.3)

⟨A(x, η)−A(x, η′), η − η′⟩ ≥ C4|η − η′|p if p ≥ 2. (2.4)

Proof of Theorem 2.1. Since u, v ∈ W 1,∞(Ω) and u ≤ v on ∂Ω′, we have (u −
v)+ ∈ W 1,p

0 (Ω′) for any p > 1. Taking (u − v)+ as test function and using the fact that

[g(x, u)− g(x, v)](u− v)+ ≥ 0 in Ω, we get∫
Ω′
⟨A(x,Xu)−A(x,Xv), X(u− v)+⟩dx ≤ Λ

∫
Ω′
|(u− v)+|2dx.

According to (2.2), we have

C4

∫
Ω′∩{u≥v, |Xu|+|Xv|̸=0}

(|Xu|+ |Xv|)p−2|X(u− v)|2dx ≤ Λ

∫
Ω′
|(u− v)+|2dx.

When Λ = 0, we conclude X(u− v)+ = 0 a.e. in Ω′, thus (a) is proved.

Furthermore, using the covering argument as in the proof of Theorem 1 in [11], we can
prove that there exist constants C > 0, ρ > 2 such that for any open subset Ω′ ⊆ Ω with

|Ω′| < C and any u ∈ W 1,2
0 (Ω′), the following inequality holds:∫

Ω′
|u|2dx ≤ C|Ω′|1−

2
ρ

∫
Ω′

|Xu|2dx.

Therefore, if Λ > 0 and 1 < p ≤ 2, we get

C4M
p−2
Ω

∫
Ω′

|X(u− v)+|2dx ≤ ΛC|Ω′|1−
2
ρ

∫
Ω′
|X(u− v)+|2dx.
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So if |Ω′| is sufficiently small, we have ||X(u−v)+||L2(Ω′) = 0 which implies again (u−v)+ = 0
in Ω′ and then (b) is done. Finally, the case (c) is proved analogically with MΩ substituted

by mΩ.
The following is another version of weak comparison result which will be used later. From

now on, we assume that a Sobolev inequality with injection in L2 holds for U , i.e. there

exist constants C̄ > 0 and q ∈ (1, 2) depending only on U such that

||w||L2(U) ≤ C̄||Xw||Lq(U), ∀ w ∈ W 1,q
0 (U). (2.5)

Theorem 2.2. Let L, g, U,Ω, u, v be as in Theorem 2.1 and (2.5) holds for U . Then for
any 1 < p < 2, there exist δ,M > 0 depending on p,Λ, γ,Γ, q, |Ω| and MΩ such that: if
Ω′ = Σ1 ∪Σ2 ⊆ Ω is an open subset with |Σ1 ∩Σ2| = 0, |Σ1| < δ, and MΣ2 < M , then u ≤ v

on ∂Ω′ implies u ≤ v in Ω′.
Proof. Taking (u − v)+ ∈ W 1,p

0 (Ω′) as test function and using the fact that [g(x, u) −
g(x, v)](u− v)+ ≥ 0 in Ω, we get∫

Ω′
⟨A(x,Xu)−A(x,Xv), X(u− v)+⟩dx ≤ Λ

∫
Ω′
|(u− v)+|2dx.

Let 1 < p < 2 and Ω′ = Σ1 ∪ Σ2 with |Σ1 ∩ Σ2| = 0. According to Lemma 2.1,

l.h.s. ≥ C4M
p−2
Ω

∫
Σ1

|X(u− v)+|2dx+ C4M
p−2
Σ2

∫
Σ2

|X(u− v)+|2dx.

Extending (u− v)+ by 0 outside Ω′ and using Sobolev inequality in U , we have

r.h.s. ≤ ΛC̄
(∫

Ω′
|X(u− v)+|qdx

) 2
q

≤ 2ΛC̄
(
||X(u− v)+||2Lq(Σ1)

+ ||X(u− v)+||2Lq(Σ2)

)
≤ 2ΛC̄

(
|Σ1|

2
q−1

∫
Σ1

|X(u− v)+|2dx+ |Ω′|
2
q−1

∫
Σ2

|X(u− v)+|2dx
)
.

