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Abstract

The method of the phase plane is emploied to investigate the solitary and periodic traveling
waves for a class of nonlinear dispersive partial differential equations. By using the bifurcation

theory of dynamical systems to do qualitative analysis, all possible phase portraits in the
parametric space for the traveling wave systems are obtained. It can be shown that the existence
of a singular straight line in the traveling wave system is the reason why smooth solitary wave
solutions converge to solitary cusp wave solution when parameters are varied. The different

parameter conditions for the existence of solitary and periodic wave solutions of different kinds
are rigorously determined.
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§1. Introduction

In this paper, we consider the following class of nonlinear dispersion equations

K(m,n) : ut + a(um)x + (un)xxx = 0, m, n ≥ 1, (1.1)

wherem, n are integers, a is a real parameter, u(x, t) is the unknown function of the temporal

variable t and the spatial variable x. Equation (1.1) contains a nonlinear dispersion term

(un)xxx. Recently, (1.1) has been considered by P. Rosenau in [11-14] and in [10] (with J. M.

Hyman), respectively. They hope to understand the role of nonlinear dispersion in pattern

formation and to study the interaction between convection, dispersion and dissipation. For

the aim and significance of the study of this class of equations and the background materials

of model equations, we refer to the above papers and the references therein.

Manuscript received January 9, 2001.

∗Center for Nonlinear Science Studies, Kunming University of Science and Technology and Institute

of Applied Mathmatics of Yunnan Province, Kunming 650093, China.

E-mail: jibinli@hotmail.com

∗∗Department of Mathematics, Yunnan University and Institute of Applied Mathematics of Yunnan

Province, Kunming 650091, China. E-mail: zhrliu@ynu.edu.cn

∗ ∗ ∗Project supported by the National Natural Science Foundation of China (No.19731003, No.19961003)

and the Yunnan Provincial Natural Science Foundation of China (No.1999A0018M, No.2000A0002M).



398 CHIN. ANN. OF MATH. Vol.23 Ser.B

In [13], the author stated that “a lack of proper mathematical tools makes this goal at

the present time pretty much beyond our reach.” In this paper, we shall show that the

bifurcation theory of planar dynamical systems provides an available tool to understand

qualitatively all traveling wave solutions of (1.1). In order to know when the smooth and

non-smooth traveling wave solutions appear, what parameter conditions imply the appear-

ance of so-called compactons and peakons of travelling wave solutions, and what are the

relationship between traveling wave solutions of different types, the study on the global dy-

namical behaviour and the bifurcation set in the parametric space is very important for the

traveling wave equation. We shall give a reasonable explanation for the compacton solutions

and peakon solutions and correct some mistakes in [12–14] (see Remark 4.1 below).

It is well known that a traveling wave solution of Equation (1.1) with wave speed c is a

solution of the form u = ϕ(x− ct) = ϕ(ξ) with ξ = x− ct. Substituting the traveling wave

solution u(x, t) = ϕ(x − ct) with constant wave speed c into (1.1), we have the following

ordinary differential equation

−cϕ′ + a(ϕm)′ + (ϕn)′′′ = 0. (1.2)

Integrating (1.2) once with respect to ξ leads to

−cϕ+ aϕm + n(n− 1)ϕn−2(ϕ′)2 + nϕn−1ϕ′′ = g, (1.3)

where g ∈ R is the integral constant. Let ϕ′ = y. Then, we have the following planar

autonomous system:

dϕ

dξ
= y,

dy

dξ
=

−n(n− 1)ϕn−2y2 − aϕm + cϕ+ g

nϕn−1
, (1.4)(m,n)

Systems (1.4) is a traveling wave system which corresponds to equation K(m,n).

Obviously, the straight line ϕ = 0, on which the vector field defined by (1.4) has no

definition, is called a singular straight line. It is easy to see that the system (1.4) has a first

integral

H(ϕ, y) = ϕn
(
nϕn−2y2 +

2a

m+ n
ϕm − 2c

n+ 1
ϕ− 2g

n

)
= h. (1.5)

A traveling wave solution of (1.1) is called a solitary wave if ϕ(ξ) has a well-defined limit

as |ξ| approachs to the infinity. Usually, a solitary wave solution corresponds to a homoclinic

orbit of (1.4). Similarly, a periodic orbit of (1.4) corresponds to a periodic traveling wave

of (1.1). In order to study these waves, we are going to find all period annuluses and

their boundary curves for (1.4) and to describe all bifurcations of phase portraits on the

(ϕ, y)-phase plane and the bifurcation set on the parameter space for (1.4).

We emphasize that there are two methods to consider the relationship between different

types of traveling waves. First, for a fixed parameter group of (1.4), by varying the invariant

h ( i.e., varying the initial value of the system), we get the convergence of periodic traveling

wave solutions to a solitary wave. Second, by varying the parameter group of (1.4), so that

the given parameters arrive at a bifurcation set, we get the convergence of smooth solitary

traveling waves to a non-smooth traveling wave. We shall study the previous two types of

convergences.

This paper is organized as follows. In Section 2, we describe the bifurcation set of the

traveling wave equation (1.4). In Section 3, we discuss the effect of the singular straight line

ϕ = 0 to the smoothness of traveling wave solutions of (1.4). When the parameter pair (g, c)

lies on the bifucation curves, what happens about the dynamics of (1.4) will be analyzed
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in Section 4. In Section 5, we consider the existence and the relationship for the different

types of solitary and periodic wave solutions.

§2. Period Annuluses of Integrable System (2.2)

In this section, we shall study all possible periodic annuluses defined by the vector fields

of (1.4) when the parameters a, c and g are varied. From (1.4), we see that

dy

dϕ
=

−n(n− 1)ϕn−2y2 − aϕm + cϕ+ g

nyϕn−1
. (2.1)

Letting dξ = nϕn−1dζ, consider the following integrable system

dϕ

dζ
= nyϕn−1 =

1

2ϕn−1

∂H

∂y
,

dy

dζ
= −n(n−1)ϕn−2y2−aϕm+cϕ+g = − 1

2ϕn−1

∂H

∂ϕ
, (2.2)

in which ν(ϕ) = 1
2ϕn−1 is an integral factor and the Hamiltonian H(ϕ, y) is defined by (1.5).

It is easy to see from (2.1) that System (1.4) has the same topological phase portraits as

(2.2), except on the straight line ϕ = 0. Now, ϕ = 0 is a straight line solution of (2.2).

Thus, by using the topological phase portraits of (2.2), we can understand the dynamical

behaviour of (1.4) except on the line ϕ = 0. In this section, we consider the phase orbits of

System (2.2). In Section 3 we shall point out the different dynamics of the same orbits near

the straight line ϕ = 0 with respect to the “time variables” ζ and ξ.

