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Abstract

The automorphism group of the Toeplitz C∗- algebra, J (C1), generated by Toeplitz op-

erators with C1-symbols on Dirichlet space D is discussed; the K0,K1-groups and the first
cohomology group of J (C1) are computed. In addition, the author proves that the spectra
of Toeplitz operators with C1-symbols are always connected, and discusses the algebraic prop-
erties of Toeplitz operators. In particular, it is proved that there is no nontrivial selfadjoint

Toeplitz operator on D and T ∗
φ = Tφ̄ if and only if Tφ is a scalar operator.
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§1. Introduction

Let D be the unit disk in the complex plane C, dA(z) = 1
πdxdy be the normalized

Lebesque measure on D. The Sobolev space L2,1 is defined to be the collection of functions
on D which satisty ∫

D

(∣∣∣∂u
∂z

∣∣∣2 + ∣∣∣∂u
∂z̄

∣∣∣2 + |u|2)dA <∞, ∀u ∈ L2,1.

Define a sesquilinear form on L2,1 as

⟨u, v⟩ 1
2
=

⟨∂u
∂z
,
∂v

∂z

⟩
L2(dA)

+
⟨∂u
∂z̄
,
∂v

∂z̄

⟩
L2(dA)

,

where L2(dA) is usually Lebesque space with respect to dA. Then ⟨·, ·⟩ 1
2
induces a semi-

norm on L2,1:

∥u∥ 1
2
=

[ ∫
D

(∣∣∣∂u
∂z

∣∣∣2 + ∣∣∣∂u
∂z̄

∣∣∣2)dA/π] 1
2

.

Write N = {u ∈ L2,1|∥u∥ 1
2
= 0}, then N = C by the properties of generalized derivatives.

Thus ∥ · ∥ 1
2
is a norm on L2,1/C. For convenience, denote still the completion of L2,1/C

with respect to above norm by L2,1. The Dirichlet space, D, is the subspace of all analytic
functions g in L2,1. Without loss of generality, we may assume D is the space of all analytic
functions g with g(0) = 0. In other words, D is the space of all analytic functions g whose
derivations g′ belong to the Bergman space L2

a. L
2
a is here the space of all analytic functions

which are in L2(dA). Throughout this paper, we use respectively the symbols ⟨·, ·⟩, ∥ · ∥ to
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denote the inner product and norm in L2(dA), and ⟨·, ·⟩ 1
2
, ∥ · ∥ 1

2
to those in D. Let P be

the orthogonal projection from L2,1 onto D, P is an integral operator represented by

P (u)(w) = ⟨u,K⟩ 1
2
=

∫
D

∂u

∂z

∂K(z, w)

∂z
dA(z),

where K = K(z, w) = log 1
1−zw̄ is the reproducing kernel of D. For φ ∈ C1(D̄), the Toeplitz

operator with symbol φ is defined as

Tφf = P (φf) (∀f ∈ D).
In recent years, Toeplitz operators on Dirichlet spaces have been studied by some spe-

cialists (cf. [1,2]). In [3], we obtained some interesting properties of these operators which
are similar to those of Toeplitz operators on Hardy or Bergman spaces. However, some
surprising differences between the Toeplitz operators on Dirichlet space and those on Hardy
or Bergman spaces are displayed in [4]. In this paper, we first discuss the automorphism
group of the Toeplitz C∗-algebra generated by Toeplitz operators with symbols in C1(D̄),
and compute the first cohomology group of the algebra. In addition, the K0,K1-groups of
this algebra are also computed. In Section 3, we prove that there is no nontrivial selfadjoint
Toeplitz operator with C1-symbol and no Toeplitz operator which satisfies T ∗

φ = Tφ̄ only if

it is a scalar operator. Finally, we obtain that all Toeplitz operators with C1-symbols have
connected spectra.

§2. The Algebra Generated by Toeplitz
Operators with Symbols in C1(D̄)

Write J (C1) as the C∗-algebra generated by Toeplitz operators with symbols in C1(D̄).
In [3], we proved that the following short sequence

{0} −→ K i−→J (C1)
ξ−→C(T) −→ {0} (2.1)

is exact, and ξ(Tφ) = φ|T(φ ∈ C1(D̄) induces a ∗-isometric isomorphism from J (C1)
K onto

C(T) (we still use ξ to denote the isomorphism from J (C1)
K onto C(T)). Using this result,

we obtained following index formula:
Lemma 2.1[3] Suppose φ ∈ C1(D̄). If Tφ is Fredholm on D, then

IndTφ = −windφ|T.
It should be pointed out that the conclusion can not be shown by usual homotopy relation

between symbols in C(T). In fact, there are functions in C(T) which have no C1-extensions
onto D̄. For example:

Example 2.1. There exists φ ∈ C(T) such that for any
∼
φ ∈ C1(D̄), ∼

φ|T ̸= φ.
Proposition 2.1. Suppose φ ∈ GC(T), the set of invertible elements in C(T). Then for

any T ∈ ξ−1(φ), we have index formula IndT = −windφ.
Proof. Noting two Toeplitz operators with C1-symbols are essentially commutative,

we know that there is a Toeplitz operator sequence {Tφn} with φn ∈ C1(D̄) such that
∥[Tφn ]− ξ−1(φ)∥ → 0, thus

∥φn|T − φ∥∞ = ∥ξ([Tφn ])− ξ(ξ−1(φ))∥∞ = ∥[Tφn ]− ξ−1(φ)∥ → 0.