Therefore we deduce that if |Σ1| and MΣ2 are small enough, we must have X(u − v)+ = 0
in Ω′, which gives the theorem.

Consequently for p ∈ (1, 2) there exists M > 0 such that for any open set Ω′ ⊆ Ω, the

inequality u ≤ v on ∂Ω′ implies u ≤ v in Ω′ provided MΩ′ < M (with Σ1 = ∅). We note
that the statement holds true without any assumption on the size of Ω′, which is the main
difference with respect to Theorem 2.1. In general this is not true even for p = 2.

2.2. Harnack Inequality and Strong Comparison Principle
We now state a Harnack type comparison result.
Theorem 2.3. Let Ω be a bounded open set in Rn and u, v be in W 1,∞

loc (Ω) satisfying{
Lu+ Λu ≤ Lv + Λv in Ω,
u ≤ v in Ω,

(2.6)

for some constant Λ ∈ R. There exists r0 > 0 such that if U = Bd(x0, 4δ) ⊂ Ω with

δ ∈ (0, R1/4) and if mU > 0, then there exists C > 0 depending on δ, mU and MU such that

∥v − u∥Lr0 (Bd(x0,2δ))
≤ Cδ inf

Bd(x0,δ)
(v − u).

Proof. The proof of this theorem is rather technical and similar to that in [11], so we
just write the beginning of the proof and leave other details for readers.

We can always suppose that Λ ≥ 0, (if not, we can take Λ = 0 since u ≤ v). We replace

also v by v + τ (τ > 0) and the result is proved by taking τ → 0. Now v − u ≥ τ > 0.
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Denoting by Br the metric ball Bd(x0, r), we choose a cut-off function ξ with support in
B4δ and take φ = (v − u)βξ2 with β < 0 as test function. Therefore

|β|
∫
B4δ

ξ2(v − u)β−1⟨A(x,Xu)−A(x,Xv), Xu−Xv⟩dx

+

∫
B4δ

2ξ(v − u)β⟨A(x,Xu)−A(x,Xv), Xξ⟩dx

≤ Λ

∫
B4δ

(v − u)β+1ξ2dx.

Applying Lemma 2.1 for p ≤ 2, we have

|β|Mp−2
U

∫
B4δ

ξ2(v − u)β−1|Xu−Xv|2dx

≤ Cmp−2
U

∫
B4δ

ξ|Xξ|(v − u)β |X(v − u)|dx+ CΛ

∫
B4δ

(v − u)β+1ξ2dx.

Using Cauchy-Schwarz inequality, we get∫
B4δ

ξ2(v − u)β−1|X(u− v)|2dx ≤ C
(
1 +

1

|β|2
)∫

B4δ

(ξ2 + |Xξ|2)(v − u)β+1dx,

where C depends on the constants mU and MU . In the p > 2 case, it suffices to interchange
the roles of mU and MU for getting the same type inequality. The remainer of the proof is
just the standard Moser’s iterative technique as in [11] or [5].

We discuss now several useful consequences. Assume that u, v are two C1 functions

verifying Lu + Λu ≤ Lv + Λv in Ω with Λ ≤ 0 and u ≤ v on ∂Ω. Define Z = {x ∈ Ω :
|Xu|+ |Xv| = 0}. Then if there exists x0 ∈ Ω\Z such that u(x0) = v(x0), we have u ≡ v in
the connected component of Ω\Z containing x0. Moreover, in the following three situations,

we have u < v in Ω (not only in Ω \ Z!) unless u ≡ v in Ω,

(1) when Ω is connected and Z is discrete;

(2) when Z is compact and Ω \ Z is connected;

(3) when v = 0, Z is compact and |Z| = 0.