On the (ϕ, y)-phase plane, the abscissas of equilibrium points of System (2.2) on the ϕ-

axis are the zeros of E(ϕ) = aϕm − cϕ− g. When n = 2, two equilibrium points of (2.2) are

(0,−
√
0.5g) and (0,

√
0.5g) on y-axis if g > 0. When n > 2, System (2.2) has no equilibrium

on the y-axis if g ̸= 0. Noting that E′(ϕ) = amϕm−1 − c, for an odd m and ac > 0, E′(ϕ)

has two zeros at ϕ̃± = ±( c
am )

1
m−1 ; for an even m, E′(ϕ) has only one zero at ϕ̃+. Clearly,

E(ϕ̃+) = −(m−1
m cϕ̃+ + g). By using these information, we know the distributions of the

zeros of E(ϕ) on the ϕ-axis. Let (ϕe, ye) be an equilibrium of (2.2). At this point, the

determinant of the linearized system of (2.2) has the form

J(ϕe, ye) = −n3(n− 1)ϕ2(n−2)
e y2e + nϕn−1

e E′(ϕe). (2.3)

By the theory of planar dynamical systems, we know that if J(ϕe, ye) > 0 (or < 0), then the

equilibrium (ϕe, ye) is a center (or a saddle point); if J(ϕe, ye) = 0 and the Poincaré index

of (ϕe, ye) is zero, then (ϕe, ye) is a cusp. It is clear that for n = 2, two equilibrium points

on the y-axis are saddle points. As to the equilibrium (ϕe, 0) on the x-axis, it is a center (or

a saddle point), if ϕn−1
e E′(ϕe) > 0 (or < 0).

By using the above facts to do qualitative analysis, we obtain the following results.

Case I n = 2, m = 2k, k = 1, 2, 3, · · · , i.e., equation K(2k, 2).

(1) Suppose that a > 0. Then on the (g, c)-parametric plane, there are 4 bifurcation

curves:

L±
1 : g = 0, c > 0 or c < 0, L±

2 : c = ±2k(a)
1
2k

( |g|
2k − 1

) 2k−1
2k

(g < 0). (2.4)

These curves partition the (g, c)-plane into 4 regions: (A1), (B1), (C1), (D1). When

(g, c) ∈ (C1), there is no center point of System (2.2). When (g, c) ∈ L±
2 , there is a double

equilibrium (cusp). When (g, c) ∈ L±
1 , there exists an oval orbit of (2.2), which contacts

ϕ = 0 at the origin of the phase plane and has the orbit equation

y2 +
a

2(k + 1)
ϕ2k − c

3
ϕ = 0. (2.5)



400 CHIN. ANN. OF MATH. Vol.23 Ser.B

Because for n = 2 there are two saddle points of (2.2) on the y-axis, all period annuluses

with centers of (2.2) have finite boundary curves consisting of a homoclinic orbit or two (or

three) heteroclinic orbits of (2.2). Fig. 2.1 shows the bifurcations of phase portraits of (2.2)

and the bifurcation set on the (g, c)-parametric plane.

Fig.2.1. Bifurcations of System (2.2), when n = 2, m = 2k, a > 0.

(2) Suppose that a < 0. When g ≤ 0, there is no center point of (2.2). We only consiser

the right half (g, c)-plane. There are 4 bifurcation curves as follows:

L±
3 :c = ±2k|a| 1

2k

( g

2k − 1

) 2k−1
2k

, (2.6)

L±
4 :c = ±6k

( |a|
2(k + 1)

) 1
2k
( g

2(2k − 1)

) 2k−1
2k

. (2.7)
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Fig.2.2. Bifurcations of System (2.2), when n = 2, m = 2k, a < 0.

The (g, c)-half plane is partitioned by these curves into 5 regions: (A2), (B2), (C2), (D2),

(E2). When (g, c) ∈ (C2), there is no center point of (2.2). When (g, c) ∈ L±
3 , there is

a double equilibrium (cusp) of (2.2). When (g, c) ∈ L±
4 , there exists a period annuluas

surrounded by a curve-triangle having the equations:

ϕ = 0, y = ±

√
2k − 1

2

(k + 1

|a|

) 1
2k−1

( c

3k

) 2k
2k−1

+
c

3
ϕ+

|a|
2k + 2

ϕ2k, (2.8)

which are heteroclinic orbits of (2.2). The bifurcations of phase portraits of (2.2) and the

bifurcation set on the (g, c)-parametric plane are shown in Fig.2.2.

Case II n = 2, m = 2k + 1, k = 1, 2, 3, · · · , i.e., equation K(2k + 1, 2).

(1) Suppose that a > 0. Then on the (g, c)-parametric plane, there are 5 bifurcation

curves:

L±
1 :g = 0, c > 0 or c < 0, L±

5 : g = ±2k(a)−
1
2k

( c

2k + 1

) 2k+1
2k

,

L6 :g =
4k

2k + 3
(a)−

1
2k

( (2k + 3)c

3(2k + 1)

) 2k+1
2k

. (2.9)

These curves partition the (g, c)-plane into 5 regions: (A3), (B3), (C3), (D3), (E3). When

(g, c) ∈ (E3), there is no center point of (2.2). When (g, c) ∈ L−
1 , L

±
5 , there is a multiple

equilibrium, respectively. When (g, c) ∈ L+
1 , there exists an oval orbit of (2.2) which contacts

ϕ = 0 at the origin of the phase plane and has the orbit equation

y2 +
a

2k + 3
ϕ2k+1 − c

3
ϕ = 0. (2.10)

The algebraic curve (2.10) consists of two branches; one is an oval, while another is an open

curve. When (g, c) ∈ L6, there are two period annuluses surrounded by 4 heteroclinic orbits

of (2.2) having the equation: ϕ = 0 and

y2 +
a

2k + 3
ϕ2k+1 − c

3
ϕ− g

2
= 0. (2.11)

Fig.2.3. Bifurcations of (2.2), when n = 2, m = 2k + 1, a > 0.
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The bifurcations of phase portraits of (2.2) and the bifurcation set on the (g, c)-parametric

plane are shown in Fig.2.3.

(2) For the case a < 0, a similar discussion gives Fig.2.4. The bifucation curves are L±
1

and for c < 0,

L±
7 : g = ±2k(|a|)− 1

2k

( |c|
2k + 1

) 2k+1
2k

; L8 : g =
4k

2k + 3
(|a|)− 1

2k

( (2k + 3)|c|
3(2k + 1)

) 2k+1
2k

.

These curves partition the (g, c)-plane into 5 regions: (A4), (B4), (C4), (D4), (E4). When

(g, c) ∈ (E4), there is no center point of (2.2).

Fig.2.4. Bifurcations of (2.2), when n = 2, m = 2k + 1, a < 0.

Case III n = 3, m = 2k, k = 1, 2, 3, · · · , i.e., equation K(2k, 3).

(1) For a > 0, on the (g, c)-parametric plane, there are 4 bifurcation curves defined

by (2.4). These curves partition the (g, c)-plane into 4 regions: (A5), (B5), (C5), (D5).

When (g, c) ∈ (C5), there is no center point of (2.2). When (g, c) ∈ L±
2 , there is a double

equilibrium (cusp).
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Fig.2.5. Bifurcations of (2.2), when n = 2l + 1, m = 2k, a > 0.