It is obvious that φn is invertible in C(T) for enough large n. By the stability of indexes,
we see easily that there is an N such that windφn|T = windφ for each n ≥ N. Hence for
every T ∈ ξ−1(φ),

lim
n

IndTφn = − lim
n

windφn|T = −windφ

by Lemma 2.1.
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Theorem 2.1. Suppose α ∈ Aut (J (C1)), the automorphism group of J (C1). Then
there is a σ ∈ homeo (T) which has winding number 1 such that

ξ
∧
αξ−1 = Cσ, (2.2)

where Cσ is the composition operator on C(T) defined as Cσφ = φ ◦ σ, ∧
α is the auto-

morpgism on J (C1)
K induced by α, that is,

∧
α([T ]) = [α(T )] for any T ∈ J (C1).

Conversely, if σ ∈ homeo(T) with windσ = 1, then there is an α ∈ Aut (J (C1)) such
that the equation (2.2) holds.

Proof. Let α ∈ Aut (J (C1)). Since K ⊂ J (C1), there is a unitary operator U such

that α(T ) = U∗TU for each T ∈ J (C1). Note Aut (J (C1)
K ) ∼= Aut (C(T)), so there is

a σ ∈ homeo (T) such that ξ(
∧
α[T ]) = ξ([T ]) ◦ σ, thus ∧

α([T ]) = ξ−1(ξ([T ]) ◦ σ), further
ξ
∧
αξ−1(φ) = φ ◦ σ = Cσφ (∀φ ∈ C(T)).
To prove that windσ = 1, let φ0(z) = z. Then ξ

∧
αξ−1(φ0) = Cσφ0 = σ. It is clear that

Tz ∈ ξ−1(φ0), which shows that U∗TzU−T ∈ K for any T ∈ ξ−1(σ). Hence IndT = IndTz =
−1. By Prposition 2.1, we have windσ = 1 since ξ(T ) = σ.

Conversely, assume σ ∈ homeo (T) with windσ = 1. Then the map φ → φ ◦ σ defines

an automorphism of C(T), thus ξ−1(φ)→ ξ−1(φ ◦ σ) defines an automorphism of J (C1)
K . If

φ ∈ GC(T), then for each T ∈ ξ−1(φ) and
∼
T ∈ ξ−1(φ◦σ), we have IndT = −windφ, Ind

∼
T =

−windφ ◦ σ = −windφ since windσ = 1. In particular, for T ∈ ξ−1(φ0),
∼
T ∈ ξ−1(σ),

IndT = Ind
∼
T = −1, it is not difficult to see that σe(T ) = σe(Tz) = T, σe(

∼
T ) = σ(T) = T

(in fact, [
∼
T − λ] is invertible in J (C1)

K if and only if ξ([
∼
T − λ]) = ξ([

∼
T ]) − ξ([λI]) = σ − λ

is invertible in C(T)). By Brown-Douglas-Fillmore theorem, we know that Tz
e.u.∼

∼
T , that is,

there is a unitary U such that U∗TzU−
∼
T ∈ K, further U∗T ∗

z U−
∼
T

∗
∈ K. Noting T ∗

z −Tz̄ ∈ K,
we have also U∗Tz̄U −

∼
T

∗
∈ K. Since ξ is a ∗-isomorphism, ξ([

∼
T

∗
]) = σ̄, hence, for any

polynormial p(z, z̄) of z, z̄, we have U∗TpU −T ∈ K for every T ∈ ξ−1(p ◦σ) = ξ−1(p(σ, σ̄)).
For any φ ∈ C(T), we can find a polynormial sequence {pk} such that ∥pk −φ∥∞ → 0, thus
∥pk ◦ σ − φ ◦ σ∥∞ → 0, consequently,

∥ξ−1(pk)− ξ−1(φ)∥ → 0, ∥ξ−1(pk ◦ σ)− ξ−1(φ ◦ σ)∥ → 0.

By above argument, we know that for any Tk ∈ ξ−1(pk) and
∼
T k ∈ ξ−1(pk◦σ), U∗TkU−

∼
T k ∈

K, thus [U∗TkU −
∼
T k] = 0. Set α(T ) = U∗TU for each T ∈ J (C1). Then α ∈ Aut(J (C1)),

and
∧
α(ξ−1(pk)) = ξ−1(pk ◦ σ), thus ξ

∧
αξ−1(pk) = pk ◦ σ = Cσpk. Note

∥ξ(∧αξ−1(φ))∥∞ = ∥∧αξ−1(φ)∥ ≤ ∥ξ−1(φ)∥ = ∥φ∥∞,

hence ξ
∧
αξ−1(φ) = Cσφ. The theorem is thus complete.

Lemma 2.2. There is no multiplicative linear function on K.
Proof. It is obvious since K is generated by commutators of J (C1).
Theorem 2.2. Let M be the space of multiplicative functions on J (C1). Then for any

φ ∈ (J (C1))∗, φ ∈M if and only if there is a unique ζ ∈ T such that φ = φζ ◦ ξ ◦ π, where
φζ is the multiplicative linear function which is defined by φζ(f) = f(ζ) for each f ∈ C(T)
and π is the classical map from J (C1) to J (C1)

K .
Proof. It is clear that for each ζ ∈ T, φ = φζ ◦ ξ ◦ π defines a multiplicative linear

function on J (C1) which satisfies φ|K = 0.

Conversely, if φ ∈ M, then φ|K = 0 by Lemma 2.2. Set
∼
φ([T ]) = φ(T ) for any [T ] ∈
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J (C1)
K . Then

∼
φ is well-defined and

∼
φ ◦ π = φ. Since J (C1)

K

ξ∼= C(T), we see that
∼
φ ◦ ξ−1 is a

multiplicative linear function on C(T). Thus there is a unique ζ ∈ T such that φ̃◦ ξ−1 = φζ .
Furthermore, φζ ◦ ξ ◦ π = φ̃ ◦ ξ−1 ◦ ξ ◦ π = φ̃ ◦ π = φ.