Indeed, denoting S = {x ∈ Ω : u(x) = v(x)}, we see that if u ̸≡ v, S ⊂ Z since Ω \ Z is

connected in cases (1), (2); in case (3), u < 0 in Ω \ Z since each connected component is
open, so S has nonzero measure. In case (1), taking any x0 ∈ S and r small enough such
that U = Bd(x0, r) verifies U ∩ S = {x0}. In case (2) or (3), we choose a neighborhood U

of Z such that Z ⊂ U ⊂ U ⊂ Ω. In each case, we have u < v in ∂U and Lu ≤ Lv in U . Let
ϵ > 0 satisfy v − u ≥ ϵ on ∂U . Applying Theorem 2.1 for v and u + ϵ, we get v ≥ u + ϵ in
Z, thus u < v in Ω.

§3. Symmetry and Monotonicity Results for Bounded Domain

In this section, we will apply the above comparison results to obtain some symmetry
and monotonicity properties. For this purpose, we consider (Rn, d) a Carnot-Carathéodory

space generated by a system X satisfying (H), let Ω ⊂ U be the bounded domains in Rn

verifying (2.5) and L be the p-laplacian type operator verifying (H3) and (H4).

3.1. Symmetry Results

We study the degenerate differential operator L in the form of (1.11) and consider the
associated isometry group G of L. More precisely, g ∈ G if and only if g : Rn → Rn is a C1

diffeomorphism such that g∗L = L. Now we assume the following conditions:
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(i) Isometries: There is a family of isometries It ∈ G which is C1 in t, such that ∀ t ∈ (0, 2),
there exists a family of hypersurfaces Ut ⊂ Rn such that It(x) = x ⇔ x ∈ Ut, i.e. Ut is the

invariant hypersurface under the action of It.

(ii) Domain decomposition: There exist pairwise disjoint sets Vt, such that

(a) Vt ⊂ Ut, for all t ∈ (0, 2).

(b) For all t1, t2 ∈ [0, 2],
∪

t1<t<t2

Vt is an open subset of Rn and Ω =
∪

0<t<2
Vt.

(iii) Inclusion in increasing t: Let Qt1 =
∪

0<t<t1

Vt and Qt1 =
∪

t1<t<2
Vt, then

(a) It(Qt) ⊂ Qt, for all t ∈ (0, 1).

(b) For all t ∈ (0, 1) and for every connected component Σ of Qt, there exists a point
x ∈ ∂Σ ∩ ∂Ω : It(x) ∈ Qt.

Moreover, we say that Ω is symmetric if we also have

(iv) Inclusion in decreasing t:

(a) It(Q
t) ⊂ Qt, for all t ∈ (1, 2) and Q1 = I1(Q

1).

(b) For all t ∈ (1, 2) and for every connected component Σ of Qt, there exists a point
x ∈ ∂Σ ∩ ∂Ω : It(x) ∈ Qt.

For 0 < t ≤ 1 and x ∈ Qt we define xt = It(x) and ut(x) = u ◦ It(x) = u(xt).

Theorem 3.1. Let 1 < p < 2. Let Ω satisfy conditions (i), (ii), (iii) and (2.5), f be a
locally Lipschitz function and u ∈ C1(Ω̄) be a weak solution ofLu = f(u) in Ω,

u > 0 in Ω,
u = 0 on ∂Ω.

(3.1)

Assume that for any λ < 1 and any connected component Cλ of Qλ, Cλ \ Zλ is connected
where Zλ = {x ∈ Qλ, Xu(x) = Xuλ(x) = 0}. Then

u(x) ≤ u(xλ), if x ∈ Qλ, 0 < λ < 1. (3.2)

If I1(Q1) ⊂ Q1, we still have the inequality u(x1) ≥ u(x), ∀ x ∈ Q1. Moreover, if Ω is
symmetric and the analogous condition holds for any Cλ \Zλ with λ > 1, then u(x) = u(x1)

in Q1.

