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Abstract

A soliton hierarchy of multicomponent AKNS equations is generated from an arbitrary
order matrix spectral problem, along with its bi-Hamiltonian formulation. Adjoint symmetry
constraints are presented to manipulate binary nonlinearization for the associated arbitrary

order matrix spectral problem. The resulting spatial and temporal constrained flows are shown
to provide integrable decompositions of the multicomponent AKNS equations.
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§1. Introduction

Integrable systems and soliton theory are receiving more and more respect and recognition
in the mathematical and physical communities, both in China and abroad. A three-digit
classification 37K in 2000 Mathematics Subject Classification (MSC2000) was newly de-
signed for this science in the historic year 2000, although MSC2000 does not contain all
areas of integrable systems and soliton theory. Binary nonlinearization is one of new areas
in that nonlinear science, attracting an increasing interest recently.

In the nonlinearization process of matrix spectral problems of soliton equations, sym-
metry constraints play an exceptional role[1], which generate integrable decompositions for
soliton equations and thus show the integrability by quadratures for the underlying soliton
equations. Of particular significance in the area of binary nonlinearization is a kind of non-
Lie symmetries engendered from the variational derivative of the spectral parameter[1]. It
has not realized until very recently that this variational derivative is an adjoint symmetry of
the underlying soliton equations, and thus, actually all we need in carrying out nonlineariza-
tion is a kind of adjoint symmetry constraints[2]. Moreover, adjoint symmetry constraints
have broader applicability than symmetry constraints, because they can be applied to both
Hamiltonian and non-Hamiltonian systems of evolution equations.

However, due to the complexity of higher-order matrix spectral problems, there has not
been much investigation on binary nonlinearization for soliton equation associated with
higher-order matrix spectral problems. The multi-wave interaction equations, in both 1+ 1
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dimensions and 2+1 dimensions, is the first example on binary nonlinearization in the case of
higher-order matrix spectral problems (see [3] for details). Further investigation is deserved
to make more examples of integrable decompositions for soliton equations associated with
higher-order matrix spectral problems.

Actually, many nonlinear evolution equations of physical and mathematical interest are
associated with the following mth-order matrix spectral problem,

ϕx = (λU0 + U1)ϕ, U0 = diag(α1, · · · , αm), (1.1)

where α1, · · · , αm are arbitrary constants and U1 is an off-diagonal potential matrix. The
nondegenerate case of αi ̸= αj , 1 ≤ i ̸= j ≤ m, corresponds to the multi-wave interaction

equations[3,4]. For the degenerate case that U0 possesses multiple eigenvalues, a remarkable
example is the coupled nonlinear Schrödinger equation associated with U0 = diag(1,−1,−1)
(see [5]), which is also one of the models in optical fibers[6]. Some of these systems were
shown to possess various integrable properties, for example, Hamiltonian structures[3,7,8],
solvability by the inverse scattering transform[9,10] or related Riemann-Hilbert problems[5,11],
separated variables[12], and the Liouville integrability by constrained flows[1,13].

In this paper, we would like to make an application of adjoint symmetry constraints to the
multicomponent AKNS equations, which are associated with an arbitrary order degenerate
matrix spectral problem of the type (1.1). Upon choosing a class of Lie point adjoint sym-
metries, a set of adjoint symmetry constraints is presented for the multicomponent AKNS
equations, and the spatial part and the temporal part of the associated spectral problems
and adjoint spectral problems are transformed into two Liouville integrable Hamiltonian
systems. The potential constraints resulting from the adjoint symmetry constraints provide
integrable decompositions[14,15] or the Bäcklund transformations[16] for the multicomponent
AKNS equations.

The paper is structured as follows. Section 2 is devoted to a recall of a general scheme
of adjoint symmetry constraints. Section 3 presents a multicomponent AKNS hierarchy
of soliton equations from an arbitrary order matrix spectral problem. Then, Section 4
discusses the problem of adjoint symmetry constraints, and Section 5 proceeds to establish
the Liouville integrability of the resulting constrained flows and integrable decompositions of
the multicomponent AKNS equations as well. Finally, Section 6 gives rise to some concluding
remarks.