Theorem 2.3. K0(J (C1)) ∼= Z,K1(J (C1)) = 0.
Proof. By the short exact sequence (2.1), we have following six term exact sequence:

Z = K
↑
0(K)

i∗−→K0(J (C1))
ξ∗−→K0(C(T)) ∼= Z,

Z = K1(C(T))
ξ∗←−K1(J (C1))

i∗←−
↓
K1(K) = {0}.

Note index map χ : K1(C(T))→ K0(K) is an isomorphism, hence we have

K1(J (C1) = {0}

by the exactness of above sequence. Further the sequence 0→ Z χ→Z i∗→K0(J (C1))
ξ∗→Z→ 0

is exact, thus the range of i∗, R(i∗), equals {0}. Consequently, Ker ξ∗ = {0}, this shows

that the sequence 0→ K1(J (C1))
ξ∗→Z→ 0 is exact. That is K1(J (C1)) ∼= Z. We are done.

Remark 2.1. Theorems 2.1 and 2.2 can be extended to the case of Dirichlet space
on unit ball of Cn. We need only to note that if σ ∈ homeo (Sn) with degreeσ = 1 (Sn

is the unit sphere of Cn), Tz = (Tz1 , · · · , Tzn) is joint essentially unitary equivalent to
Tσ = (Tσ1 , · · · , Tσn), where σ = (σ1, · · · , σn) (see [5] for detail). Thus the proof of Theorem
2.1 is true for the case of several complex variables if we consider the Toeplitz operator with
matrix symbols which have entries in C1(B̄n), where Bn is the unit ball of Cn.

Recall a linear derivation on an algebra B is a linear map δ from B into B which satisfies
that δ(fg) = δ(f)g+ fδ(g). Sakai’s theorem says that each linear derivation on C∗- algebra
is continuous (see [6]). If there is an f ∈ B such that δ(g) = fg − gf for any g ∈ B, then δ
is said to be an inner derivation on B, otherwise, δ is called an outer derivation. Ringrose’s
deep result indicates that there are only inner derivations on any Von-Neumann algebras.
In the case of C∗-algebras, there may be many outer derivations; for instance, each bounded
linear operator (on a Hilbert space H) induces a derivation on the compact operator ideal,

hence the first cohomology group of K is L(H)
K . In sequal of this section, we will compute

the first cohomology group of J (C1).
Proposition 2.2. Suppose δ is a linear derivation on J (C1). Then the range of δ is

contained in K.
Proof. Since the convex combination of unitary elements in J (C1) is dense in the unit

ball of J (C1) (see [7]), we need only to prove that δ(U) ∈ K for any unitary operator U in
J (C1). Assume U ∈ J (C1) is a unitary operator. Then there is a φU ∈ C(T) such that
ξ([U ]) = φU . By U

∗U = I, we have

|φU |2 = φ̄UφU = ξ([U∗])ξ([U ]) = ξ([I]) = 1,

which shows that φU is a unimodular function. Write δ(U) = TU . Then there is a φTU
∈ C(T)

such that ξ([TU ]) = φTU
. Noting all elements in J (C1) are essentially commutative , we see

that [δ(Un)] = n[Un−1δ(U)], hence

ξ([δ(Un)]) = nξ([Un−1])ξ([δ(U)]) = nφn−1
U φTU .

Further ∥ξ([δ(Un)])∥∞ = n∥φTU
∥∞ since |φU | = 1. By ∥Un∥ ≤ 1, we have

∥ξ([δ(Un)])∥ = ∥[δ(Un)]∥ ≤ ∥δ(Un)∥ ≤ ∥δ∥∥Un∥ = ∥δ∥ <∞ for any n ∈ N,
which follows that φTU

= 0, so that δ(U) = TU ∈ K (since ξ is an isometric isomorphism

from J (C1)
K onto C(T)). We are done.

Let B(J (C1),J (C1)) be the set of all derivations from J (C1) into itself, and Z(J (C1),

J (C1)) be the set of all inner derivations on J (C1). H1(J (C1), J (C1)) = B(J (C1),J (C1))
Z(J (C1),J (C1)) is
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said to be the first cohomology group of J (C1). (The definition on higher order cohomology
groups of Banach algebras can be found in [8].)

Theorem 2.4. H1(J (C1),J (C1)) ∼= {Tz}
′
e

J (C1) .

Proof. For any f, g ∈ J (C1), if δf = δg, then for every h ∈ J (C1) we have δf (h) =
δg(h), thus (g − f)h = h(g − f), which shows that g − f ∈ {J (C1)}′, the commutant of
J (C1). However, it is not difficult to see that {J (C1)}′ = CI. Hence g − f = λI for some

λ ∈ C; further Z(J (C1),J (C1)) ∼= J (C1)
CI . By Proposition 2.2, if δ ∈ B(J (C1),J (C1)),

then δ maps J (C1) into K. Note δ is induced by a bounded operator T on D (see [9]),

that is δ(f) = fT − Tf for any f ∈ J (C1), so T ∈ {J (C1)}′e, the essential commutant

of J (C1). An easy checking shows that {J (C1)}′e = {Tz}
′

e. In fact, it is obviously that

{J (C1)}′e ⊂ {Tz}
′

e. For each T ∈ {Tz}
′

e, if we prove that T commutes essentially with Tz̄,
then T commutes essentially with each element in J (C1). Noting Tz̄Tz = T|z|2 = I (see [4]),
TzTz̄ = I +K(K ∈ K), we see that

Tz̄(TzT − TTz)Tz̄ = Tz̄TzTTz̄ − Tz̄TTzTz̄ = TTz̄ − Tz̄T +K1 (K1 ∈ K),

so TTz̄ − Tz̄T is compact. Furthermore, T ∈ {J (C1)}′e. It follows that {J (C1)}′e = {Tz}
′

e.

