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Abstract

Let M1, M2 be submodules of analytic Hilbert module X on Ω(⊂ Cn) such that M1 ⊇ M2

and dimM1/M2 = k < ∞. If M2 is an AF-cosubmodule, then the codimension dimM1/M2 of

M2 in M1 equals the cardinality of zeros of M2 related to M1 by counting multiplicities. The
codimension formula has some interesting applications. In particular, the author calculates out
the dimension of Rudin quotient module, which is raised in [14].
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§1. Introduction

The Beurling’s theorem shows that all submodules of the Hardy moduleH2(D) on the unit
disk D are isomorphic[11]. In generalizing this result to several variables, one was somewhat
surprised to find that the analogous result is false[2,5,6,10,11]. Due to the extreme complexity
of the structure of analytic submodules of several variables, the additional assumption on
finite codimension was naturally adopted as the first step towards a better understanding
of their properties[1,6,7,8,9].

In [1], we study the structure of zero varieties of Hardy-submodules generated by poly-
nomials. In [2], we developed the characteristic space theory of analytic Hilbert modules to
study algebraic reduction and rigidity of Hilbert modules. This theory enables us to obtain a
complete classification under unitary equivalence for Hardy submodules of several variables
which are generated by polynomials (see [3]). An application to quasi-invariant subspaces
of the Fock space can be found in [4]. In this note, using the characteristic space theory,
we generalize the main results in [1] to the case of AF-cosubmodules of analytic Hilbert
modules of several variables. Some interesting applications are obtained. In particular, we
calculate out the dimension of Rudin quotient module, which is raised in [14].
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§2. Preliminary Notations

Let us recall some basic notations (see [2, 10]). Let Ω be a bounded nonempty open
subset of Cn, Hol(Ω) denote the ring of analytic functions on Ω, and X be Banach space
contained in Hol(Ω). We call X a reproducing Ω-space if X contains 1 and if for each w ∈ Ω
the evaluation function, Ew(f) = f(w), is a continuously linear functional on X. Write
C for the ring of all polynomials on Cn. We call X a reproducing C-module on Ω if X is
a reproducing Ω–space, and for each polynomial p and each x ∈ X, p x is contained in X.
Note that, by a simple application of the closed graph theorem, the operator Tp defined to
be multiplication by p is bounded on X for each p ∈ C. Note also that C ⊂ X follows from
the fact that 1 is in X. For w ∈ Cn, we call w a vertual point of X provided that the linear
functional f 7→ f(w) defined on C extends to a bounded linear function on X. We use vp(X)
to denote the collection of all vertual points, then vp(X) ⊇ Ω. We say that X is an analytic
Hilbert module on Ω if the following conditions are satisfied:

(1) X is a reproducing C-module on Ω;
(2) C is dense in X;
(3) vp(X) = Ω.
For a polynomial q =

∑
am1···mnz

m1
1 zm2

2 · · · zmn
n , let q(D) denote the linear partial dif-

ferential operator
∑

am1···mn

∂m1+m2+···+mn

∂z
m1
1 ∂z

m2
2 ···∂zmn

n
. Let M be a submodule of X, and λ ∈ Ω.

Set

Mλ = {q ∈ C | q(D)f |λ = 0, ∀f ∈ M},
where q(D)f |λ denotes

(
q(D)f

)
(λ). By [1 or 2], Mλ is invariant under the action by basic

partial differential operators { ∂
∂z1

, ∂
∂z2

· · · , ∂
∂zn

}, and Mλ is called the characteristic space
of M at λ. The envelope of M at λ, Me

λ, is defined by

Me
λ = {f ∈ X | q(D)f |λ = 0, ∀q ∈ Mλ}.