§2. General Procedure

Let us recall a general procedure of adjoint symmetry constraints for carrying out binary
nonlinearization[2]. Assume that we have two square matrix spectral problems

ϕx = Uϕ = U(u, λ)ϕ, (2.1a)

ϕtn = V (n)ϕ = V (n)(u, ux, · · · ;λ)ϕ, (2.1b)

where n ≥ 0, λ is a spectral parameter, and U and V (n) are two square matrices, called
spectral matrices. If the Gateaux derivative U ′ of U is injective, then under the isospectral
condition

λtn = 0, (2.2)

zero curvature equations

Utn − V (n)
x + [U, V (n)] = 0, (2.3)

where [U, V (n)] = UV (n) − V (n)U , will determine a hierarchy of soliton equations:

utn = Kn(u), Kn = JGn = J
δH̃n

δu
, H̃n =

∫
Hn dx, (2.4)

which is supposed to have the Hamiltonian structure with the Hamiltonian operator J(u)

and the Hamiltonian functionals H̃n(u). Obviously, the adjoint spectral problem and the
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adjoint associated spectral problems for all n ≥ 0,

ψx = −UT (u, λ)ψ, ψtn = −V (n)T (u, ux, · · · ;λ)ψ, (2.5)

where T denotes the transpose of matrices, have the compatability conditions

(−UT )tn − (−V (n)T )x + [(−UT ), (−V (n)T )] = 0, (2.6)

which determine the same soliton hierarchy (2.4).
It is known (for example, see [15] for a detailed deduction) that

δλ

δu
= E−1ψT ∂U(u, λ)

∂u
ϕ, E = −

∫
Ω

ψT ∂U(u, λ)

∂λ
ϕ dx, (2.7)

where E is called the normalized constant, and Ω = (0, T0) if u is supposed to be periodic
with period T0 or Ω = (−∞,∞) if u is supposed to belong to the Schwartz space. Therefore,

if the Hamiltonian functionals H̃m are assumed to be conserved, then we have the following
common adjoint symmetries:

Gm, ψ
T ∂U(u, λ)

∂u
ϕ (2.8)

for all soliton equations in the hierarchy (2.4), since λ = λ(u) is a conserved functional due
to (2.2). The adjoint symmetries Gm are Lie type. But δλ/δu is not Lie type, since ϕ(s) and
ψ(s) can not be expressed in terms of x, u and spatial derivatives of u to some finite order.

Let us proceed to introduce N distinct eigenvalues λ1, · · · , λN , and so we have the spatial
part of the spectral problems and adjoint spectral problems

ϕ(s)x = U(u, λs)ϕ
(s), ψ(s)

x = −UT (u, λs)ψ
(s), 1 ≤ s ≤ N, (2.9)

and the temporal part of the spectral problems and adjoint spectral problems

ϕ
(s)
tn = V (n)(u, ux, · · · ;λs)ϕ(s), ψ

(s)
tn = −V (n)T (u, ux, · · · ;λs)ψ(s), 1 ≤ s ≤ N, (2.10)

where the eigenfunction and adjoint eigenfunction corresponding to λs are denoted by ϕ(s)

and ψ(s), 1 ≤ s ≤ N . Fix a Lie type adjoint symmetry Gm0 , and then we can define the
so-called binary adjoint symmetry constraint

Gm0 =

N∑
s=1

Esµs
δλs
δu

=

N∑
s=1

µsψ
(s)T ∂U(u, λs)

∂u
ϕ(s), (2.11)

where µs, 1 ≤ s ≤ N, are arbitrary nonzero constants, and Es, 1 ≤ s ≤ N , are N normalized
constants. The right-hand side of the constraint (2.11) is a general linear combination of N
non-Lie type adjoint symmetries δλs/δu, 1 ≤ s ≤ N . But, the left-hand side of the con-
straint (2.11) is a Lie type adjoint symmetry Gm0 . The adjoint symmetry constraints (2.11)
contain three kinds of dependent variables: u, ϕ(s), ψ(s). All adjoint symmetry constraints
(2.11) can be divided into three categories:

• Neumann type: (2.11) does not depend on any spatial derivative of u and it is
impossible to solve (2.11) for u.

• Bargmann type: (2.11) does not depend on any spatial derivative of u but it is
possible to solve (2.11) for u.

• Ostrogradsky type: (2.11) depends on spatial derivatives of u.
In a soliton hierarchy, usually the first conserved functional generates the Neumann type

constraint, the second conserved functional generates the Bargmann type constraint, and
the other conserved functionals generate the Ostragradovsky type constraints.