Consequently, B(J (C1),J (C1)) ∼= {Tz}
′
e

CI , hence H1(J (C1),J (C1)) ∼= {Tz}
′
e

J (C1) . The theorem

is thus complete.

§3. Algebraic Properties of Toeplitz Operators

In [3,4], we have seen that there are many differences between Toeplitz operators on D
and those on Hardy or Bergman spaces. A surprising differnce is that a non-zero function
may induce a null Toeplitz operator. In fact, we proved following

Theorem 3.1.[4] Suppose φ ∈ C1(D̄). Then the following statements are equivalent.
(1) Tφ = 0; (2) Tφ is compact; (3) φ|T = 0.
In this section, we discuss continuously some properties of these operators.
It is well-known that there are a lot of selfadjoint Toeplitz operators on Hardy and

Bergman spaces. A natural problem is: Are there also selfadjoint Toeplitz operators on
Dirichlet space? The following theorem gives a complete answer for Toeplitz operators with
C1-symbols.

Theorem 3.2. Suppose φ ∈ C1(D̄). Then Tφ is selfadjoint if and only if φ|T = φ̄|T =
c ∈ R. Furthermore. There are no non-trivial selfadjoint Toeplitz operators on D.

Proof. Suppose Tφ is selfadjoint. Then for any k, j ≥ 1, we have ⟨Tφzk, zj⟩ 1
2
= ⟨zk,

Tφz
j⟩ 1

2
. Let pl =

∑
a
(l)
nmznz̄m be a polynormial which satisfies

∥pl − φ∥∞ → 0,
∥∥∥∂pl
∂z
− ∂φ

∂z

∥∥∥
∞
→ 0 as l→∞.

It is easy to check that ∥Tψ∥ ≤ ∥ψ∥∞ + ∥∂ψ∂z ∥∞ for each ψ ∈ C1(D̄), thus ∥Tpl − Tφ∥ →
0 (l→∞). Further

⟨Tφzk, zj⟩ 1
2
= lim
l→∞
⟨Tplzk, zj⟩ 12 =

(
lim
l→∞

∑
n+k=j+m

a(l)nm

)
j,

⟨zk, Tφzj⟩ 1
2
= lim
l→∞
⟨zk, Tplzj⟩ 12 =

(
lim
l→∞

∑
n+j=k+m

a
(l)
nm

)
k.

Write t = k − j. Then(
lim
l→∞

∑
n

a
(l)
n,n+t

)
(j + ht) =

(
lim
l→∞

∑
n

a
(l)
n,n−t

)
(k + ht) (∀h ∈ Z+)



390 CHIN. ANN. OF MATH. Vol.23 Ser.B

by ⟨Tφzk+ht, zj+ht⟩ 1
2
= ⟨zk+ht, Tφzj+ht⟩ 1

2
. If lim

l→∞

∑
n
a
(l)
n,n+t ̸= 0, then lim

l→∞

∑
n
a
(l)
n,n−t ̸= 0.

Thus for each h ∈ Z+, we have j
j+ht = k

k+ht , consequently, j = k. This shows that

lim
l→∞

∑
a
(l)
n,n+t = 0 when t ̸= 0, hence

⟨Tφzk, zj⟩ 1
2
=

(
lim
l→∞

∑
a
(l)
n,n+t

)
j = 0 when k ̸= j.

Note ∥φ|T − pl|T∥∞ → 0 and∫ 2π

0

φ|Teitθdθ = lim
l→∞

∫ 2π

0

pl|Teitθdθ = lim
l→∞

∑
n

a
(l)
n,n+t = 0 for t ̸= 0.

So φ|T =constant; in fact φ|T = lim
l→∞

∑
n
a
(l)
nn. Similarly, by

⟨zk, Tφzj⟩ 1
2
=

(
lim
l→∞

∑
n+j=k+m

a
(l)
nm

)
k = 0 for k ̸= j,

we see that φ̄|T = lim
l→∞

∑
n
a
(l)
nn =constant. On the other hand, for k = j, we have

⟨Tφzk, zj⟩ 1
2
=

(
lim
l→∞

∑
n

a(l)nn

)
k = ⟨zk, Tφzk⟩ 1

2
=

(
lim
l→∞

∑
n

a
(l)
nn

)
k,

hence lim
l→∞

∑
n
a
(l)
nn = lim

l→∞

∑
n
a
(l)
nn. That is, φ|T = φ̄|T =constant.

Conversely, if φ|T = φ̄|T = c ∈ R, then Tφ−φ̄ = Tφ−c = 0 by Theorem 3.1. Thus Tφ = cI.
The theorem is then complete.

We have known that T ∗
φ ̸= Tφ̄ in general. The following stronger conclusion indicates

that T ∗
φ is never Tφ̄ whenever Tφ is not a scalar operator.

Proposition 3.1. Suppose φ ∈ C1(D̄). Then T ∗
φ = Tφ̄ if and only if φ|T =constant.