Proof. Since u is bounded, we can find Λ > 0 such that g±(x) = Λx ± f(x) are
nondecreasing in [0, ∥u∥∞]. For λ < 1, functions u, uλ satisfy the equation Lz−Λz+g−(z) =

0 in Qλ and u ≤ uλ on ∂Qλ ∩ ∂Ω, u = uλ on ∂Qλ ∩ Vλ. By Theorem 2.1, since MΩ < ∞,
there exists a δ such that if |Qλ| ≤ δ, then

u ≤ uλ in Qλ. (3.3)

Thus (3.3) holds for λ > 0 small enough.

Now we look at λ0 = sup{λ > 0, s.t. u ≤ uµ,∀ µ ∈ [0, λ]}, we shall prove that λ0 = 1. If

it is false, then λ0 < 1 and u ≤ uλ0 in Qλ0 by continuity. We have also Lu+Λu = g+(u) ≤
g+(uλ0) = Luλ0 + Λuλ0 in Qλ0 . For any connected component Cλ0 of Qλ0 , Theorem 2.3
implies that u < uλ0 in Cλ0 \ Zλ0 , unless u ≡ uλ0 in Cλ0 \ Zλ0 , since the set Cλ0 \ Zλ0 is

connected. In the second case, the C1 continuity of u − uλ0 will deduce that u ≡ uλ0 in
whole Cλ0 . However, by the assumption on Ω, we get x ∈ ∂Ω ∩ Cλ0 such that xλ0 ∈ Ω,
thus 0 = u(x) < u(xλ0), u ̸≡ uλ0 in Cλ0 . Thus u < uλ0 in Cλ0 \ Zλ0 for each connected

component Cλ0 , thus u < uλ0 in Qλ0 \ Zλ0 .

Let S = {x ∈ Qλ0 , u(x) = uλ0(x)} ⊂ Zλ0 . Since Xu = Xuλ0 = 0 in S, there exists an
open set O verifying S ⊂ O ⊂ Qλ0 and MO,λ0 < M/2, where MO,λ = sup

O
(|Xu| + |Xuλ|)
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and δ, M are constants dertermined by Theorem 2.2. Take now a compact set K ⊂ Qλ0

with |Qλ0
\ K| < δ/2. Then in the compact subset K \ O, there exists ϵ > 0 such that

uλ0 − u ≥ ϵ. Applying again the C1-continuity of u, we get η > 0 such that λ0 + η < 1,
uλ − u > 0 in K \ O and MO,λ < M for any λ ∈ [λ0, λ0 + η]. We can also assume that
|Qλ0+η \K| < δ.

Moreover, for such λ, if Σλ = (Qλ \ (K \ O)), ∂Σλ is included in ∂Qλ ∪ ∂(K \ O), we
obtain then u ≤ uλ in ∂Σλ. Since Σλ = Σ1 ∪ Σ2 with disjointed sets Σ1 = Qλ \ K and

Σ2 = K ∩O, using Theorem 2.2 on Σλ, we get u ≤ uλ in Σλ. Recall that u ≤ uλ in K \O,
so u ≤ uλ in Qλ for any λ ≤ λ0 + η; this contradicts the definition of λ0. Hence, (3.2) is
proved. Other results are direct consequences of (3.2).

In the same spirit, we can state

Theorem 3.2. Let Ω satisfy the conditions (i), (ii), (iii), f be a locally Lipschitz function
and u ∈ C1(Ω̄) be a weak solution to (3.1). Assume that conditions (H) to (H4) are satisfied
with 1 < p < ∞. If Z = {x ∈ Ω, Xu(x) = 0} is a subset of V1, then u(x) ≤ u(xλ), for any

x ∈ Qλ, λ ∈ (0, 1). Moreover, if Ω is symmetric, then u(x) = u(x1) in Q1.