Let us now focus on the Bargmann type adjoint symmetry constraints, which are a basis
of the theory of binary nonlinearization. Upon solving the adjoint symmetry constraint
(2.11) for u, we are assumed to have

u = ũ(ϕ(1), · · · , ϕ(N);ψ(1), · · · , ψ(N)). (2.12)
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The replacement of u with ũ in the Lax systems (2.9) and (2.10) lead to the so-called spatial
binary constrained flow:

ϕ(s)x = U(ũ, λs)ϕ
(s), ψ(s)

x = −UT (ũ, λs)ψ
(s), 1 ≤ s ≤ N, (2.13)

and the so-called temporal binary constrained flow:

ϕ
(s)
tn = V (n)(ũ, ũx, · · · ;λs)ϕ(s), ψ

(s)
tn = −V (n)T (ũ, ũx, · · · ;λs)ψ(s), 1 ≤ s ≤ N. (2.14)

The spatial constrained flow (2.13) is a system of ordinary differential equations, but in
most cases, the temporal constrained flow (2.14) is a system of partial differential equations.
Nevertheless, taking advantage of (2.13), the temporal constrained flow (2.14) can be trans-
formed into a system of ordinary differential equations, which is assumed to be denoted
by

ϕ
(s)
tn = Ṽ (n)(ũ, λs)ϕ

(s), ψ
(s)
tn = −Ṽ (n)T (ũ, λs)ψ

(s), 1 ≤ s ≤ N. (2.15)

The constrained flows (2.13) and (2.15) still require the nth soliton equation utn = Kn(u)
as their compatability condition. Therefore, u = ũ gives rise to an integrable decomposition
of utn = Kn(u), if (2.13) and (2.15) are two Liouville integrable Hamiltonian systems.

Note that the constrained flows (2.13) and (2.15) are nonlinear, although the original
Lax systems (2.9) and (2.10) are linear with the eigenfunctions and adjoint eigenfunctions.
In view of this characteristic and the involvement of the original spectral problems and
the adjoint ones, the above whole process of manipulating the Bargmann adjoint symmetry
constraints is called binary nonlinearization[1,17].

§3. Multicomponent AKNS Hierarchy

Let m be an arbitrary natural number. We consider the following (m + 1) × (m + 1)
matrix spectral problem

ϕx = U(u, λ)ϕ, U(u, λ) =

[
−mλ q
r λIm

]
= U0λ+ U1,

∂U0

∂λ
=
∂U1

∂λ
= 0, (3.1)

where λ is a spectral parameter, Im is the m×m unit matrix, and

q = (q1, q2, · · · , qm), r = (r1, r2, · · · , rm)T , (3.2a)

ϕ = (ϕ1, ϕ2, · · · , ϕm+1)
T , u = ρ(U1) = (q, rT )T . (3.2b)

Because U0 has multiple eigenvalues, the spectral problem (3.1) is degenerate. A special
reduction of m = 1 gives rise to the AKNS spectral problem[18], and thus the spectral
problem (3.1) is called a multicomponent AKNS spectral problem.

To derive an associated soliton hierarchy, we first solve the adjoint equation

Wx = [U,W ] (3.3)

of the spectral problem (3.1) through the generalized Tu scheme[19]. We assume that a
solution W is given by

W =

[
a b
c d

]
, (3.4)

where a is a scalar, bT and c are m-dimensional columns, and d is an m×m matrix. Then
we have

[U,W ] =

[
qc− br −(m+ 1)λb+ qd− aq

(m+ 1)λc+ ra− dr rb− cq

]
.

Therefore, the adjoint equation (3.3) is equivalent to

ax = qc− br, bx = −(m+ 1)λb+ qd− aq, (3.5a)

cx = (m+ 1)λc+ ra− dr, dx = rb− cq. (3.5b)
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Let us seek a formal solution of the type

W =

[
a b
c d

]
=

∞∑
k=0

Wkλ
−k =

∞∑
k=0

[
a(k) b(k)

c(k) d(k)

]
λ−k (3.6)

with b(k), c(k) and d(k) being assumed to be

b(k) = (b
(k)
1 , b

(k)
2 , · · · , b(k)m ), c(k) = (c

(k)
1 , c

(k)
2 , · · · , c(k)m )T , d(k) = (d

(k)
ij )m×m. (3.7)

Therefore, the condition (3.5) becomes the following recursion relation:

b(0) = 0, c(0) = 0, a(0)x = 0, d(0)x = 0, (3.8a)

b(k+1) =
1

m+ 1
(−b(k)x + qd(k) − a(k)q), k ≥ 0, (3.8b)

c(k+1) =
1

m+ 1
(c(k)x − ra(k) + d(k)r), k ≥ 0, (3.8c)

a(k+1)
x = qc(k+1) − b(k+1)r, d(k+1)

x = rb(k+1) − c(k+1)q, k ≥ 0. (3.8d)