When (g, c) ∈ L+
1 , there exists a period annulus of arch of (2.2) surrounded by two

heteroclinic orbits ϕ = 0 and

3y2 +
2a

2k + 3
ϕ2k−1 − c

2
= 0. (2.12)

When (g, c) ∈ (A5), there is a period annulus between the line ϕ = 0 and the curve

3ϕy2 + 2a
2k+3ϕ

2k − c
2ϕ − 2

3g = 0. The periodic orbit in the annulus has the invariant h ∈
(H(ϕ1, 0), 0), where ϕ1 is the abscissa of the center point. Since the second boundary curve

is not closed, as h → 0, the uper and lower parts of periodic orbits of (2.2) approach to

the infinity. When (g, c) ∈ (B5) or (D5), there is a period annulus of (2.2) surrounded by a

homoclinic orbit.

The bifurcations of phase portraits of (2.2) and the bifurcation set on the (g, c)-parametric

plane are shown in Fig.2.5.

(2) For the case a < 0, the bifurcations of phase portraits of (2.2) and the bifurcation set

on the (g, c)-parametric plane just can be shown by the reflection of Fig.2.5 with respect to

the ordinate axis.

Case IV n = 3, m = 2k + 1, k = 1, 2, 3, · · · , i.e., equation K(2k + 1, 3).

(1) For a > 0, on the (g, c)-parametric plane, there are 4 bifurcation curves: L±
1 and

L±
5 defined as in Case II. These curves partition the (g, c)-plane into 4 regions: (A6), (B6),

(C6), (D6). When (g, c) ∈ L±
5 , there is a double equilibrium (i.e., cusp) of (2.2). When

(g, c) ∈ L+
1 , there exists two period annulus of (2.2) surrounded by three heteroclinic orbits

ϕ = 0 and

3y2 +
a

2k + 2
ϕ2k − c

2
= 0. (2.13)

When (g, c) ∈ L−
1 , (2.2) has no center point.

The bifurcations of phase portraits of (2.2) and the bifurcation set on the (g, c)-parametric

plane are shown in Fig.2.6.

Fig.2.6. Bifurcations of (2.2), when n = 2l + 1, m = 2k + 1, a > 0.

(2) For a < 0, if c > 0, System (2.2) has no center point. In the lower half (g, c)-parametric
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plane, there exist 3 bifurcation curve L−
1 and L±

7 . These curves divide the (g, c)-parametric

plane into 2 regions:(A7), (B7).

When (g, c) ∈ L±
7 , there is a double equilibrium (i.e., cusp) of (2.2). When (g, c) ∈ L−

1 ,

there is no center point of (2.2). When (g, c) ∈ (A7) or (B7), there exists a period annulus

of (2.2) surrounded by a homoclinic orbit, respectively.

The bifurcations of phase portraits of (2.2) and the bifurcation set on the (g, c)-parametric

plane are shown in Fig. 2.7.

Case V n = 2l (l ≥ 2), m = 2k, k = 1, 2, 3, · · · , i.e., equation K(2k, 2l).

For a > 0, System (2.2) has the same bifurcation curves as (2.4). However, when (g, c) ∈
(A1) and L+

1 , all period annuluses have no finite boundary curve. The bifurcations of the

phase portraits of (2.2) are shown in Fig.2.8.

Fig.2.7. Bifurcations of (2.2), when n = 2l + 1, m = 2k + 1, a < 0.

Fig.2.8. Bifurcations of (2.2), when n = 2l (l ≥ 2), m = 2k, a > 0.

For a < 0, differently from the case I, there is no bifurcation curve L±
4 . So the right (g, c)-

plane is divided into three regions: (A9), (B9), (C9). The bifurcations of phase portraits of

(2.2) and the bifurcation set on the (g, c)-parametric plane are shown in Fig.2.9.

Case VI n = 2l (l ≥ 2), m = 2k + 1, k = 1, 2, 3, · · · , i.e., equation K(2k + 1, 2l).



No.3 Li, J. B. & Liu, Z. R. TRAVELING WAVE SOLUTIONS FOR DISPERSIVE EQUATIONS 405

For a > 0, differently from the case II, there is no bifurcation curve L6. However, there

are still bifurcation curves L±
1 and L±

5 . The (g, c)-parametric plane is divided into 4 regions:

(A10), (B10), (C10), (D10).

The bifurcations of phase portraits of (2.2) and the bifurcation set on the (g, c)-parametric

plane are shown in Fig.2.10.

Similarly, for a < 0, the (g, c)-parametric plane is divided into 4 regions: (A11), (B11),

(C11), (D11). The bifurcations of phase portraits of (2.2) and the bifurcation set on the

(g, c)-parametric plane are shown in Fig.2.11.

Case VII n = 2l + 1 (l ≥ 2), m = 2k, k = 1, 2, 3, · · · , i.e., equation K(2k, 2l + 1).

For a > 0, the system (2.2) has the same bifurcation curves as (2.4). But when (g, c) ∈ L+
1 ,

the period annulus has no finite boundary curve. The bifurcations of the phase portraits of

(2.2) are shown in Fig.2.5.

For a < 0, the bifurcations of the phase portraits and the bifurcation set on the (g, c)-plane

of (2.2) are the reflection of Fig. 2.5 with respect to the ordinate axis.

Fig.2.9. Bifurcations of (2.2), when n = 2l (l ≥ 2), m = 2k, a < 0.
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Fig.2.10. Bifurcations of (2.2), when n = 2l (l ≥ 2), m = 2k + 1, a > 0.

Fig.2.11. Bifurcations of (2.2), when n = 2l (l ≥ 2), m = 2k + 1, a < 0.

Case VIII n = 2l+1 (l ≥ 2), m = 2k+1, k = 1, 2, 3, · · · , i.e., equation K(2k+1, 2l+1).

In this case, the bifurcations of phase portraits of (2.2) and the bifurcation set on the

(g, c)-parametric plane are shown in Fig.2.6 and Fig.2.7.

Remark 2.1. (i) For a planar polynomial system, say (2.2), by the theory of invariant

manifolds, all periodic solutions and all stable and unstable manifolds connecting equilibrium

points are analytic with respect to the “time variable” ζ (see [1,3,5,6]). However, for System

(1.4), even though it has the same invariant curves as System (2.2), the smooth property of

orbits (1.4) with respect to the “time variable” ξ should be studied, since the straight line

ϕ = 0 is not an orbit of (1.4). We shall consider this problem in the next section.

Of course, if the orbits of (1.4) are slightly far off from the line ϕ = 0, then the smooth

property of these invariant manifolds will be maintained. For the solutions of (1.4), we prefer

to say the smoothness instead of the analyticity.

(ii) We should notice that on the right half (ϕ, y)-phase plane, System (1.4) has the same

orbit direction as Systems (2.2). But on the left half (ϕ, y)-phase plane, whether the orbit

direction of (1.4) is the same as (2.2) or not depends on whether n is odd or even. In above

all phase portraits, we only drew the vector fields of (2.2) on the right half phase plane.

§3. Rapid Jump of ϕ′(ξ) Near a Segment of the Straight Line ϕ=0

In this section we consider the dynamics of orbits of System (1.4). From Remark 2.1, in

order to understand the dynamical behaviour of solutions of (1.4) with respect to the “time”

variable ξ, we need to study the property of orbits close to the singular straight line ϕ = 0.

In other words, we have to know what distinguishes the singular straight line ϕ = 0 of (1.4)

geometrically from the straight line solution ϕ = 0 of (2.2).