3.2. Monotonicity Result

Now we state a monotonicity theorem of the same type as Berestycki and Nirenberg’s
results in [3]. Let Ω ⊂ Rn be a bounded domain such that |∂Ω| = 0 and Ω can be decomposed
as the union of a family of hypersurfaces as follows: there exists a hypersurface without

boundary V ⊂ Rn such that Ω =
∪

t∈[0,1]

At(Vt) where Vt ⊂ V are compact hypersurfaces

with boundary for 0 < t < 1, C1 depending on t, and At (t ∈ R) is a C1 one parameter

subgroup of the associated “isometry” group G of L, which is transversal to V at t = 0.
Furthermore, we assume the following conditions.

Foliation conditions:

∂At(x)

∂t

∣∣∣
t=0

⊕ TxV = TxRn, ∀ x ∈ V, (3.4)

∃ ε > 0 such that ∀ x ∈ V, ∀ t ∈ (0, 1 + ε), At(x) /∈ V, (3.5)

Directional convexity conditions:{
∀ x ∈ V, {t ∈ [0, 1], At(x) ∈ Ω} is a closed interval denoted by [s1(x), s2(x)],
∀ x ∈ V, {t ∈ (0, 1), At(x) ∈ Ω} is an open interval denoted by (τ1(x), τ2(x)).

(3.6)

Let u be a C1(Ω̄) solution of {
Lu = f(u) in Ω,
u = ϕ on ∂Ω.

(3.7)

Suppose that ϕ is a strictly increasing function of t along the orbits of At and u is such that
along an orbit, it takes its values between those of ϕ at the points where the orbit crosses
the boundary. More precisely, for all boundary points xb, xe ∈ ∂Ω, which are on the same

orbit of the group action, i.e. ∃ t(xb, xe) > 0 such that xe = At(xb), then

∀ τ ∈ (0, t(xb, xe)) , ϕ(xb) < u(Aτ (xb)) < ϕ(xe). (3.8)

Our result reads as follows.

Theorem 3.3. Let 1 < p < 2. Suppose that f is a locally Lipschitz function and the
assumptions (3.4)–(3.6) are satisfied. Let u be a C1 solution of (3.7) and (3.8). Denote
Dt = Ω ∩ At(Ω) and Zt = {x ∈ Dt, |Xu| + |X(u ◦ At)| = 0} for t ∈ (0, 1). If for any

t ∈ (0, 1) and any connected component Ct of Dt, the set Ct \ Zt is connected, then the
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function u is nondecreasing along the orbits of the group action, i.e.

∀ x ∈ Ω, ∀ t > 0 s.t. At(x) ∈ Ω, we have u(At(x)) ≥ u(x). (3.9)

Proof. Denote uτ = u ◦ Aτ and τ1 = sup{τ > 0 s.t. Dτ ̸= ∅}. First, we see that

Luτ = f(uτ ) for all τ ∈ (0, 1) and u < uτ on ∂Dτ . Then working with g±(u) = Λu± f(u),
by the same argument as in the proof of Theorem 3.1, we have u ≤ uτ in Dτ for τ < τ1 and
close to τ1, since |Dτ | < δ. Note τ0 = inf{τ > 0 s.t. u ≤ uµ,∀ µ ∈ (τ, τ1)}, the conclusion of

this theorem is then equivalent to saying that τ0 = 0.
If it is not true, by the continuity of u, u ≤ uτ0 in Dτ0 . Since u < uτ0 on ∂Dτ0 , Theorem

2.3 implies that u < uτ0 in Dτ0 \ Zτ0 . On the other hand, applying Theorem 2.2, we see

that there exists M > 0 such that for any Σ ⊂ Dτ verifying MΣ < M (with Σ1 = ∅), then
u ≤ uτ in Σ provided u ≤ uτ on ∂Σ.