Proof. For any f, g ∈ D, we have

⟨T ∗
φf, g⟩ 12 = ⟨f, Tφg⟩ 1

2
= ⟨f, φg⟩ 1

2
= ⟨f ′, φg′⟩+

⟨
f ′ +

∂φ

∂z
g
⟩
;

⟨Tφ̄f, g⟩ 1
2
= ⟨φ̄f, g⟩ 1

2
= ⟨φ̄f ′, g′⟩+

⟨∂φ̄
∂z
f, g′

⟩
.

If ⟨T ∗
φf, g⟩ 12 = ⟨Tφ̄f, g⟩ 1

2
, then

⟨f ′, φg′⟩+
⟨
f ′ +

∂φ

∂z
g
⟩
= ⟨φ̄f ′, g′⟩+

⟨∂φ̄
∂z
f, g′

⟩
,

thus ⟨
f ′,

∂φ

∂z
g
⟩
=

⟨∂φ̄
∂z
f, g′

⟩
=

⟨∂φ
∂z̄
f, g′

⟩
.

In particular, for any k, j ∈ Z+ − {0},

k
⟨
zk−1,

∂φ

∂z
zj
⟩
= j

⟨∂φ̄
∂z
zk, zj−1

⟩
.

Suppose pl =
∑
nm

a
(l)
nmznz̄m, ql =

∑
nm

b
(l)
nmznz̄m are polynormial sequences such that

∥pl − φ∥∞ −→ 0,
∥∥∥∂pl
∂z
− ∂φ

∂z

∥∥∥
∞
−→ 0,

∥ql − φ̄∥∞ −→ 0,
∥∥∥∂ql
∂z
− ∂φ̄

∂z

∥∥∥
∞
−→ 0.
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Thus

k
⟨
zk−1,

∂φ

∂z
zj
⟩
= lim
l→∞

∑
nm

k⟨zk−1, na(l)nmz
n−1z̄mzj⟩ = lim

l→∞

∑
nm

nka
(l)
nm⟨zk+m−1, zn+j−1⟩

= lim
l→∞

(∑
n

na
(l)
n(n+t)

1

k + n+ t

)
k (t = j − k),

j
⟨∂φ̄
∂z
zk, zj−1

⟩
= lim
l→∞

∑
nm

nb(l)nmj⟨zn+k−1, zj+m−1⟩ = lim
l→∞

∑
n

nb
(l)
n(n−t)j

1

n+ k
(t = j − k)

= lim
l→∞

∑
n

(n+ t)b
(l)
(n+t)nj

1

n+ k + t
.

Note

∥φ|T − pl|T∥L2(T) ≤ ∥φ− pl∥∞ −→ 0 (as l→∞),

∥φ̄|T − ql|T∥L2(T) ≤ ∥φ̄− ql∥∞ −→ 0 (as l→∞),

hence
∞∑

t=−∞

∣∣∣∑
n

(a
(l)
n(n+t) − b

(l)
(n+t)n)

∣∣∣2 −→ 0 (as l→∞).

Further

0 = k
⟨
zk−1,

∂φ

∂z
zj
⟩
− j

⟨∂φ̄
∂z
zk, zj−1

⟩
= lim
l→∞

[(∑
n

na
(l)
n(n+t)

1

n+ k + t

)
k −

(∑
n

(n+ t)b
(l)
(n+t)n

1

n+ k + t

)
j
]

= lim
l→∞

[∑
n

na
(l)
n(n+t)

1

n+ k + t
(k − j)

+
∑
n

na
(l)
n(n+t)

1

n+ k + t
j −

∑
n

(n+ t)b
(l)
(n+t)n

1

n+ k + t
j
]

= lim
l→∞

[(
−

∑
n

na
(l)
n(n+t)

1

n+ k + t
t−

∑
n

a
(l)
n(n+t)

1

n+ k + t
tj
)

+
∑
n

na
(l)
n(n+t)

1

n+ k + t
j −

∑
n

nb
(l)
(n+t)n

1

n+ k + t
j

+
∑
n

a
(l)
n(n+t)

1

n+ k + t
tj −

∑
n

b
(l)
(n+t)n

1

n+ k + t
tj
]

= lim
l→∞

[
−

(∑
n

(n+ j)a
(l)
n(n+t)

1

n+ k + t

)
t+

∑
n

n(a
(l)
n(n+t) − b

(l)
(n+t)n)

j

n+ k + t

+
∑
n

(a
(l)
n(n+t) − b

(l)
(n+t)n)

1

n+ k + t
tj
]

= lim
l→∞

[
−

(∑
n

a
(l)
n(n+t)

)
t+

∑
n

(n+ t)(a
(l)
n(n+t) − b

(l)
(n+t)n)

j

n+ k + t

]
= lim
l→∞

[
−

(∑
n

a
(l)
n(n+t)

)
t+

∑
n

(a
(l)
n(n+t) − b

(l)
(n+t)n)j

]
− lim
l→∞

∑
n

(a
(l)
n(n+t) − b

(l)
(n+t)n)

kj

n+ k + t
.
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Noting

lim
l→∞

∑
n

(a
(l)
n(n+t) − b

(l)
(n+t)n)j = 0,

lim
l→∞
⟨zk−1, plz

j−1⟩ = ⟨zk−1, φzj−1⟩ = lim
l→∞
⟨zk−1, qlz

j−1⟩,

we know easily that

lim
l→∞

∑
n

(a
(l)
n(n+t) − b

(l)
(n+t)n)

1

n+ k + t
= 0.

Hence lim
l→∞

(
−
∑
n
a
(l)
n(n+t)

)
= 0 for each t ̸= 0, which shows that∫ 2π

0

pl|Teitθdθ −→ 0 (∀t ̸= 0, l→∞).