For short statement, we suppose that on the right side of the line ϕ = 0, there is a

periodic annulus with center P1(ϕ1, 0), which has boundary curves having the equation:

H(ϕ, y) = 0 defined by (1.5). From Figs.2.1–2.6, Fig.2.8 and Fig.2.10, we see that whether

these boundary curves are closed or open depends on whether n = 2 and n = 3, g = 0 or

n = 3, g ̸= 0 and n > 3, because from H(ϕ, y) = 0 and g > 0 we have

ϕ = 0, y2 =

2g
n + 2c

n+1ϕ− 2a
m+nϕ

m

nϕn−2
and lim

ϕ→0
y2 = ∞ for n ≥ 3. (3.1)
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Fig.3.1. Three kinds of boundary curves of periodic annuluses.

Hence, there are three kinds of finite boundary curves of period annuluses as shown in

Fig. 3.1 (i),(ii) and (iii). An orbit γ in the family of periodic orbits on a period annulus of

P1 is a closed branch of the invariant curves H(ϕ, y) = hγ , where hγ ∈ (H(ϕ1, 0), 0).

From Fig.3.1 we see that suppose a point from a point C(ϕM , 0) near the right boundary

curve starts along a periodic orbit γ whose invariant hγ is close to 0, as ξ increasing, it will

move to the left until it passes the “turning point” Bγ at the intersection point with the

horizontal inclination curve ΓH : n(n − 1)ϕn−2y2 + aϕm − cϕ − g = 0 of the vector field

defined by (1.4). Then it will rise, almost vertically, to the upper arc of γ.

After it passes through another “turning point” Aγ , it will move to the right, and finishes

his motion of one period to C. Let (ϕtp,±ytp) be the coordinates of Aγ and Bγ . Then we

have

H(ϕtp,±ytp) = hγ , y2tp =
g + cϕtp − aϕm

tp

n(n− 1)ϕn−2
tp

. (3.2)

Suppose that Bγϵ and Aγϵ are two points in a left neighbourhood of Bγ and Aγ on

the orbit γ, respectively. A question is asked: what is the motion velocity of ϕ(ξ) on the

segment BγϵAγϵ with respect to the “time variable” ξ? The following theorems will reply

this problem.

Theorem 3.1. When h → 0, the periodic orbits of the periodic annulus surrounding P1

approach to the boundary curves. Let (ϕ, y = ϕ′) be a point on a periodic orbit γ of (1.4).

Then along the segment BγϵAγϵ near the straight line ϕ = 0, y = ϕ′(ξ) rapidly jumps in

very short time interval of ξ.

Proof. The first conclusion follows from the continuity of the level set H(ϕ, y) = h

given by (1.5). We next show the second conclusion. Near the segment ϕ = 0, assume that

ϕ = ϵ ≪ 1. Thus we can rewrite System (1.4) as the following relaxation oscillation system

(see [4, 8]):

dϕ

dξ
= y, ϵ

dy

dξ
= −(n− 1)y2 +

g + cϕ− aϕm

nϕn−2
. (3.3)

We notice from (3.3) that for n = 2, g ̸= 0,

(g + cϕ− aϕm − 2y2)
dϕ

dy
= 2ϵy; (3.4)
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for n = 3, g = 0, c ̸= 0,

(c− aϕm−1 − 6y2)
dϕ

dy
= 3ϵy; (3.5)

and for n > 3, g ̸= 0, (g + cϕ− aϕm

nϕn−2
− (n− 1)y2

)dϕ
dy

= nϵy. (3.6)

Thus, as ϵ → 0, a segment BγϵAγϵ of every periodic orbit will tend to the line ϕ = 0.

Now we consider the periodic orbit γ near the invariant level h = 0 (see Fig.3.1). Ac-

cording to the first equation of (3.3), the period of γ satisfies

T =

∮
γ

dϕ

y
=

(∫
BγϵAγϵ

+

∫
AγϵCBγϵ

)dϕ
y

= T1 + T2. (3.7)

The contribution over the curve segment y ∈ BγϵAγϵ is

T1 =

∫ yAγϵ

yBγϵ

dϕ

y
=

∫ yAγϵ

yBγϵ

dϕdy

ydy
=

∫ yAγϵ

yBγϵ

nϵdy
g+cϕ−aϕm

nϕn−2 − (n− 1)y2
= O(ϵ). (3.8)

Because of g + cϕ − aϕm − n(n − 1)ϕn−2y2 ̸= 0 along the curve segment from Bγϵ to Aγϵ,

(3.8) implies that ϕ′(ξ) jumps rapidly in very short time interval of ξ (see Fig.3.2 (i)).

Fig.3.2. The profiles of y = ϕ′(ξ) and ϕ(ξ).

To understand the change of y with the “time” ξ when (ϕ, y) is close to the segment

ϕ = 0, y ∈ (−yγϵ, yγϵ), where yγϵ is the y-coordinate of Aγϵ, yγϵ = ytp − ϵ, we introduce the

fast time scale τ = ξ
ϵ , and note (3.2), then System (3.3) becomes

dϕ

dτ
= ϵy,

dy

dτ
= (n− 1)((ytp −O(ϵ))2 − y2). (3.9)

From the second equation of (3.9) we have

y = ±(ytp −O(ϵ)) tanh((n− 1)(ytp −O(ϵ))τ)

= ±(ytp −O(ϵ)) tanh
(
(n− 1)(ytp −O(ϵ))

ξ

ϵ

)
, (3.10)

where the positive sign on the right hand of (3.10) corresponds to y ≥ 0. Using the language

of the theory of singular perturbations, ϕ = ϵ and y defined by (3.10) is an asymptotic inner

solution of the periodic orbit γ of (1.4) on the segment BγϵAγϵ.
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Clearly, when τ → ∞, y(τ) → ±(ytp−O(ϵ)). Hence, along the segment BγϵAγϵ of periodic

orbit γ, γ being very close to the segment of ϕ = 0, when y = ϕ′(ξ) goes from the point Bγϵ

to point Aγϵ, the “time” ξ undergoes only an interval of O(ϵ), i.e., the sign of ϕ′(ξ) changes

very swiftly from − to +. Therefore, on the periodic orbit γ, the corresponding traveling

wave solution coordinate ϕ(ξ) undergoes two quite slow changes with ξ: decreasing from ϕM

to ϕtp along the lower arc of AγϵCBγϵ and increasing from ϕtp to ϕM along the upper arc of

AγϵCBγϵ, followed by a very rapid change of y = ϕ′(ξ) on the segment AγϵBγϵ: the value of

ϕ(ξ) quite slowly changes in the “time interval” O(ϵ) of ξ, but the motion direction of ϕ(ξ)

changes rapidly (see Fig.3.2 (ii)). Thus, we have

Theorem 3.2. If there is a segment BγϵAγϵ (which does not degenerate to a point)

on a periodic orbit γ of (1.4), γ being close to a segment of the straight line ϕ = 0, then

corresponding to this orbit γ, the traveling wave of (1.1) is a periodic cusp wave (Fig.3.2

(ii)).