We choose an open subset Σ of Dτ0 such that S = {x ∈ Dτ0 , u(x) = uτ0(x)} ⊂ Σ and

MΣ,τ0 ≤ M/2, this is possible because S ⊂ Zτ0 . By the C1-continuity of u, we know that
MΣ,τ < M for τ close to τ0. Moreover, K = D̄τ0 \ Σ is compact, then there exists ϵ > 0
such that u ≤ uτ0 − ϵ in K. Using again the continuity of u, u ≤ uτ on D̄τ \Σ for τ close to

τ0. Thus u ≤ uτ on ∂Σ for such τ , so u ≤ uτ in Σ by previous remark, which implies that
u ≤ uτ in Dτ for τ small but close to τ0. This contradicts the choice of τ0 and completes
the proof.

§4. Symmetry Result for Unbounded Domains

Let X = {X1, · · · , Xk} be a system of C∞ vector fields of Hörmander type. First, we
remark that (H) is verified (see [9, 18, 17] and [19]). Suppose that the following basic

peoperty holds:
(P) ∀ x ∈ Rn, ∀ R > 0, B = Bd(x,R) = {y ∈ Rn, d(y, x) < R} is relatively compact and

there exist positive constants 1 < q < 2 and C > 0 depending only on R such that for any

u ∈ W 1,p(B), we have (∫
B

|u− ūB|2dx
)1/2

≤ C
(∫

B

|Xu|qdx
)1/q

. (4.1)

Moreover, set E(x) = Vect{Xj(x), 1 ≤ j ≤ k} and

G1 = {g ∈ G, s.t. g∗(dx) = dx, d(g(x), g(y)) = d(x, y), ∀ x, y ∈ Rn, g∗(E) = E

and ∃ cg ≥ 1 s.t. ∀ x ∈ Rn, Y ∈ E(x), ∥Y ∥/cg ≤ ∥g∗(Y )∥ ≤ cg∥Y ∥}.
We assume (i), (ii) by replacing t ∈ (0, 2) by t ∈ R and It ∈ G1 such that Rn =

∪
t∈R

Vt

with Vt = Ut connected and lim
t→∞

(
inf
x∈Ut

|x|
)
= +∞. Furthermore, for any t1 ∈ R, assume

that Qt1 =
∪

t<t1

Vt, Q
t1 =

∪
t>t1

Vt are connected open sets in Rn and It(Qt) = Qt for any

t ∈ R. We consider positive solutions of the following equation in Rn, with the ground state

condition at infinity, namely Lu = f(u) in Rn,
u > 0 in Rn,
u(x) → 0, as |x| → ∞.

(4.2)

Theorem 4.1. Under the above assumptions, let 1 < p < 2. Assume that (H), (H3) and
(H4) are verified. Let u be a C1 solution of (4.2) where f is locally Lipschitz on (0,+∞)

and there exists s0 > 0 such that f is nonincreasing on (0, s0). Assume that for any t ∈ R,
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Qt \ Zt is connected with Zt = {x ∈ Qt, |Xu(x)| + |X(u ◦ It)(x)| = 0}. Then there exists
t0 ∈ R, such that u ◦ It0 = u.

Proof. The proof is divided in several steps.

Step 1. Set Γ = {t ∈ R, u ≤ ut = u ◦ It in Qt}. We claim that ∃ t1 ∈ R, such that
(−∞, t1] ⊂ Γ.

Indeed, by our assumption, there exists t1 ∈ R such that we have 0 < u(x) < s0/2 in Qt1 .
Recall that It ∈ G1, thus ut satisfies the equation Lut = f(ut) in Qt for any t ∈ R. For any
t ≤ t1, we fix 0 < ϵ < s0/2 and consider the test function (u− ut − ϵ)+ in Qt. Using again
the ground state assumption, we can see that (u − ut − ϵ)+ has compact support, which
implies ∫

Qt

(f(u)− f(ut))(u− ut − ϵ)+dx =

∫
Qt

(Lu− Lut)(u− ut − ϵ)+dx. (4.3)

Remark that if x ∈ supp(u− ut − ϵ)+ ∩Qt, then (f(u)− f(ut))(u− ut − ϵ)+ ≤ 0, since f is
nonincreasing on (0, s0). On the other hand, we deduce from Lemma 2.1,∫

Qt

(Lu− Lut)(u− ut − ϵ)+dx ≥ C4

∫
Qt

(|Xu|+ |Xut|)p−2|X(u− ut − ϵ)+|2dx ≥ 0.