Thus ∫ 2π

0

φ|Teitθdθ = lim
l→∞

∫ 2π

0

pl|Teitθdθ = 0 (∀t ̸= 0),

further, φ|T = lim
l→∞

∑
n
a
(l)
nn =constant.

Conversely, if φ|T = c =constant, then it is clear that Tφ = Tc = cI by Theorem 3.1.
Thus T ∗

φ = c̄I = Tc̄ = Tφ̄.

Proposition 3.2. Suppose φ,ψ ∈ C1(D̄). Then TφTψ = 0 if and only if at least one of
φ|T and ψ|T equals zero.

Proof. By Theorem 3.1, we need only to prove that if TφTψ = 0, then either φ|T or ψ|T
equals zero. Assume {pl} and {ql} are polynormial sequences which satisfy

∥pl − φ∥∞ → 0,
∥∥∥∂pl
∂z
− ∂φ

∂z

∥∥∥
∞
→ 0,

∥ql − ψ∥∞ → 0,
∥∥∥∂ql
∂z
− ∂ψ

∂z

∥∥∥
∞
→ 0,

thus ∥Tpl − Tφ∥ → 0, ∥Tql − Tψ∥ → 0. Suppose

pl =
∑
nm

a(l)nmz
nz̄m, ql =

∑
nm

b
(l)
kj z

kz̄j .

Then for any t ∈ Z+ − {0}, we have

TplTqlz
t = P

[(∑
nm

a(l)nmz
nz̄m

)
P
(∑

kj

b
(l)
kj z

kz̄jzt
)]

= P
[(∑

nm

a(l)nmz
nz̄m

)( ∑
k+t⟩j

b
(l)
kj z

k+t−j
)]

=
∑

k+t>j,n+k+t−j>m

a(l)nmb
(l)
kj z

k+t+n−m−j .

Noting

∥TplTql − TφTψ∥ ≤ ∥Tpl∥∥Tql − Tψ∥+ ∥Tpl − Tφ∥∥Tψ∥ → 0,

we see that lim
l→∞

TplTqlz
t = 0 for each t. Hence

lim
l→∞

∑
k+t>j,n+k+t−j>m

a(l)nmb
(l)
kj z

k+t+n−m−j = 0 in D.
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Let
∼
P denote the orthogonal projection from L2(T) onto Hardy space H2(T), and

∼
Tφ|T

denote the Toeplitz operator with symbol φ|T on H2(T). Then for any t ∈ Z+,

Tpl|TTql|Tζ
t =

∼
P
[(∑

nm

a(l)nmζ
n−m

)( ∑
k+t≥j

b
(l)
kj ζ

k+t−j
)]

=
∑

k+t≥j,n+k+t−j≥m

a(l)nmb
(l)
kj ζ

k+t+n−m−j

=
∑

k+t+1≥j+1,n+k+t+1≥(j+1)+m

a(l)nmb
(l)
kj ζ

k+n+(t+1)−m−(j+1)

=
∑

k+t′≥j+1,n+k+t′≥j+1+m

a(l)nmb
(l)
kj ζ

k+n+t′−m−(j+1) (t′ ∈ Z+ − {0})

=
∑

k+t′>j,n+k+t′>j+m

a(l)nmb
(l)
kj ζ

k+n+t′−m−(j+1).

Since lim
l→∞

∑
k+t>j,n+k+t−j>m

a
(l)
nmb

(l)
kj z

k+t+n−m−j = 0 in D (∀t ∈ Z+ − {0}), it is obvious

that

lim
l→∞

∑
k+t′>j,n+k+t′>j+m

a(l)nmb
(l)
kj ζ

k+n+t′−m−(j+1) = 0

in H2(T) (∀t′ ∈ Z+ − {0}), further
∼
Tφ|T

∼
Tψ|Tζ

t = lim
l→∞

∼
T pl|T

∼
T ql|Tζ

t = 0 (∀t ∈ Z+).

Hence
∼
Tφ|T

∼
Tψ|T = 0 if TφTψ = 0. It is well-known that

∼
Tφ|T

∼
Tψ|T = 0 if and only if φ|T = 0

or ψ|T = 0. The proposition is thus complete.
Proposition 3.3. Suppose φ,ψ ∈ C1(D̄). Then TφTψ is a Toeplitz operator with C1-

symbol if and only if φ̄|T or ψ|T is the boundary value of an analytic function on D.
Proof. It is not difficult to see that if TφTψ is a Toeplitz operator with C1-symbol, then

TφTψ = Tφψ. In fact, since TφTψ − Tφψ is compact, T
φψ−∼

φ
is compact if TφTψ = T∼

φ
(
∼
φ ∈

C1(D)). By Theorem 3.1, we have Tφψ = T∼
φ
. Similar to the proof of Proposition 3.2, we see

easily that TφTψ = Tφψ if and only if
∼
Tφ|T

∼
Tψ|T =

∼
T (φψ)|T if and only if either φ̄|T or ψ|T is

the boundary value of an analytic function, we are done.

§4. Connectivity of Spectra of Toeplitz Operators

Widom theorem tells us that each Toeplitz operator has connected spectrum on Hardy
space for one complex variable. However, it is well-known that similar conclusion fails in
the case of Bergman space or Hardy space for several complex variables. Is the spectrum
of each Toeplitz operator connected on Dirichlet space D? Our goal is to deal with this
question for the case of Toeplitz operators with C1-symbols in this section.

Lemma 4.1. Suppose φ ∈ C1(T̄). If Tφ is invertible, then
∼
Tφ|T is an invertible operator

on Hardy space H2(T), where
∼
Tφ|T denotes the usual Toeplitz operator with symbol φ|T on

H2(T). In particular, R(φ|T) = σ(
∼
Tφ|T) ⊂ σ(Tφ).