We notice that for a fixed parameter group of (a, g, c), corresponding to the family of pe-

riodic orbits surrounding the center P1 of (1.4) with h ∈ (H(ϕ1, 0), 0), the periodic traveling

wave solutions of equation K(m,n) are not all cusp waves. As h increases from H(ϕ1, 0)

to 0, the traveling wave solutions will gradually change from smooth waves to non-smooth

cusp waves.

§4. Smooth and Non-Smooth Traveling
Wave Solutions on the Bifurcation Set

In this section, we shall study bounded traveling wave solutions when the parameter

pair (g, c) lies on a bifurcation curve on the (g, c)-parametric plane. We shall show that

the compactons (see [11]), so called K(m,n) compact solutions, just correspond to the oval

orbits (smooth periodic wave solutions) of (2.2) when n = 2, m ∈ Z+ and (g, c) ∈ L±
1 , where

Z+ denotes the set of positive integers. As to the peakons, they correspond to the boundary

curve-triangle of periodic annuluses of (1.4) when n = 2, m ∈ Z+ and (g, c) ∈ L±
4 or L6, L8,

respectively.

4.1. Smooth Periodic Traveling Waves: Compactons

Suppose that (g, c) ∈ L+
1 (i.e., g = 0, c > 0) and n = 2, m ∈ Z+. Then System (1.4)

becomes

dϕ

dξ
= y,

dy

dξ
=

−2y2 − aϕm + cϕ

2ϕ
, (4.1)

which has the first integral

H2(ϕ, y) = ϕ2(2y2 +
2a

m+ 2
ϕm − 2c

3
ϕ) = h. (4.2)

We consider the case a > 0. Then System (4.1) has a center point P1(ϕ1, 0) = (( ca )
1

m−1 , 0).

When h ∈ (H2(ϕ1, 0), 0), where H2(ϕ1, 0) = −2(m−1)c
3(m+2) (

c
a )

3
m−1 , there is a family of periodic

orbits of (4.1) with the level set H2(ϕ, y) = h defined by (4.2). As h −→ 0, these periodic

orbits approach to the limit oval orbit which is a branch of the curve H2(ϕ, y) = 0. Using

(4.2) with h = 0 and the first equation of (4.1), we obtain the parametric representations of

some limit oval orbits as follows.

m = 2, ϕ(ξ) =
4c

3a
cos2

(√aξ

4

)
=

2c

3a

(
1+ cos

(√aξ

2

))
, y(ξ) = − c

3
√
a
sin

(√aξ

2

)
. (4.3)
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Clearly, ϕ(ξ) is a periodic function with period T(2,2) =
4π√
a
.

m = 3, ϕ(ξ) =

√
5c

3a
cn2

((ac
60

) 1
4

ξ,
1√
2

)
, y(ξ) = ϕ′(ξ), (4.4)

where cn(u, k) is the Jacobian elliptic function with modulus k. Obviously, ϕ(ξ) is a periodic

function with period T(3,2) = 2( 60ac )
1
4K( 1√

2
), where K(k) is the complete elliptic integral of

the first kind.

m = 4, ϕ(ξ) =
(2c
a

) 1
3 1− cn(ω0ξ + η0, k0)

(
√
3 + 1) + (

√
3− 1)cn(ω0ξ + η0, k0)

, y(ξ) = ϕ′(ξ), (4.5)

where ω0 = ( 13 )
1
4 (ac

2

2 )
1
6 , η0 =

(3π2)
1
4 Γ( 1

6 )

3Γ( 2
3 )

, k0 =
√
3−1
2
√
2
. By (4.5), ϕ(ξ) has the period T(4,2) =

4K(k0)
ω0

.

For m ≥ 5, let ϕ0 = ( (m+2)c
3a )

1
m−1 be the right intersection point of the limit oval with

ϕ-axis. We have √
c

3
ξ =

∫ ϕ

ϕ0

ds√
s(1− 3a

(m+2)cs
m−1)

. (4.6)

This is the implicit parametric expression of limt oval orbit of (4.1). The classical mathe-

matical analysis can not give the integral formula for m ≥ 5. But by means of the numerical

integral for solving initial value problems of (1.4), we may obtain various profiles of smooth

periodic traveling waves (compactons) of K(m, 2), for example, the cases of m = 7 and

m = 8 are shown in Fig. 4.1 (i), (ii), respectively. Unlike Theorem 3.1, here the limit oval

orbit of (4.1) contacts the line ϕ = 0 at (0, 0), the change of y = ϕ′(ξ) is continuous without

a jump. Thus, we have a periodic traveling wave.

Fig.4.1. Compactons of K(7, 2) and K(8, 2),

Parameters: m = 7, a = 3, c = 64; m = 8, a = 1, c = 38.4.

Similarly, if (g, c) ∈ L−
1 , then when a > 0, m = 2k, n = 2 or a < 0, m = 2k + 1, n = 2,

by the results of Section 2, there is a limit oval orbit on the left of ϕ = 0, which has the

curve equation H2(ϕ, y) = 0. It gives similar parametric representations as (4.3)–(4.6). To

sum up, we obtain

Theorem 4.1 Suppose that g = 0.
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(i) If a > 0 and c ̸= 0, for h ∈ (H2(ϕ1, 0), 0), corresponding to the family of periodic orbits

of (1.4)(m,2), Equation K(m, 2) (m ∈ Z+) has infinitely many smooth periodic traveling wave

solutions. When h → 0, these periodic traveling wave solutions converge to a smooth periodic

traveling wave solution (compacton).

(ii) If a < 0 and c < 0, for Equation K(2k + 1, 2), the similar conclusions hold.

We notice that even though the above oval is a degenerate homoclinic orbit of (2.2) for

the “time” variable ζ, for System (4.1) it is a periodic orbit with respect to the “time”

variable ξ. This is an important difference for the dynamical behaviour between (1.4) and

(2.2).

4.2. Periodic Cusp traveling Waves

Suppose that (g, c) ∈ L+
1 and n = 3, m ∈ Z+. Then System (1.4) has the form

dϕ

dξ
= y,

dy

dξ
=

−6y2 − aϕm−1 + c

3ϕ
, (4.7)

which has the first integral

H3(ϕ, y) = ϕ4
(
3y2 +

2a

m+ 3
ϕm−1 − c

2

)
= h. (4.8)

For the case a > 0, it is easy to see that for m = 2k (k = 1, 2, 3, · · · ), there is one center

point P1(ϕ1, 0) of (4.7). System (4.7) has a family of periodic orbits with the invariant

h ∈ (H3(ϕ1, 0), 0), where H3(ϕ1, 0) = − (m−1)c
2(m+3) (

c
a )

4
m−1 . The boundary curves of period

annuluses of (4.7) consist of the segment ϕ = 0, y ∈ (−
√

c
6 ,
√

c
6 ) and an arch of the curve

defined by (2.12) (see Fig.3.1 (i)). By a similar discussion for (3.9), near the above segment,

an arc of a periodic orbit γ of (4.7) has the asymptotic representation

ϕ = ϵ, y = ϕ′ = ±
(√ c

6
−O(ϵ)

)
tanh

(
2
(√ c

6
−O(ϵ)

)ξ
ϵ

)
. (4.9)

Thus, by Theorems 3.1 and 3.2, as ϵ → 0, the family of periodic orbits of (4.7) approaches

to a limit periodic orbit which corresponds to the boundary curves of the period annulus.