Then Me
λ is a submodule of X, and Me

λ ⊇ M (see [2]).
Let M be a submodule of X. We call M approximately finite codimensional (abbr.,

AF-cosubmodule) if M is equal to the intersection of all finite codimensional submodules
containing M . The reason is that in this case, M is just the limit of decreasing net (⊇) of
all finite codimensional submodules containing M . For a submodule M , the AF-envelope of
M is defined by the intersection of all finite codimensional submodules containing M , and
denoted by Me. Clearly, the definition implies that the envelope of a submodule M is an
AF-cosubmodule. In what follows we will use Z(M) to denote the zero set of M , that is,
Z(M) = {λ ∈ Cn | f(λ) = 0, ∀f ∈ M}. The next lemma illustrates some basic properties
of characteristic space and envelope[2].

Lemma 2.1.[2] Let X be an analytic Hilbert module, and M a submodule of X. Then we
have

(1) if Z(M) = ∅, then Me = X;
(2) if Z(M) ̸= ∅, then M ⊆ Me ̸= X, (Me)e = Me, and Z(M) = Z(Me);
(3) if Z(M) ̸= ∅, then Me =

∩
λ∈Z(M)

Me
λ.

In particular, let M1,M2 be two submodules of X, then Me
1 = Me

2 if and only if Z(M1) =
Z(M2), and for every λ ∈ Z(M1), M1λ = M2λ.

§3. The Codimension Formula on AF-Cosubmodules

Following the notation in [1], we let M1, M2 be submodules of X, and λ ∈ Ω. We call that
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M1, M2 have the same multiplicity at λ ifM1λ = M2λ. Let the symbol Z(M2)\Z(M1) denote
the set of zeros ofM2 related toM1, that is, Z(M2)\Z(M1) is defined by {λ ∈ Z(M2) | M2λ ̸=
M1λ}. If M1 ⊇ M2, the cardinality of zeros of M2 related to M1, card

(
Z(M2)\Z(M1)

)
, is

defined by
∑

λ∈Z(M2)\Z(M1)

dimM2λ/M1λ.

Theorem 3.1. Let M1, M2 be submodules of analytic Hilbert module X on Ω such that
M1 ⊇ M2 and dimM1/M2 = k < ∞. If M2 is an AF-submodule, then we have

(1) Z(M2)\Z(M1) = σp(Mz1 ,Mz2 , · · · ,Mzn) ⊂ Ω,

(2) M2 = {h ∈ M1 | p(D)h|λ = 0, p ∈ M2λ, λ ∈ Z(M2)\Z(M1)},
(3) dimM1/M2 =

∑
λ∈Z(M2)\Z(M1)

dimM2λ/M1λ = card
(
Z(M2)\Z(M1)

)
,

where (Mz1 ,Mz2 , · · · ,Mzn) is an n-tuple of operators which are defined on the quotient

module M1/M2 by Mzi f̃ = ˜(zif) for i = 1, · · · , n, and σp(Mz1 , · · · ,Mzn) denotes the joint
eigenvalues of the n-tuple (Mz1 ,Mz2 , · · · ,Mzn). It is worth noticing that (3) of Theorem 3.1
says the codimension dimM1/M2 of M2 in M1 equals the cardinality of zeros of M2 related
to M1. In this way, (3) is the codimension formula what we say.

Proof. The proof is similar to that of [1, Theorem 2.4] (see also [1, Theorem 3.1]). For
completeness, we give the details of the proof.

(1) Write

M1 = M2 ⊕R

and restrict (Mz1 ,Mz2 , · · · ,Mzn) on R. By [16], they can be simultaneously triangularized
as

Mzi =

λ
(1)
i ⋆

. . .

λ
(k)
i

 .

Here i = 1, 2, · · · , n, and k = dimM1/M2, so that σp(Mz1 ,Mz2 , · · · ,Mzn) is equal

to {λ(1), · · · , λ(k)}. From the definition of analytic Hilbert module, the inclusion σp(Mz1 ,
Mz2 , · · · ,Mzn) ⊂ Ω is immediate. Writing

Oλ(j) = {f | f ∈ C, and f
(
λ(j)

)
= 0},

j = 1, · · · , k, we have

Oλ(k) · · · Oλ(2)Oλ(1)M1 ⊆ M2 ⊆ M1.