Therefore, X(u− ut − ϵ)+ = 0 a.e. in Qt and u(x) ≤ ut(x) + ϵ for any x ∈ Qt. We get our
claim by passing ϵ → 0.

Step 2. Let λ ∈ Γ. Fix x ∈ Uλ. For any r > 0, there exist positive numbers mr and Mr

such that ∀ y ∈ Bd(x, r), we have 0 < mr ≤ u(y) ≤ Mr. We can choose then Λ > 0 such that

g(x) = Λx+ f(x) is nondecreasing in [mr,Mr], thus Lu+Λu = g(u) ≤ g(uλ) = Luλ +Λuλ

in Qλ ∩Bd(x, r). By Theorem 2.3, we deduce that either u ≡ uλ in Qλ ∩Bd(x, r) or u < uλ

in one connected component of (Qλ \Zλ)∩Bd(x, r). As Qλ \Zλ is connected, for any points

y1, y2 ∈ Qλ \ Zλ, we can join them by a loop γ in (Qλ \ Zλ) ∩ Bd(x, r) for some r > 0.
Hence, we conclude that either u ≡ uλ in Qλ or u < uλ in Qλ \Zλ. The proof is finished in
the first case; otherwise, we claim that

there exists δ > 0 such that [λ, λ+ δ] ⊂ Γ.

Suppose that u < uλ in Qλ \Zλ. We choose R > 0 such that u(x) < s0/2 in Rn \B(0, R).

We choose also positive constants δ1, R1 and R2 such that for any t ∈ [λ, λ+δ1], there exists
xt ∈ Ut satisfying

B(0, R) ⊂ Bd(xt, R1) ⊂ B(0, R2).

Fix ϵ ∈ (0, s0/2), as in Step 1, we get (4.3) and we have (f(u) − f(ut))(u − ut − ϵ)+ ≤ 0
in Qt ∩ (B(0, R))c by the choice of R. Set m = min

B(0,R)
u and M = max

B(0,R2)
u. We see that

u(Qt ∩B(0, R)) ⊂ [m,M ] and ut(Qt ∩B(0, R)) ⊂ ut(Bd(xt, R1)) = u(Bd(xt, R1)) ⊂ [m,M ].

Recall that f is Lipschitz in [m,M ], therefore∫
Qt

(f(u)− f(ut))(u− ut − ϵ)+dx

≤
∫
Qt∩B(0,R)

(f(u)− f(ut))(u− ut − ϵ)+dx ≤ C

∫
Qt∩B(0,R)

(u− ut)
+(u− ut − ϵ)+dx.
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For any t ∈ [λ, λ+ δ1], using (4.3) and Lemma 2.1, we have∫
Qt

(|Xu|+ |Xut|)p−2|X(u− ut − ϵ)+|2dx ≤ C

∫
Qt∩B(0,R)

(u− ut)
+(u− ut − ϵ)+dx

≤ C

∫
Qt∩B(0,R)

(
(u− ut)

+
)2

dx ≤ C

∫
Qt∩Bd(xt,R1)

(
(u− ut)

+
)2

dx.

Letting ϵ → 0, we get∫
Qt

(|Xu|+ |Xut|)p−2|X(u− ut)
+|2dx ≤ C

∫
Qt∩Bd(xt,R1)

(
(u− ut)

+
)2

dx.

Define now

ω̃(x) =

{
(u− ut)

+(x) if x ∈ Qt,
−(u− ut)

+(x) if x ∈ Qt.