Using (4.7) and (4.8), we obtain the following parametric representations of the periodic

cusp waves.

m = 2, ϕ(ξ) =
5c

4a
− a

30
ξ2 for ξ ∈

[
− 5

√
3c√
2a

,
5
√
3c√
2a

]
, (4.10)

where the motion defined by Equation (4.10) has the period T(2,3) =
5
√
6c

a .

m = 4, ϕ(ξ) =
( 7c

4a

) 1
3 (

√
3 + 1)cn(ω1ξ, k1)− (

√
3− 1)

cn(ω1ξ, k1) + 1
for ξ ∈ [−ξ̃0, ξ̃0], (4.11)

where ω1 = (2ca2)
1
6

3
1
4 7

1
3

, k1 =
√
3+1

2
√
2
, ξ̃0 = 1

ω1
F
(
arcsin

(
2(3)

1
4√

3+1

)
, k1

)
, F (·, k) is the elliptic integral

of the first kind. The wave defined by (4.11) has the period T(4,3) = 2ξ̃0.

For m = 2k + 1, System (4.7) has two center points (−ϕ1, 0) and (ϕ1, 0). There ex-

ist two corresponding period annuluses enclosed by curve (2.13) and the segment ϕ =

0, y ∈ (−
√

c
6 ,
√

c
6 ). The two families of periodic orbits have the same invariant level h ∈

(H3(ϕ1, 0), 0).

The boundary curves of two period annuluses correspond to two periodic traveling cusp
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waves which have the parametric representations as follows.

m = 3, ϕ(ξ) = ±
√

3c

2a
cos

(√aξ

3

)
for ξ ∈

[
− 3π

2
√
a
,
3π

2
√
a

]
, (4.12)

this periodic cusp wave has the period T(3,3) =
3π√
a
.

m = 5, ϕ(ξ) = ±
(2c
a

) 1
4

cn
(
ω2ξ,

1√
2

)
for ξ ∈

[
−

K( 1√
2
)

ω2
,
K( 1√

2
)

ω2

]
, (4.13)

where ω2 = ( 4ac72 )
1
4 . This periodic cusp wave has the period T(5,2) =

2K( 1√
2
)

ω2
.

m = 7, ϕ(ξ) = ±
( 5c

2a

) 1
6 1− cn(ω3ξ − η0, k0)

(
√
3 + 1) + (

√
3− 1)cn(ω3ξ − η0, k0)

for ξ ∈
[
− η0

ω3
,
η0
ω3

]
, (4.14)

where η0, k0 are the same as in (4.5), ω3 = (ac
2

540 )
1
6 . This periodic traveling cusp wave has

the period T(7,3) =
2η0

ω3
.

For m ≥ 8, let ϕ̃0 = ( (m+3)c
4a )

1
m−1 be the positive intersection points of the limit curve of

the periodic family with the ϕ-axis. We have√
c

6
ξ =

∫ ϕ

ϕ̃0

ds√
s(1− 4a

(m+3)cs
m−1)

. (4.15)

This is the implicit parametric expression of the right limit arc orbit of (4.1). The classical

mathematical analysis can not give the integral formula for m ≥ 8. But by means of the

numerical integral for solving initial value problems of (1.4), we may obtain various profiles

of periodic cusp traveling waves of K(m, 3), for example, the cases of m = 8 and m = 9 are

shown in Fig.4.2 (i), (ii), respectively.

Fig.4.2. Periodic cusp traveling waves of K(8, 3) and K(9, 3).

Parameters: m = 8, a = 1.1, c = 51.2; m = 9, a = 3, c = 256.

Thus, we have

Theorem 4.2. Suppose that g = 0. If a > 0 and c ̸= 0, for h ∈ (H(ϕ1, 0), 0), correspond-

ing to the two families of periodic orbits of (1.4)(m,3), Equation K(m, 3) (m ∈ Z+) has two
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families of infinitely many periodic traveling wave solutions. When h is gradually changed

from H3(ϕ1, 0) to 0, two series of periodic traveling wave solutions will gradually change

their smoothness and converge to two periodic cusp traveling wave solutions, respectively.

4.3. Solitary Cusp Traveling Waves: Peakons and Valleyons

Suppose that (g, c) ∈ L±
4 , n = 2, m = 2k and (g, c) ∈ L6 or L8, n = 2, m = 2k+1. Under

these assumptions, there is a periodic annulus P (ϕc, 0) enclosed by a curve triangle (see

Figs.2.2, 2.3 and 2.4) whose one border is a segment of ϕ = 0, other two borders intersect at

a finite equilibrium point S(ϕs, 0) of (1.4). Without loss of generality, we consider the cases

(g, c) ∈ L−
4 and L8.

For a < 0 and c < 0, when (g, c) ∈ L−
4 , we have the phase portrait of (1.4) as shown in

Fig.3.1 (ii). When m = n = 2, the upper and lower straight lines of the boundary triangle

of the periodic annulus with center ( c
3a , 0) are y = ∓

√
|a|
2 (ϕ− 2c

3a ), which have the following

parametric representations:

W s : ϕ(ξ) =
2c

3a

(
1− exp

(
−

√
|a|
2

ξ
))

for ξ ∈ (0,∞), (4.16)1

Wu : ϕ(ξ) =
2c

3a

(
1− exp

(√|a|
2

ξ
))

for ξ ∈ (−∞, 0). (4.16)2

It is clear that along Wu (resp. W s), as ξ → −∞ (resp. ∞), ϕ → 2c
3a . By the same

discussion as in Section 3, when ξ approaches to 0 along Wu, ϕ′(ξ) will rapidly changes

its sign from − to +, but ϕ(ξ) is almost unchanged. Thus, this boundary triangle gives a

solitary cusp traveling wave solution of equation K(2, 2). Equation (4.16) just denotes the

so-called “a dark peakon” in [13, p.312]. Here we have given its determinated geometrical

pattern which corresponds to a boundary curve triangle (which contains a singular line and

a finite equilibrium) of a period annulus of the traveling wave system (1.4)(2,2).

When m = 4, System (1.4)(4,2) has a saddle point S(ϕs0, 0), where ϕs0 = ( c
2a )

1
3 . The

upper and lower boundary curves of the period annulus with center C are

y = ±
√

a

6
(ϕs0 − ϕ)

√
ϕ2 + 2ϕs0ϕ+ 3ϕ2

s0, (4.17)

which have the parametric representations:

W s : ϕ(ξ) =
( c

2a

) 1
3

(
(3
√
2 + 4) exp

(
−
(

|a|c2
4

) 1
6

ξ
)
− 4

)2

− 18(
(3
√
2 + 4) exp

(
−
(

|a|c2
4

) 1
6

ξ
)
+ 2

)2

− 6

for ξ ∈ (0,∞), (4.18)1

Wu : ϕ(ξ) =
( c

2a

) 1
3

(
(3
√
2 + 4) exp

((
|a|c2
4

) 1
6

ξ
)
− 4

)2

− 18(
(3
√
2 + 4) exp

((
|a|c2
4

) 1
6

ξ
)
+ 2

)2

− 6

for ξ ∈ (−∞, 0). (4.18)2

Similarly, as in the case m = 2, (4.18) defines a solitary cusp traveling wave solution of

equation K(4, 2).