Therefore, for λ ∈ Ω and λ /∈ σp(Mz1 ,Mz2 , · · · ,Mzn), one has that M1λ = M2λ. This
implies that

Z(M2)\Z(M1) ⊆ σp(Mz1 ,Mz2 , · · · ,Mzn).

Let λ ∈ σp(Mz1 ,Mz2 , · · · ,Mzn). Since λ is a joint eigenvalue of (Mz1 ,Mz2 , · · · ,Mzn), there

is a function h ∈ M1, and h /∈ M2 such that Oλh ⊆ M2. Let M
†
2 be a submodule generated

by M2 and h. Then for λ′ ∈ Ω and λ′ ̸= λ, we have (M†
2 )λ′ = M2λ′ .

If (M†
2 )λ = M2λ, then by Lemma 2.1(3), we have (M†

2 )
e = Me

2 = M2. This is clearly

impossible. Hence, M2λ % (M†
2 )λ ⊇ M1λ. It follows that λ is in Z(M2)\Z(M1). We thus

conclude that

Z(M2)\Z(M1) = σp(Mz1 ,Mz2 , · · · ,Mzn) ⊂ Ω.

This completes the proof of (1).
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(2) Set

M ♮
2 = {h ∈ M1 | p(D)h|λ = 0, p ∈ M2λ, λ ∈ Z(M2)\Z(M1)}.

Then M ♮
2 is an AF-cosubmodule which contains M2. It is easy to see that for every λ ∈ Ω,

(M ♮
2)λ = M2λ. Therefore, by Lemma 2.1(3), we have (M ♮

2)
e = Me

2 = M2. This implies that

M ♮
2 = M2. The proof of (2) is complete.

(3) The proof is by induction on numbers of points in Z(M2)\Z(M1). If Z(M2)\Z(M1)
contains only one point λ, then by (2), M2 can be written as

M2 = {h ∈ M1 | p(D)h|λ = 0, p ∈ M2λ}.
We define the pairing

[−,−] : M2λ/M1λ ×M1/M2 → C

by [p̃, h̃] = p(D)h|λ. Clearly, this is well-defined. From this pairing and the representation
of M2, it is not difficult to see that

dimM1/M2 = dimM2λ/M1λ.

Now let l > 1, and assume that (3) has been proved for Z(M2)\Z(M1) containing points
less than l. Let Z(M2)\Z(M1) = {λ1, · · · , λl}; here λi ̸= λj for i ̸= j. Writing

M⋆
2 = {h ∈ M1 | p(D)h|λ1 = 0, p ∈ M2λ1},

we have (M⋆
2 )λ1

= M2λ1
. Similarly to the preceding proof, we have

dimM1/M
⋆
2 = dimM2λ1/M1λ1 .

Write M2λ1 = M1λ1+̇R with dimR = dimM2λ1/M1λ1 , and let ♯R denote the linear space
of polynomials generated by R such that it is invariant under the action by { ∂

∂z1
, · · · , ∂

∂zn
}.

Put

QR = {p ∈ C | q(D)p|λ1 = 0; q ∈ ♯R}.
Then it is easily verified that QR is a finite codimensional ideal of C with only zero point
λ1 because ♯R is finite dimensional. From the definition of M⋆

2 , the following inclusions are
easily verified:

QRM1 ⊆ M⋆
2 ⊆ M1.

Consequently, for λ ̸= λ1, M1λ = (M⋆
2 )λ. So,

Z(M2)\Z(M⋆
2 ) = {λ2, · · · , λl}.

By the induction hypothesis, we have

dimM⋆
2 /M2 =

l∑
j=2

dimM2λj/(M
⋆
2 )λj =

l∑
j=2

dimM2λj/M1λj .