Proof. If Tφ is invertible, then φ|T is invertible in C(T) and windφ|T = 0 by index

formula (Lemma 2.1). Thus
∼
Tφ|T is Fredholm and Ind

∼
Tφ|T = −windφ|T = 0. Further

∼
Tφ|T

is invertible by Corollary 7.25 in [8]. Hence σ(
∼
Tφ|T) ⊂ σ(Tφ).
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Lemma 4.2. Suppose φ ∈ C1(D̄) and φ|T is invertible in C(T). Then at least one of
KerTφ and KerT ∗

φ equals {0}.
Proof. Let {pl} =

∑
nm

a
(l)
nmznz̄m be a polynormial sequence such that ∥φ − pl∥∞ → 0

and ∥∂φ∂z −
∂pl
∂z ∥∞ → 0 (as l →∞). Then ∥Tφ − Tpl∥ = ∥T ∗

φ − T ∗
pl
∥ → 0. If f ∈ KerTφ, and

f =
∑
k>0

bkz
k, then plf =

∑
nm

∑
k>0

bka
(l)
nmzn+kz̄m. Thus

P (plf) =
∑

n+k>m

bka
(l)
nmz

n+k−m =
∑
t>0

( ∑
n+k≥t

bka
(l)
n(n+k−t)

)
zt,

and hence

lim
l→∞

P (plf) = lim
l→∞

∑
t>0

( ∑
n+k≥t

bka
(l)
n(n+k−t)

)
zt = 0 (in D).

On the other hand, if g ∈ KerT ∗
φ, and g =

∑
k>0 dkz

k, then for any j > 0 we have

⟨T ∗
φg, z

j⟩ 1
2
= lim
l→∞
⟨T ∗
pl
g, zj⟩ 1

2
= lim
l→∞

⟨
g,
∑
t>0

( ∑
n+j≥t

a
(l)
n(n+j−t)

)
zt
⟩

1
2

= lim
l→∞

⟨∑
k

dkz
k,
∑
t>0

( ∑
n+j≥t

a
(l)
n(n+j−t)

)
zt
⟩

1
2

= lim
l→∞

∑
t>0

( ∑
n+j≥t

a
(l)
n(n+j−t)

)dt
t

= 0.

Set

Al = (c
(l)
ij ) =



∑
n≥0 a

(l)
nn

∑
n≥−1

a
(l)
n(n+1)

∑
n≥−2

a
(l)
n(n+2)

∑
n≥−3

a
(l)
n(n+3) · · ·∑

n≥1

a
(l)
n(n−1)

∑
n≥0

a
(l)
nn

∑
n≥−1

a
(l)
n(n+1)

∑
n≥−2

a
(l)
n(n+2) · · ·∑

n≥2

a
(l)
n(n−2)

∑
n≥1

a
(l)
n(n−1)

∑
n≥0

a
(l)
nn

∑
n≥−1

a
(l)
n(n+1) · · ·

...
...

...
...

...


.

Then Al is a Toeplitz matrix with symbol pl|T =
∑
j>0

c
(l)
(1+j)1z

j +
∑
j≥0

c
(l)
1(1+j)z̄

j . Noting φ|T ∈

C(T) and ∥φ|T − pl|T∥∞ → 0, we see that

∥
∼
Tφ|T −

∼
T pl|T∥ = ∥

∼
T

∗

φ|T −
∼
T

∗

pl|T∥ → 0.

Let
∼
f =

∞∑
k=0

bk+1ζ
k. Then

∼
f ∈ H2(T) by f =

∞∑
k=1

bkz
k ∈ D and

∼
Tφ|T

∼
f = lim

l→∞
Al

∼
f = lim

l→∞

∑
t≥0

( ∑
n+k≥t

bk+1a
(l)
n(n+k−t)

)
ζt = 0 in H2(T)

since
∑
t>0

(∑
n+k≥t bka

(l)
n(n+k−t)

)
zt → 0 in D. Again, let

∼
g =

∞∑
t=0

dt+1

t+1 ζ
t. Then

∼
g ∈ H2(T)

since g =
∞∑
t=1

dtz
t ∈ D. Thus

lim
l→∞

∼
T

∗

pl|T
∼
g = lim

l→∞
A∗
l

∼
g = lim

l→∞

∞∑
i=1

( ∞∑
j=1

c
(l)
ji

dj
j

)
ζi−1

= lim
l→∞

∞∑
i=1

[ ∞∑
j=1

( ∑
n+i≥j

a
(l)
n(n+i−j)

)dj
j

]
ζi−1 = 0
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since lim
l→∞

∑
t>0

∑
n+j≥t

a
(l)
n(n+j−t)

dt
t = 0 for each j. Hence

∼
T

∗

φ|T
∼
g = 0. It is obvious that f ̸= 0

if and only if
∼
f ̸= 0, and g ̸= 0 if and only if

∼
g ̸= 0. However, at least one of Ker

∼
Tφ|T and

Ker
∼
T

∗

φ|T equals {0}, so that either
∼
f or

∼
g equals {0}. Further at least one of KerTφ and

KerT ∗
φ is zero. The lemma is thus complete.

Theorem 4.1. Suppose φ ∈ C1(D̄). Then

σ(Tφ) = σ(
∼
Tφ|T).

In particular, σ(Tφ) is a connected subset of C.

Proof. By Lemma 4.1, we need only to prove that σ(Tφ) ⊂ σ(
∼
Tφ|T). Without loss of

generality, assume 0 /∈ σ(
∼
Tφ|T). Then φ|T is invertible in C(T). Thus Tφ is a Fredholm

operator on D, and IndTφ = −windφ|T. Note −windφ|T = Ind
∼
Tφ|T = 0, so IndTφ = 0.