We next suppose that (g, c) ∈ L8, m = 2k + 1. From Fig.2.4, there are two periodic

annuluses with centers P1 and P2. The boundary curves of two annulues are shown in

Fig.3.1 (iii). For m = 3, System (1.4)(3,2) has a saddle point S+(ϕs, 0) = (
√

5c
9a , 0) and two
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centers P1(ϕc1, 0), P2(ϕc2, 0), where

ϕc1 =
(√21−

√
5

6

)√ c

a
, ϕc2 = −

(√21 +
√
5

6

)√ c

a
.

The upper and lower boundary curves of the boundary curve triangle of the period annulus

of P1 can be written as follows:

y = ±
√

a

5
(ϕs − ϕ)

√
ϕ+ 2ϕs, (4.19)

which have the parametric representations, respectively,

W s : ϕ(ξ) =

√
5c

9a

(
3
(1− (

√
3 +

√
2)2 exp(−( c

5a )
1
4 ξ))2

(1 + (
√
3 +

√
2)2 exp(−( c

5a )
1
4 ξ))2

− 2
)

for ξ ∈ (0,∞), (4.20)1

Wu : ϕ(ξ) =

√
5c

9a

(
3
(1− (

√
3 +

√
2)2 exp(( c

5a )
1
4 ξ))2

(1 + (
√
3 +

√
2)2 exp(( c

5a )
1
4 ξ))2

− 2
)

for ξ ∈ (−∞, 0). (4.20)2

Hence, similarly to the case for equation K(2, 2), (4.20) defines a solitary cusp traveling

wave solution of K(3, 2).

On the other hand, for the boundary curve arch of the period annulus with center P2,

Equation (4.20) with ξ ∈ (−2( 5ac )
1
4 ln(

√
3+

√
2), 2( 5ac )

1
4 ln(

√
3+

√
2)) determines a periodic

cusp traveling wave solution of (1.4)(3,2) with period 4( 5ac )
1
4 ln(

√
3 +

√
2).

For n = 2, m ≥ 5, the upper and lower boundary curves of the periodic annulus of the

center P satisfy

y = ±
√

g

2
+

c

3
ϕ− a

m+ 2
ϕm, g = (−1)m−1 2(m− 1)

m+ 2
(|a|)−

1
m−1

( (m+ 2)|c|
3m

) m
m−1

.

Thus, we have the implicit parametric representation

ξ = ±
∫ ϕ

0

ds√
g
2 + c

3s−
a

m+2s
m
. (4.21)

It gives the implicit formula of solitary cusp traveling wave solution of K(m, 2). By means

of the numerical integral for solving initial value problems of (1.4), we may obtain various

profiles of the solitary cusp traveling waves of K(m, 2), for example, the cases of m = 6 and

m = 5 are shown in Fig.4.1 (i), (ii), respectively.

Fig.4.3. A valleyon of K(6, 2) and a peakon of K(5, 2),
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Parameters: m = 6, a = −5832, c = −1728, g = 640; m = 5, a = 1, c = 15
7 , g = 8

7 .

We point out that when (g, c) ∈ L−
4 and L8, we have 0 < ϕc < ϕs, the profiles of

the solitary traveling waves of K(m, 2) are waves of valley form (see Fig.4.3 (i)). When

(g, c) ∈ L+
4 and L6, the inequality ϕs < ϕc < 0 holds, similarly, the profiles of the solitary

traveling waves of K(m, 2) are waves of peak form (see Fig.4.3 (ii)). Thus, these two profies

are called valleyons and peakons, respectively.

Thus, we obtain

Theorem 4.3. (i) If n = 2, m = 2k, (k = 1, 2, 3, · · · ), and (g, c) ∈ L±
4 , then corre-

sponding to the boundary curve triangle of the period annulus with center P of (1.4)(2k,2),

equation K(2k, 2) has a solitary cusp traveling wave solution. When h ∈ (H(ϕc, 0), 0), cor-

responding to the family of the periodic orbits of (1.4)(2k,2), equation K(2k, 2) has infinitely

many periodic cusp traveling wave solutions. As h → 0, these periodic cusp waves converge

to a solitary cusp wave.

(ii) If n = 2, m = 2k + 1, (g, c) ∈ L6, L8, then when h ∈ (H(ϕc1, 0), 0) or h ∈
(H(ϕc2, 0), 0), corresponding to two families of periodic orbits of (1.4)(2k+1,2), equation

K(2k + 1, 2) has two families of periodic cusp traveling wave solutions. As h → 0, one

family of periodic cusp waves converges to a solitary cusp wave (which corresponds to the

boundary curve triangle of a periodic annulus of (1.4)(2k+1,2)). Another family of periodic

waves converges to a periodic cusp wave (which corresponds to the boundary arch of a peri-

odic annulus of (1.4)(2k+1,2)).

Remark 4.1. In [12–14], the author claimed that “the prototype dispersive model

K(m,n) supports for a > 0 compact solitary traveling structures which for n = m take

very simple form,

u = ϕ(ξ) =
( 2cn

n+ 1
cos2

( (n− 1)ξ

2n

)) 1
n−1

for |ξ| ≤ 2nπ

n− 1
, (4.22)

and otherwise zero.” It is easy to check that this result is incorrect. By a simple calculation,

for m = n > 3, (4.22) does not satisfy the traveling wave equation (1.2) and (1.5) with

h = g = 0. On the other hand, we see from Section 2 that when m = n > 3, g = 0, equation

(1.4)(m,m) has only periodic cusp wave solutions. So the motion defined by (4.22) can not

be a solitary wave solution of K(m,m). When m = n = 2, (4.3) gives a smooth periodic

wave of K(2, 2). When m = n = 3, (4.12) defines a periodic cusp wave solution, which is

not a solitary wave solution with the form of (4.22).

§5. Existence and Convergence of Smooth and Non-Smooth
Traveling Wave Solutions as Parameters Vary

In this section, we use the results of Section 2 to discuss the existence and the relationship

of the traveling waves of different types when the parameter pair (g, c) lies on the different

regions on the (g, c)-parametric plane. By Remark 2.1 (i), when the orbits of (1.4) are far

from the straight line ϕ = 0, the solutions of (1.4) are smooth with respect to ξ. Corre-

sponding to the smooth homoclinic orbits of (1.4), there are two types of solitary waves:

the wave of peak form and the wave of valley form. In fact, suppose that a homoclinic

orbit γ0(ξ) = (ϕ0(ξ), y0(ξ)) encloses the center (ϕc, 0) and is homoclimic to the saddle point

(ϕs, 0) satisfying ϕc > ϕs, then γ0(ξ) is a solitary wave of peak form. Otherwise, if ϕc < ϕs,

it is a solitary wave of valley form (see Fig.5.1 (i),(ii)).
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Fig.5.1. the smooth solitary wave of valley form and smooth solitary wave of

peakon form of K(2, 2); Parameters: (i) a = 1, c = −4, g = −1; (ii) a = 1, c = 4, g = −1.