We choose the initial values to be

a(0) = −m, d(0) = Im, (3.9)

and require that

Wk|u=0 = 0, k ≥ 1. (3.10)

The requirement (3.10) implies that we should identify all constants of integration with zero
while using (3.8) to determine W , and thus, with a(0) and d(0) being given by (3.9), all
matrices Wk, k ≥ 1, will be uniquely determined by (3.8). For example, we can obtain from
(3.8) under (3.9) and (3.10) that

b
(1)
i = qi, c

(1)
i = ri, a(1) = 0, d

(1)
ij = 0,

b
(2)
i = − 1

m+ 1
qi,x, c

(2)
i =

1

m+ 1
ri,x, a(2) =

1

m+ 1

m∑
i=1

qiri, d
(2)
ij = − 1

m+ 1
riqj ,

b
(3)
i =

1

(m+ 1)2
(qi,xx − 2qi

m∑
j=1

qjrj), c
(3)
i =

1

(m+ 1)2
(ri,xx − 2ri

m∑
j=1

qjrj),

a(3) =
1

(m+ 1)2

m∑
i=1

(qiri,x − qi,xri), d
(3)
ij =

1

(m+ 1)2
(riqj,x − ri,xqj),

where 1 ≤ i, j ≤ m. Since from (3.8d) we have

a(k) = ∂−1(qc(k) − b(k)r), d(k) = ∂−1(rb(k) − c(k)q), k ≥ 1,

where ∂∂−1 = ∂−1∂ = 1, and ∂ = ∂
∂x , we can obtain the following recursion relation for b(k)

and c(k): [
c(k+1)

b(k+1)T

]
= Ψ

[
c(k)

b(k)T

]
, k ≥ 1, (3.12)

where the 2m× 2m matrix operator Ψ is given by

Ψ =
1

m+ 1


(
∂ −

m∑
k=1

rk∂
−1qk

)
Im − r∂−1q r∂−1rT + (r∂−1rT )T

−qT∂−1q − (qT∂−1q)T
(
− ∂ +

m∑
k=1

qk∂
−1rk

)
Im + qT∂−1rT

 .
(3.13)
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As usual, for any integer n ≥ 0, we take

V (n) = (λnW )+ =
n∑

j=0

Wjλ
n−j , (3.14)

and then introduce the time evolution law for the eigenfunction ϕ:

ϕtn = V (n)ϕ = V (n)(u, ux, · · · , u(n−1);λ)ϕ. (3.15)

The compatibility condition of (3.1) and (3.15), i.e., the zero curvature equation Utn−V
(n)
x +

[U, V (n)] = 0, leads to a system of evolution equations

utn =

[
qT

r

]
tn

= Kn =

[
−(m+ 1)b(n+1)T

(m+ 1)c(n+1)

]
. (3.16)

Among this soliton hierarchy (3.16), the first nonlinear system reads as

qi,t2 = − 1

m+ 1

(
qi,xx − 2qi

m∑
j=1

qjrj

)
, (3.17a)

ri,t2 =
1

m+ 1

(
ri,xx − 2ri

m∑
j=1

qjrj

)
, (3.17b)

where 1 ≤ i ≤ m, which is the multicomponent version of the AKNS nonlinear Schrödinger
equations[18]. Hence, the soliton hierarchy (3.16) is called the multicomponent AKNS soliton
hierarchy with multiplicity m.

To construct the Hamiltonian structure of the multicomponent AKNS hierarchy (3.16),
we apply the trace identity (see [20] for more applications):

δ

δu

∫
tr
(
W
∂U

∂λ

)
dx = λ−γ ∂

∂λ

[
λγtr

(
W
∂U

∂u
)
]
, (3.18)

with γ being a constant to be determined. An application of (3.18) yields

δH̃n+1

δu
= Gn, H̃n = − 1

n

∫ (
−ma(n+1) +

m∑
i=1

d
(n+1)
ii

)
dx, Gn−1 =

[
c(n)

b(n)T

]
, n ≥ 0.

(3.19)
In fact, it is easy to compute that

tr
(
W
∂U

∂λ

)
= −ma+ tr(d) =

∑
k≥0

(
−ma(k) +

m∑
i=1

d
(k)
ii

)
λ−k,

tr
(
W
∂U

∂u

)
=

[
c
bT

]
=

∑
k≥0

Gk−1λ
−k.