Obviously, ω̃ ∈ W 1,2(Bd(xt, R1)) and

w̄Bd
= −
∫
Bd(xt,R1)

ω̃dx = 0,

since It(Bd(xt, R1) ∩Qt) = Bd(xt, R1) ∩Qt, I∗t (dx) = dx according to the definition of G1.
Then, it follows the hypothesis (P) that there exists 1 < q < 2 such that∫

Qt∩Bd(xt,R1)

(
(u− ut)

+
)2

dx =
1

2

∫
Bd(xt,R1)

(ω̃ − w̄Bd
)
2
dx

≤ C
(∫

Bd(xt,R1)

|Xω̃|qdx
)2/q

≤ C
(∫

Qt∩Bd(xt,R1)

|Xω̃|qdx
)2/q

. (4.4)

Hence ∫
Qt

(|Xu|+ |Xut|)p−2|X(u− ut)
+|2dx

≤ C
(∫

Qt∩B(0,R2)∩supp(u−ut)+
|X(u− ut)

+|qdx
)2/q

. (4.5)

Moreover, for any disjointed union Σ1 ∪ Σ2 = Qt ∩B(0, R2)∩supp(u− ut)
+, we denote

M = sup
x∈B̄(0,R2), t∈[λ,λ+δ1]

(|Xu(x)|+ |Xut(x)|) and MΣ2,t = sup
x∈Σ2

(|Xu(x)|+ |Xut(x)|) .

By (4.5) and Hölder inequality, we obtain

M
p−2

∫
Σ1

|X(u− ut)
+|2dx+Mp−2

Σ2,t

∫
Σ2

|X(u− ut)
+|2dx

≤
∫
Qt

(|Xu|+ |Xut|)p−2|X(u− ut)
+|2dx

≤ C
(
|Σ1|2/q−1

∫
Σ1

|X(u− ut)
+|2dx+ |B(0, R2)|2/q−1

∫
Σ2

|X(u− ut)
+|2dx

)
.

(4.6)

Clearly, there exists M0, η > 0 such that if |Σ1| ≤ η and MΣ2,t ≤ M0 with t ∈ [λ, λ+ δ1],

(4.6) will deduce that X(u− ut)
+ ≡ 0 in Qt, i.e. u ≤ ut in Qt.
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Coming back to consider uλ, we can take an open set U such that Zλ∩B(0, R2) ⊂ U ⊂ Qλ

andMU,λ ≤ M0/2. We choose alsoK ⊂⊂ Qλ∩B(0, R2) verifying |(Qλ∩B(0, R2))\K| ≤ η/2.

Since u < uλ in Qλ \ Zλ, we have ϵ > 0 such that u ≤ uλ − ϵ in the compact subset K \ U .
As It is a C1 foliation and u is C1, there exists δ ∈ (0, δ1) such that for any t ∈ [λ, λ + δ],
u ≤ ut in K \ U and |(Qt ∩B(0, R2)) \K| ≤ η and MU,t ≤ M0. Hence, for such t, letting

Σ1 = (supp(u−ut)
+∩Qt∩B(0, R2))\K and Σ2 = supp(u−ut)

+∩Qt∩B(0, R2)∩U ∩K

be two disjointed sets, we see that Qt∩B(0, R2)∩supp(u−ut)
+ = Σ1∪Σ2. Since |Σ1| ≤ η and

MΣ2,t ≤ MU,t ≤ M0, by the above remark, we get (u− ut)
+ ≡ 0 in Qt for any t ∈ [λ, λ+ δ].

The claim is proved.
Step 3. By the assumption lim

|x|→∞
u(x) = 0 and u(x) > 0 in Rn, clearly there exists

α ∈ R such that Γ ∩ [α,∞) = ∅. Setting t0 = supΓ λ, we see that u ≤ ut0 in Qt0 and the
desired result yields from Step 2.
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