Thus, by using Figs.2.1-2.11 and the results in Section 3 we have

Theorem 5.1. (i) Suppose that a > 0. Then

(1) If (g, c) ∈ (B1), equation K(2k, 2l) (k, l ≥ 1) has a family of smooth periodic traveling

wave solutions and a smooth solitary solution of peak form. If (g, c) ∈ (D1), equation

K(2k, 2l) has a family of smooth periodic traveling wave solutions and a smooth solitary

solution of valley form.

(2) If (g, c) ∈ (B5), (D5), equation K(2k, 2l+1) (k, l ≥ 1) has a family of smooth periodic

traveling wave solutions and a smooth solitary solution of peak form.

(3) If (g, c) ∈ (D3), equation K(2k + 1, 2) (k ≥ 1) has a family of smooth periodic

traveling wave solutions and a smooth solitary solution of peak form. If (g, c) ∈ (B3),

equation K(2k + 1, 2) has two families of periodic traveling wave solutions and a smooth

solitary solution of peak form; moreover, one of the families of periodic waves is smooth,

while the other contains periodic cusp waves.

(4) If (g, c) ∈ (C6), equation K(2k + 1, 2l + 1) (k, l ≥ 1) has two families of periodic

traveling wave solutions and a smooth solitary solution of peak form; moreover, one of

the families of periodic waves is smooth, while the other contains periodic cusp waves. If

(g, c) ∈ (B6), equation K(2k+1, 2l+1) has two families of periodic traveling wave solutions

and a smooth solitary solution of valley form; moreover, one of the families of periodic waves

is smooth, while the other contains periodic cusp waves.

(5) If (g, c) ∈ (C10), equation K(2k + 1, 2l) (k, l ≥ 1) has a family of smooth periodic

traveling wave solutions and a smooth solitary solution of peak form. If (g, c) ∈ (B10),

equation K(2k + 1, 2l) has two families of periodic traveling wave solutions and a smooth

solitary solution of peak form; moreover, one of the families of periodic waves is smooth,

while the other contains periodic cusp waves.

(ii) Suppose that a < 0. Then

(1) If (g, c) ∈ (B2), (A9) equation K(2k, 2l) (k, l ≥ 1) has a family of smooth periodic

traveling wave solutions and a smooth solitary solution of valley form. If (g, c) ∈ (D2), (C9),

equation K(2k, 2l) has a family of smooth periodic traveling wave solutions and a smooth

solitary solution of peak form.
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(2) If (g, c) ∈ (B5), (D5), equation K(2k, 2l+1) (k, l ≥ 1) has a family of smooth periodic

traveling wave solutions and a smooth solitary solution of valley form, where (B5), (D5) are

the reflection regions of (B5), (D5) with respect to the c-axis on the (g, c)-parametric plane.

(3) If (g, c) ∈ (D4), equation K(2k + 1, 2) (k ≥ 1) has a family of smooth periodic

traveling wave solutions and a smooth solitary solution of valley form. If (g, c) ∈ (B4),

equation K(2k + 1, 2) has two families of periodic traveling wave solutions and a smooth

solitary solution of valley form; moreover, one of the families of periodic waves is smooth,

while the other contains periodic cusp waves.

(4) If (g, c) ∈ (B7), equation K(2k+1, 2l+1) (k, l ≥ 1) has a family of periodic traveling

wave solutions and a smooth solitary solution of peak form. If (g, c) ∈ (A7), equation K(2k+

1, 2l+ 1) has a family of periodic traveling wave solutions and a smooth solitary solution of

valley form.

(5) If (g, c) ∈ (D11), equation K(2k + 1, 2l) (k, l ≥ 1) has a family of smooth periodic

traveling wave solutions and a smooth solitary solution of valley form. If (g, c) ∈ (A11),

equation K(2k + 1, 2l) has two families of periodic traveling wave solutions and a smooth

solitary solution of valley form; moreover, one of the families of periodic waves is smooth,

while the other contains periodic cusp waves.

There exist a lot of parametric regions in the (g, c)-parametric plane such that equation

K(m,n) has one or two families of periodic cusp traveling wave solutions. From the results

of Sections 2 and 3 we have

Theorem 5.2. (i) Suppose that a > 0. Then

(1) If (g, c) ∈ (A1), equation K(2k, 2l) (k, l ≥ 1) has two families of periodic cusp traveling

wave solutions.

(2) If (g, c) ∈ (A5), equation K(2k, 2l+1) (k, l ≥ 1) has a family of periodic cusp traveling

wave solutions.

(3) If (g, c) ∈ (resp. A3) (or (C3), equation K(2k + 1, 2) (k ≥ 1) has a family (resp. two

families) of periodic cusp traveling wave solutions.

(4) If (g, c) ∈ (A6), (D6) and L±
5 , equation K(2k + 1, 2l + 1) (k, l ≥ 1) has one family of

periodic cusp traveling wave solutions.

(5) If (g, c) ∈ (A10), L
+
1 and L+

5 in Fig.2.10, equation K(2k+1, 2l) (k, l ≥ 1) has a family

of periodic cusp traveling wave solutions.

(ii) Suppose that a < 0. Then

(1) If (g, c) ∈ (A2), (E2), equation K(2k, 2) (k, l ≥ 1) has one family of periodic cusp

traveling wave solutions.

(2) If (g, c) ∈ (A5), equation K(2k, 2l+1) (k, l ≥ 1) has a family of periodic cusp traveling

wave solutions, where (A5) is the reflection region of (A5) with respect to the c-axis on the

(g, c)-plane.

(3) If (g, c) ∈ (A4) (resp. (C4)), equation K(2k + 1, 2) (k ≥ 1) has a family (resp. two

families) of periodic cusp traveling wave solutions.

(4) If (g, c) ∈ (B11), equation K(2k + 1, 2l) (k, l ≥ 1) has a family of periodic cusp

traveling wave solutions.

When the parameter pair (g, c) in a parameter region approaches to a boundary curve

(so called the bifurcation set), what happen about the dynamics of solutions of equation

K(m,n)? By the continuity of the first integral with respect to the parameters g, a and c,

we have
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Theorem 5.3. (i) If a > 0, (g, c) ∈ (B1) (resp. (A1)), then as (g, c) → L+
1 , the series of

smooth solitary wave solutions (resp. the series of periodic cusp waves) of K(2k, 2) converges

to a smooth periodic wave defined by (4.6).

(ii) If a < 0, (g, c) ∈ (B2) (resp. (A2)), then as (g, c) → L−
4 , the series of smooth solitary

wave solutions (resp. the series of periodic cusp waves) of K(2k, 2) converges to the solitary

cusp wave solution defined by (4.21).

(iii) If a > 0, (g, c) ∈ (B5), then the series of smooth solitary wave solutions of K(2k, 3)

converges to a periodic cusp wave defined by (4.15).

We point out that the results on the qulitative analysis in Sections 2 and 3 have given us

all information of the dynamical behaviour for the traveling wave system (1.4) of K(m,n).

By these knowledges, we can make corresponding numerical study for equation K(m,n)

when m,n > 5.
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