Upon inserting these two expressions into the trace identity (3.18) and considering the case
of k = 2, we know γ = 0, and thus we have (3.19). Now it follows from (3.19) that the
multicomponent AKNS equations (3.16) have the following bi-Hamiltonian structure

utn = Kn = JGn = J
δH̃n+1

δu
=M

δH̃n

δu
, (3.20)

where the Hamiltonian pair of J and M = JΨ is defined by

J =

[
0 −(m+ 1)Im

(m+ 1)Im 0

]
, (3.21a)
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M =


qT∂−1q + (qT∂−1q)T

(
∂ −

M∑
k=1

qk∂
−1rk

)
Im − qT∂−1rT

(
∂ −

M∑
k=1

rk∂
−1qk

)
Im − r∂−1q r∂−1rT + (r∂−1rT )T

 . (3.21b)

§4. Adjoint Symmetry Constraints

Let us proceed to consider the problem of adjoint symmetry constraints for the multi-
component AKNS equations ut2 = K2 defined by (3.16) or (3.17). A direct computation
tells us that the Gateaux derivative operator of K2 reads as

K ′
2 =

2

m+ 1

(
− 1

2
∂2 + qr

)[
Im 0
0 −Im

]
+

2

m+ 1

[
qT rT qT q
−rrT −rq

]
, (4.1)

and thus its adjoint operator is given by

(K ′
2)

† =
2

m+ 1

(
− 1

2
∂2 + qr

)[
Im 0
0 −Im

]
+

2

m+ 1

[
rq −rrT
qT q −qT rT

]
= (K ′)T , (4.2)

which is just the transpose of K ′
2. We choose a constant diagonal matrix

Γ = diag(γ1, γ2, · · · , γm+1), γi ̸= γj , 1 ≤ i ̸= j ≤ m+ 1. (4.3)

Then the commutator of two matrices Γ and U1,

[Γ, U1] =


0 (γ1 − γ2)q1 · · · (γ1 − γm+1)qm

(γ2 − γ1)r1 0 · · · 0
...

...
. . .

...
(γm+1 − γ1)rm 0 · · · 0

 ,
will give us a Lie point symmetry for the multicomponent AKNS equations (3.17):

K̄0 := ρ([Γ, U1]) =



(γ1 − γ2)q1
...

(γ1 − γm+1)qm
(γ2 − γ1)r1

...
(γm+1 − γ1)rm


. (4.4)

Taking advantage of the Hamiltonian structure in (3.20), we obtain a Lie point adjoint
symmetry for the multicomponent AKNS equations (3.17):

Ḡ0 := J−1K̄0 =

[
0 1

m+1Im
− 1

m+1Im 0

]
K̄0 =

1

m+ 1



(γ2 − γ1)r1
...

(γm+1 − γ1)rm
(γ2 − γ1)q1

...
(γm+1 − γ1)qm


. (4.5)

This also can be shown by directly checking the adjoint linearized system
Ḡ0,t2 = −(K ′

2)
†Ḡ0,

while u solves ut2 = K2(u). The adjoint symmetry Ḡ0 contains m+1 arbitrary distinct con-
stants γ1, γ2, · · · , γm+1, which is very important for guaranteeing that there exist sufficiently
many integrals of motion for the Liouville integrability of the corresponding constrained
flows.
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Now the Bargmann adjoint symmetry constraint reads as

Ḡ0 =

N∑
s=1

µsψ
(s)T ∂U(u, λs)

∂u
ϕ(s), (4.6)

where for a later use, ϕ(s) and ψ(s) are assumed to be

ϕ(s) = (ϕ1s, ϕ2s, · · · , ϕm+1,s)
T , ψ(s) = (ψ1s, ψ2s, · · · , ψm+1,s)

T , 1 ≤ s ≤ N. (4.7)

Upon introducing the matrix as usual,

B = diag(µ1, µ2, · · · , µN ), (4.8)

and solving the adjoint symmetry constraint (4.6) for q and r, we are led to the potential
constraints

qi = q̃i :=
m+ 1

γi+1 − γ1
⟨Φ1, BΨi+1⟩, ri = r̃i :=

m+ 1

γi+1 − γ1
⟨Φi+1, BΨ1⟩, (4.9)

where 1 ≤ i ≤ m, Φi and Ψi are defined by

Φi = (ϕi1, ϕi2, · · · , ϕiN )T , Ψi = (ψi1, ψi2, · · · , ψiN )T , 1 ≤ i ≤ m+ 1, (4.10)

and ⟨·, ·⟩ refers to the standard inner product of the Euclidian space RN . Now the spatial
and temporal constrained flows of the multicomponent AKNS equations (3.17) read as