It follows that

dimM1/M2 = dimM1/M
⋆
2 + dimM⋆

2 /M2 =

l∑
j=1

dimM2λj/M1λj

= card
(
Z(M2)\Z(M1)

)
.

The proof of Theorem 3.1 is thus completed.

Remark 3.1. It is worth noticing that the assumption is necessary in Theorem 3.1 that
M2 is approximately finite codimensional. In fact, by [12], we know that there exists a
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submodule M of the Bergman module L2
a(D) of the unit disk D such that dimM/zM = 2,

while Z(zM)\Z(M) = {0} and dim (zM)0/M0 = 1.
Now assume that M is a finite codimensional submodule of X. Then Theorem 3.1 implies

the following
Corollary 3.1. Let M be a finite codimensional submodule of X, then we have
(1) Z(M) = σp(Mz1 ,Mz2 , · · · ,Mzn) ⊂ Ω,
(2) M =

∩
λ∈Z(M)

Me
λ,

(3) codimM =
∑

λ∈Z(M)

dimMλ = card
(
Z(M)

)
.

Notice that (3) of Corollary 3.1 says that the codimension codim M of M in X equals the
cardinality of zeros of M by counting multiplicities.

As in the proof of Theorem 3.1, we also have the following
Theorem 3.2. Let M1, M2 be submodules of analytic Hilbert module X on Ω such that

M1 ⊇ M2 and dimM1/M2 = k < ∞. If M1 is an AF-cosubmodule, then we have

dimM1/M2 ≥ card
(
Z(M2)\Z(M1)

)
,

and the equalily holds if and only if M2 is an AF-cosubmodule.

§4. Applications

In this section we give three examples to show applications of the results in this note.
Example 4.1. Let I be a finite codimensional ideal of polynomials on Cn. Then I has

an irredundant primary decomposition in C (see [13]); I =
m∩
j=1

Ij , where Ij is primary for

a maximal ideal of evaluation at some point λj . Since Ii + Ij = C for i ̸= j, it follows that

I =
m∏
j=1

Ij . This derives that for any natural number k,

Ik =
m∏
j=1

Ikj =
m∩
j=1

Ikj .

So

codim Ik =

m∑
j=1

codim Ikj .

As is well known, for a large integer k, codim(Ikj ) is a polynomial of k with the degree n
which is called the Hilbert-Samuel polynomial of Ij (see [13]). Therefore, for each finite
codimensional ideal I, the codimension of Ik, codim(Ik), is a polynomial of k with the
degree n, which is said to be a Hilbert-Samuel polynomial of I, and denoted by PI(k). Let
X be an analytic Hilbert module on Ω, and I be an ideal of C. From [2], I can be uniquely
decomposed into IΩ

∩
IΩc such that each algebraic component of IΩ meets Ω nontrivially,

and each of IΩc does not. Write [I] for the closure of I in X, then [I] is a submodule of X.
Let I be a finite codimensional ideal. Then for any natural number k, one has [Ik] = [IkΩ].
From Corollary 2.8 in [10], the equality codim [Ik] = codim IkΩ is immediate. From Corollary
3.1, we have the following: Let I be a finite codimensional ideal. Then for a large integer k,
the cardinality of zeros of [Ik], card

(
Z([Ik])

)
, is a polynomial of k with the degree n, more

precisely, card
(
Z([Ik])

)
= PIΩ(k).

Example 3.2. Recall that Rudin’s submodule M of H2(D2) over the bidisk is defined to
be the collection of all functions inH2(D2) which have a zero of order greater than or equal to
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n at (0, 1−n−3) for n = 1, 2. · · · . Douglas and Yang[14] showed that M⊖(zM+wM) is finite
dimensional, while M ⊖ (zM +wM) is not a generating set of M . They raised the question
what dim

(
M ⊖ (zM +wM)

)
is equal to. It is easy to check that both M and zM + wM are

AF-cosubmodules, and Z(zM + wM) \ Z(M) = {(0, 0)}, card
(
Z(zM + wM) \ Z(M)

)
= 2.