However, either KerTφ or KerT ∗
φ is trivial by Lemma 4.2, we see that KerTφ = KerT ∗

φ =
{0}. Thus Tφ is invertible, that is, 0 /∈ σ(Tφ). Then follows the theorem.

Corollary 4.1. For any φ ∈ C1(D̄),
σ(Tφ) = R(φ|T) ∪ {λ ∈ ρe(Tφ)|IndTφ−λ ̸= 0}.

Corollary 4.2. If φ ∈ C1(D̄) is a nonconstant real function, then Tφ has no eigenvalues.

Proof. Since σ(Tφ) = σ(
∼
Tφ|T), we know that

σ(Tφ) = [inf φ|T, supφ|T].
For any λ ∈ σ(Tφ), it is easy to see that

dimKer (Tφ − λ) ≤ dimKer (
∼
Tφ|T − λ), dimKer (T ∗

φ − λ) ≤ dimKer (
∼
T

∗

φ|T − λ)

by the proof of Lemma 4.2. Thus Ker (Tφ−λ) = {0} since Ker (
∼
Tφ|T −λ) = dimKer (

∼
T

∗

φ|T−
λ) = {0} (see [8]); that is, λ /∈ σp(Tφ). Hence σp(Tφ) = ∅.

Corollary 4.3. Suppose φ ∈ C1(D̄). Then Tφ is invertible if and only if the following
statements are true:

(i) φ|T is invertible in C(T);
(ii) there exist ϵ > 0 and an outer function such that Re(φ|Tf) > ϵ.

Proof. By Theorem 4.1, we know that Tφ is invertible if and only if
∼
Tφ|T is invertible.

The theorem is thus complete by Widom-Devinatz theorem (see [8]).

Corollary 4.4. Suppose φ ∈ C1(D̄) is a real function. Then Tφ is invertible if and only
if z ∈ R(Tφ), the range of Tφ.

Proof. We need only to prove that Tφ is invertible if z ∈ R(Tφ). In fact, assume {pl} is a
polynormial sequence such that ∥pl−φ∥∞ → 0, and ∥∂pl∂z −

∂φ
∂z ∥∞ → 0, thus ∥Tpl−Tφ∥ → 0.

Let pl =
(l)∑
nm

znz̄m, and f =
∞∑
k=1

bkz
k such that Tφf = z. We see that lim

l→∞
Tplf = z. It is

obvious that Tplf =
∞∑
t=1

∑
n+k≥t

a
(l)
n(n+k−t)bkz

t. Hence

lim
l→∞

∑
n+k≥t

a
(l)
n(n+k−t)bk =

{
1,

0,

t = 1,

t > 1.
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Now let
∼
f (ζ) =

∞∑
k=0

bk+1ζ
k ∈ H2(T) (it is obvious since f =

∞∑
k=1

bkz
k ∈ D). Then

∼
T pl|T

∼
f = P

[(∑
nm

a(l)nmζ
nζ̄m

)( ∞∑
k=0

bk+1ζ
k
)]

=
∑

n+k≥m

a(l)nmbk+1ζ
n+k−m =

∞∑
t=0

∑
n+k≥t

a
(l)
n(n+k−t)bk+1ζ

t

=

∞∑
t=0

∑
n+k+1≥t+1

a
(l)
n(n+(k+1)−(t+1))bk+1ζ

t =

∞∑
t=0

∑
n+k′≥t+1

a
(l)
n(n+k′−(t+1))bk′ζ

t.

By previous argument, we have lim
l→∞

∼
T pl|T

∼
f = 1, and consequently,

∼
Tφ|T

∼
f =

∼
T pl|T

∼
f = 1. This

shows that
∼
Tφ|T is invertible (see [8]). Hence Tφ is invertible by Theorem 4.1.

Remark 4.1. We know that T ∗
φ ̸= Tφ for each nonconstant real function which satisfies

φ|T ̸=constant by Proposition 3.1. Hence for such a φ, W (Tφ) " R, the real field. However,
the proof of Corollary 4.2 shows that σ(Tφ) is a closed interval in R. Thus we see again
that Tφ is not a convexoid operator. For instance, if φ = (Rez)2, then σ(Tφ) = [0, 1]. Let
f = iz3 + z2 + z ∈ D. We have that⟨

Tφ
f

∥f∥D
,

f

∥f∥D

⟩
1
2

=
⟨
φ

f ′

∥f∥D
,
f ′

∥f∥D

⟩
+

⟨∂φ
∂z

f

∥f∥D
,
f ′

∥f∥D

⟩
=

⟨
φ

f ′

∥f∥D
,
f ′

∥f∥D

⟩
+

1

∥f∥2D
⟨2Re(iz3 + z2 + z), (3iz2 + 2z + 1)⟩

=
⟨
φ

f ′

∥f∥D
,
f ′

∥f∥D

⟩
+

1

∥f∥2D
⟨(z̄ + z)(iz3 + z2 + z), (3iz2 + 2z + 1)⟩

=
⟨
φ

f ′

∥f∥D
,
f ′

∥f∥D

⟩
+

1

∥f∥2D
[−3⟨z3, z3⟩

+ 2⟨z2, z2⟩+ ⟨z, z⟩ − 3i⟨z2, z2⟩].

It is obvious that
⟨
Tφ

f
∥f∥D

, f
∥f∥D

⟩
1
2

/∈ R. Hence conσ(Tφ) $W (Tφ).
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