ϕ(s)x = U(ũ, λs)ϕ
(s), ψ(s)

x = −UT (ũ, λs)ψ
(s), 1 ≤ s ≤ N, (4.11)

ϕ
(s)
t2 = V (2)(ũ, ũx;λs)ϕ

(s), ψ
(s)
t2 = −V (2)T (ũ, ũx;λs)ψ

(s), 1 ≤ s ≤ N,
(4.12)

where ũ = (q̃1, · · · , q̃m, r̃1, · · · , r̃m)T . As did in (2.15), let us denote by Ṽ (2)(ũ, ũx;λ) the
transformed matrix of V (2)(ũ, λ) under (4.11), i.e.,

Ṽ (2)(ũ, λ) = V (2)(ũ, ũx;λ)|spatial constrained flow (4.11). (4.13)

Since Ṽ (2)(ũ, λ) just depends on ϕis and ψis but not on any spatial derivative of ϕis and
ψis, the transformed temporal constrained flow becomes the following system of ordinary
differential equations

ϕ
(s)
t2 = Ṽ (2)(ũ, λs)ϕ

(s), ψ
(s)
t2 = −Ṽ (2)T (ũ, λs)ψ

(s), 1 ≤ s ≤ N. (4.14)

The constrained flows (4.11) and (4.14) still require (3.17) as their compatability condition.

§5. Liouville Integrability

We now turn to the Liouville integrability of the constrained flows (4.11) and (4.14).
Noting that

V (2)(u, ux;λ) =

[
−m 0
0 Im

]
λ2 +

[
0 q
r 0

]
λ+

1

m+ 1

[
qr −qx
rx −rq

]
, (5.1)

and denoting a diagonal matrix

A = diag(λ1, λ2, · · · , λN ), (5.2)

the constrained flows (4.11) and (4.14) read as follows:

ϕ1s,x = −mλsϕ1s +
m∑
i=1

q̃iϕi+1,s, ϕj+1,s,x = r̃jϕ1s + λsϕi+1,s, (5.3a)

ψ1s,x = mλsψ1s −
m∑
i=1

r̃iψi+1,s, ψj+1,s,x = −q̃jψ1s − λsψi+1,s, (5.3b)
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ϕ1s,t2 =
(
−mλ2s +

1

m+ 1
q̃ r̃

)
ϕ1s + λs

m∑
i=1

q̃iϕi+1,s +
m∑
i=1

1

γ1 − γi+1

×
[
−(m+ 1)⟨AΦ1, BΨi+1⟩+

m∑
k=1

q̃k⟨Φk+1, BΨi+1⟩ − q̃i⟨Φ1, BΨ1⟩
]
ϕi+1,s,

(5.4a)

ϕj+1,s,t2 = λ2sϕj+1,s + λsr̃jϕ1s +
1

γj+1 − γ1

[
r̃j⟨Φ1, BΨ1⟩+ (m+ 1)⟨AΦj+1, BΨ1⟩

−
m∑

k=1

r̃k⟨Φj+1, BΨk+1⟩
]
ϕ1s −

1

m+ 1

m∑
i=1

r̃j q̃iϕi+1,s, (5.4b)

ψ1s,t2 =
(
mλ2s −

1

m+ 1
r̃T q̃T

)
ψ1s − λs

m∑
i=1

r̃iψi+1,s −
m∑
i=1

1

γi+1 − γ1

×
[
r̃i⟨Φ1, BΨ1⟩+ (m+ 1)⟨AΦi+1, BΨ1⟩ −

m∑
k=1

r̃k⟨Φi+1, BΨk+1⟩
]
ψi+1,s,

(5.4c)

ψj+1,s,t2 = −λ2sψj+1,s − λsq̃jψ1s −
1

γ1 − γj+1

[
−(m+ 1)⟨AΦ1, BΨj+1⟩

+

m∑
k=1

q̃k⟨Φk+1, BΨj+1⟩ − q̃j⟨Φ1, BΨ1⟩
]
ψ1s +

1

m+ 1

m∑
i=1

q̃j r̃iψi+1,s,
(5.4d)

respectively, where 1 ≤ j ≤ m, 1 ≤ s ≤ N , and q̃i and r̃i are defined by the potential
constraints (4.9).