Theorem 3.1 thus implies that dim
(
M ⊖ (zM + wM)

)
is equal to 2.

Example 3.3. Let M be a submodule of the Bergman module L2
a(D) over the disk

algebra. By Aleman, Richter and Sunderberg’s work[15], we know that M ⊖ zM is a gen-
erating set for M . It is easy to see that dim(M ⊖ zM) ≤ rank(M). One thus concludes
that dim(M ⊖ zM) = rank(M). Therefore, for any natural number n, unlike the Hardy
module H2(D), the Bergman module L2

a(D) has a submodule M with rank n (see [12]).
Let M be an AF-cosubmodule of L2

a(D) with rank(M) < ∞. This implies that zM also
is an AF-cosubmodule. It is easy to check that card

(
Z(zM) \ Z(M)

)
= 1, and hence

dim(M ⊖ zM) = 1. We conclude that rank(M) = 1. It follows that every AF-cosubmodule
with finite rank is generated by a single function.

References

[ 1 ] Guo, K. Y., Algebraic reduction for Hardy submodules over polydisk algebras [J], J. Operator Theory,

41(1999), 127–138.
[ 2 ] Guo, K. Y., Characteristic spaces and rigidity for analytic Hilbert modules [J], J. Funct. Anal., 163

(1999), 133–151.

[ 3 ] Guo, K. Y., Equivalence of Hardy submodules generated by polynomials, J. Funct. Anal., 178(2000),
343–371.

[ 4 ] Guo, K. Y. & Zheng, D. C., Invariant subspaces, quasi-invariant subspaces and Hankel operators [J], J.
Funct. Anal., 187(2001), 308–342.

[ 5 ] Agrawal, O. P., Clark, D. N. & Douglas, R. G., Invariant subspaces in polydisk [J], Pacific. J. Math.,
121 (1986), 1–11.

[ 6 ] Ahen, P. R. & Clark, D. N., Invariant subspaces and analytic continuation in several variables [J], J.
Math. Mech. 19(1970), 963–969.

[ 7 ] Axler, S. & Bourdon, P., Finite codimensional invariant subspaces of Bergman spaces [J], Trans. Amer.
Math. Soc., 305(1986), 1–13.

[ 8 ] Agrawal, O. P. & Salinas, N., Sharp kernels and canonical subspace [J], Amer. J. Math., 109(1987),
23–48.

[ 9 ] Putinar, M., On invariant subspaces of several variables Bergman spaces [J], Pacific. J. Math., 147
(1991), 355–364.

[10] Douglas, R. G., Paulsen, V. I., Sah, C. H. & Yan, K. R., Algebraic reduction and rigidity for Hilbert
modules [J], Amer. J. Math., 117(1995), 75–92.

[11] Douglas, R. G. & Paulsen, V. R., Hilbert modules over function algebras [M], Pitman Research Notes
in Math., Harlow, 1989.

[12] Hedenmalm, H., An invariant subspace of the Bergman space having the codimension two property [J],

J. Reine Angew. Math., 443(1993), 1–9.
[13] Atiyan, M. F. & MacDonland, I. G., Introduction to commutative algebra [M], Addison–Wesley, Menlo

Park, California, 1969.
[14] Douglas, R. G. & Yang, R. W., Operator theory in the Hardy space over the bidisk (I) [J], Integral

Equations and Operator Theory 38(2000), 207–221.
[15] Aleman, A., Richter, S. & Sundberg, C., Beurling’s theorem for the Bergman space [J], Acta Math.,

177(1996), 275–310.
[16] Curto, R., Application of several complex variables to multiparameter spectral theory [A], Surveys of

Some Results in Operator theory vol II [C] (J. B. Conway and B. B. Morrel, eds), Pitman Research
Notes in Math., vol. 192, logman London, 1988, 25–90.