In order to analyze the Liouville integrability of (4.11) and (4.14), i.e, (5.3) and (5.4), let
us define a symplectic structure

ω2 =
m+1∑
i=1

BdΦi ∧ dΨi =
m+1∑
i=1

N∑
s=1

µsdϕis ∧ dψis (5.5)

over the Euclidian space R2(m+1)N , and then the corresponding Poisson bracket is given by

{f, g} = ω2(Idg, Idf) =
m+1∑
i=1

(⟨ ∂f

∂Ψi
, B−1 ∂g

∂Φi

⟩
−
⟨ ∂f

∂Φi
, B−1 ∂g

∂Ψi

⟩)
=

m+1∑
i=1

N∑
s=1

µ−1
s

( ∂f

∂ψis

∂g

∂ϕis
− ∂f

∂ϕis

∂g

∂ψis

)
, f, g ∈ C∞(R2(m+1)N ),

(5.6a)

where the vector field Idf is defined by

ω2(X, Idf) = df(X), X ∈ T (R2(m+1)N ).

A general Hamiltonian system with a Hamiltonian H defined over the symplectic manifold
(R2(m+1)N , ω2) is given by

Φi,t = {Φi,H} = −B−1 ∂H

∂Ψi
, Ψi,t = {Ψi,H} = B−1 ∂H

∂Φi
, 1 ≤ i ≤ m+ 1, (5.7)

where t is taken as the evolution variable. To present Lax representations of the constrained
flows (5.3) and (5.4), we need a square matrix Lax operator

L(λ) = Γ +D(λ), (5.8)

with Γ being defined by (4.3) and D(λ), by

D(λ) = (Dij(λ))(m+1)×(m+1), Dij(λ) =
N∑
s=1

µs

λ− λs
ϕisψjs, (5.9)
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where 1 ≤ i, j ≤ m+ 1. Now we can state the main result as follows.
Theorem 5.1. Under the symplectic structure (5.5), the spatial constrained flow (4.11)

[i.e., (5.3)] and the temporal constrained flow (4.14) [i.e., (5.4)] of the multicomponent AKNS
equations (3.17) are Hamiltonian systems with the evolution variables x and t2, and the
Hamiltonians

Hx = m⟨AΦ1, BΨ1⟩ −
m∑
i=1

⟨AΦi+1, BΨi+1⟩+
m∑
j=1

m+ 1

γ1 − γj+1
⟨Φ1, BΨj+1⟩⟨Φj+1, BΨ1⟩,

(5.10)

Ht2 = −m⟨A2Φ1, BΨ1⟩+
m∑
i=1

⟨A2Φi+1, BΨi+1⟩+
m∑
i=1

q̃i⟨AΦi+1, BΨ1⟩

+
m∑
j=1

r̃j⟨AΦ1, BΨj+1⟩+
1

m+ 1

m∑
i=1

q̃ir̃i⟨Φ1, BΨ1⟩

− 1

m+ 1

m∑
i,j=1

q̃ir̃j⟨Φi+1, BΨj+1⟩, (5.11)

respectively, where q̃i and r̃i are given by the potential constraints (4.9). Moreover, the
constrained flows (4.11) and (4.14) admit the Lax representations

(L(λ))x = [U(ũ, λ), L(λ)], (L(λ))t2 = [Ṽ (2)(ũ, λ), L(λ)], (5.12)

respectively, where L(λ) is given by (5.8) and (5.9), and U(ũ, λ) and Ṽ (2)(ũ, λ) are two
constrained spectral matrices generated from U and V (2) under (4.11).

Proof. It follows immediately from a direct but long calculation that the spatial con-
strained flow (4.11) and the temporal constrained flow (4.14) possess the Hamiltonian struc-
tures with Hx and Ht2 defined by (5.10) and (5.11).

Let us then check the Lax representations. Taking advantage of the spatial constrained
flow (4.11), we can make the following computation:

(L(λ))x =

N∑
s=1

µs

λ− λs
(ϕ(s)x ψ(s)T + ϕ(s)ψ(s)T

x )

=
N∑
s=1

µs

λ− λs
(U(ũ, λs)ϕ

(s)ψ(s)T − ϕ(s)ψ(s)TU(ũ, λs))

=

N∑
s=1

µs

λ− λs
[U(ũ, λs), ϕ

(s)ψ(s)T ]

=
N∑
s=1

µs

λ− λs
[U(ũ, λ) + (U(ũ, λs)− U(ũ, λ)), ϕ(s)ψ(s)T ]

=

N∑
s=1

µs

λ− λs
[U(ũ, λ), ϕ(s)ψ(s)T ] +

N∑
s=1

µs

λ− λs
[(U(ũ, λs)− U(ũ, λ)), ϕ(s)ψ(s)T ]

= [U(ũ, λ), L(λ)− Γ]− [U0,
N∑
s=1

µsϕ
(s)ψ(s)T ]

= [U(ũ, λ), L(λ)] + [Γ, U(ũ, λ)]− [U0,

N∑
s=1

µsϕ
(s)ψ(s)T ]

= [U(ũ, λ), L(λ)] + [Γ, U1(ũ)]− [U0,
N∑
s=1

µsϕ
(s)ψ(s)T ].
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In the last step of the above computation, we have used [Γ, U0] = 0. Now it follows that

(L(λ))x = [U(ũ, λ), L(λ)] if and only if [Γ, U1(ũ)] =
[
U0,

N∑
s=1

µsϕ
(s)ψ(s)T

]
. It is easy to see

that the latter equality is equivalent to the potential constraints shown in (4.9). Therefore,
the spatial constrained flow (4.11) admits the Lax representation defined as in (5.12).

It is also direct to prove the other Lax representation (L(λ))t2 = [Ṽ (2)(ũ, λ), L(λ)] for the
temporal constrained flow (4.14), and so we do not go to the detail. Therefore, the proof of
the theorem is finished.

It is known (see [3] for a detailed analysis) that there is a functionally independent and
involutive system of polynomial functions {Fis | 1 ≤ i ≤ m+1, 1 ≤ s ≤ N}, generated from
the Lax operator L(λ) defined by (5.8). These polynomial functions are defined as follows[3]:

Fi(λ) =
∞∑
l=0

Filλ
−l, 1 ≤ i ≤ m+ 1, (5.13a)

det(νIm+1 − L(λ)) = νm+1 −F1(λ)ν
m + · · ·+ (−1)m+1Fm+1(λ), ν = const.

(5.13b)

Now it follows from Theorem 5.1 that we have the following result on the Liouville integra-
bility of the constrained flows (4.11) and (4.14).

Theorem 5.2. The spatial constrained flow (4.11) and the temporal constrained flow
(4.14) of the multicomponent AKNS equations (3.17) are Liouville integrable. They possess
an involutive system of functionally independent integrals of motion {Fis | 1 ≤ i ≤ m+1, 1 ≤
s ≤ N}, defined by (5.13).

Theorem 5.2 also implies that the potential constraints (4.9) present an integrable de-
composition and thus show the integrability by quadratures for the multicomponent AKNS
equations (3.17). Furthermore, the resulting solutions from (4.9) are involutive solutions to
the multicomponent AKNS equations (3.17), because we can verify that {Hx,Ht2} = 0. Let
us summarize these results as follows.

Theorem 5.3. The potential constraints (4.9) present an integrable decomposition from
the multicomponent AKNS equations (3.17) to the spatial and temporal constrained flows
(4.11) and (4.14). Moreover, the resulting solutions from (4.9) are involutive solutions to
the multicomponent AKNS equations (3.17).

§6. Concluding Remarks

We remark that the introduction of the adjoint symmetry Ḡ0 is very crucial in making
integrable decompositions for the multicomponent AKNS equations (3.17). If we choose
the original vector function G0 as the required adjoint symmetry in the adjoint symmetry
constraint (2.11), then the resulting constrained flows have the Lax operator which does
not provide sufficiently many functionally independent integrals of motion, and thus, no
Liouville integrability can be guaranteed.

Our example of the multicomponent AKNS equations also convinced us that binary non-
linearization can result from adjoint symmetry constraints. Actually, if the underlying equa-
tions possess a Hamiltonian structure, then adjoint symmetries generate symmetries under
the Hamiltonian transformation and thus adjoint symmetry constraints also yield symmetry
constraints which are required in binary nonlinearization[1]. However, adjoint symmetry
constraints do not require any Hamiltonian structure[2], and hence, they can be applied to
non-Hamiltonian equations, for example, the Burgers type equations, for which symmetry
constraints do not succeed. Therefore, adjoint symmetry constraints offer a good basis for
the theory of binary nonlinearization.

It is worth noting that for the Neumann type adjoint symmetry constraints, the Moser-
reduced technique[21] may be used to show the Liouville integrability for the resulting con-
strained flows. The Ostrogradsky type adjoint symmetry constraints, in which involved
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Lie-Bäcklund symmetries have non-degenerate Hamiltonians, can also result in the Liou-
ville integrable constrained flows, by use of the Ostrogradsky coordinates[22]. But the
case of degenerate Hamiltonians needs particular consideration while constructing canonical
variables[23]. In this case, there is no universal way to determine Hamiltonian structures for
the resulting constrained flows.
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