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Abstract

A symplectic reduction method for symplectic G-spaces is given in this paper without using
the existence of momentum mappings. By a method similar to the above one, the arthors
give a symplectic reduction method for the Poisson action of Poisson Lie groups on symplectic
manifolds, also without using the existence of momentum mappings. The symplectic reduction

method for momentum mappings is thus a special case of the above results.
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§1. Introduction

Let σ : G × M → M be a left Hamiltonian action of a Lie group G on a symplectic

manifold (M,ω), then there must be a momentum mapping J : M → G∗ (dual of the Lie

algebra G of G). When J is Ad∗-equivariant, µ ∈ G∗ a regular value of J and the isotropy

group K ⊂ G of µ under the Ad∗ action on G∗ acts on J−1(µ) freely and properly, there is

a unique symplectic structure ωµ on Mµ = K \J−1(µ) (space of orbits), such that (Mµ, ωµ)

is the symplectic reduction phase space of the action σ (see [1, 2]).

However momentum mapping on a Hamiltonian G-space is not unique. For each momen-

tum mapping, there is a cocycle on G with its value in G. All the cocycles belong to the

same cohomology class. When the cohomology class is not zero, there is no Ad∗-equivariant

momentum mapping for the action σ. In this case another action Ψ of G on G∗ will take the

place of the Ad∗ action so that J is equivariant with respect to σ and Ψ and the Marsden

-Weinstein symplectic reduction procedure can be carried out as usual. In this case, we

choose K to be the isotropy group at µ ∈ G∗ under the action Ψ (see [1]).

If M is a general symplectic G-space instead of a Hamiltonian G-space, there does not

exist any momentum mapping. Can symplectic reduction procedure still be carried out? An

affirmative answer is given by Theorem 3.1.
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Suppose σ : G × M → M is a Poisson action of Poisson Lie group G on symplectic

manifold (M,ω). If there exists a momentum mapping J :M → G∗ (dual Poisson Lie group

of G) (see [3]), a Poisson tensor πJ on G∗ and a left dressing action λJ determined by πJ
can be chosen such that J is equivariant with respect to σ and λJ . Now let µ ∈ G∗ be

a regular value of J, K the isotropy group at µ under λJ which acts freely and properly

on J−1(µ). Then there exists a symplectic structure ωµ on Mµ = K \ J−1(µ) satisfying

p∗ωµ = i∗ω and (Mµ, ωµ) is the symplectic reduced phase space of σ (see [3]). Here we also

suppose the existence of a momentum mapping J . In [3] the existence of J is proved under

the condition that M is simply connected. However in general we do not know if such a

momentum mapping does exist.

Theorem 4.1 in this paper gives a symplectic reduction procedure under Poisson actions,

which does not depend on any momentum mapping. Meanwhile Theorem 3.1 can be re-

garded as a special case of Theorem 4.1. Therefore Theorem 4.1 is the general symplectic

reduction theorem. So Theorems 2.1, 2.2, 2.3, 3.1 are all the special cases of Theorem 4.1.

We briefly state the well-known facts about symplectic reduction and gather some pre-

liminaries in §2. Symplectic reduction theorem for symplectic action and Poisson action are

given in §3 and §4, respectively.

§2. Preliminaries

Let σ : G × M → M be the left action of Lie group G on a manifold M and G the

Lie algebra of G formed by the right invariant vector fields on G. Then the infinitesimal

generator of the action σ corresponding to X ∈ G, denoted by XM ∈ χ(M), has the following

properties:

Proposition 2.1. ∀g ∈ G, X, Y ∈ G,

(AdgX)M = σg∗XM , [X,Y ]M = [XM , YM ].

Denoting the orbit of σ through x ∈ M by G · x and supposing the action σ to be free

and proper, we have that the orbit space G \ M is a manifold and canonical projection

p :M → G \M is a submersion[1].

If σ : G ×M → M is a Hamiltonian action of a Lie group G on a symplectic manifold

(M,ω), i.e., ∀X ∈ G, XM is a Hamiltonian vector field, we obviously have a momentum

mapping J :M → G∗ such that ⟨J,X⟩ ∈ C∞(M)(∀X ∈ G) and XM = H⟨J,X⟩, where H⟨J,X⟩
is the Hamiltonian vector field determined by the function ⟨J,X⟩. A momentum mapping

J is called Ad∗-equivariant if J ◦ σg = Ad∗g ◦ J (∀g ∈ G). For the above σ and J , we have

the following symplectic reduction theorem.

Theorem 2.1. Let σ : G × M → M be a Hamiltonian action of a Lie group G on

a symplectic manifold (M,ω) with an Ad∗- equivariant momentum mapping J : M → G∗.

Assume that µ ∈ G∗ is a regular value of J and that the isotropy group K ⊂ G at µ under the

Ad∗ action on G∗ acts on J−1(µ) freely and properly. Then there exists a unique symplectic

form ωµ onMµ = K\J−1(µ) satisfying p∗ωµ = i∗ω, where p : J−1(µ) →Mµ is the canonical

projection and i : J−1(µ) → M is the inclusion. (Mµ, ωµ) is the symplectic reduced phase

space of the Hamiltonian G-space M (see [1,2]).

Again we assume that σ : G × M → M is a Hamiltonian action with a momentum
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mapping J :M → G∗. It follows that

τ(g)
def.
= J(σg(x))−Ad∗gJ(x)

is a 1-cocycle on G with value in G when M is connected. All the 1-cocycles corresponding

to the momentum mappings belong to the same cohomology class. It is clear that the action

σ has no Ad∗-equivariant momentum mapping if the cohomology class is not zero. Let

Ψ : G × G∗ → G∗ be a map with Ψ(g, µ) = Ad∗gµ + τ(g). Therefore J is equivariant with

respect to σ and Ψ (see [1]). Replacing Ad∗ and the isotropy group at µ under Ad∗ by Ψ

and the isotropy group at µ under Ψ (also denoted by K), respectively, we have symplectic

reduction theorem[1].

Theorem 2.2. Let σ : G ×M → M be a Hamiltonian action of a Lie group G on a

connected symplectic manifold (M,ω) with a momentum mapping J :M → G∗. Then there

exists an action Ψ of G on G∗ such that J is equivariant with respect to σ and Ψ. If µ ∈ G∗

is a regular value of J and the isotropy group K ⊂ G at µ under Ψ acts on J−1(µ) freely

and properly, then Mµ = K \ J−1(µ) has a unique symplectic form ωµ satisfying

p∗ωµ = i∗ω,

where p : J−1(µ) →Mµ is the canonical projection and i : J−1(µ) →M is the inclusion.

In fact, in Theorems 2.1 and 2.2 the existence of the momentum mapping is unnecessary.

So is the regular value µ of J . These will be discussed in §3 in detail.

We will now consider the case of Poisson action.

Definition 2.1. A Lie group G with a Poisson structure π is called a Poisson Lie group

if the multiplication in G : G×G→ G is a Poisson mapping.

Let (G, π) be a Poisson Lie group. Then π(e) = 0, where e is identity in G. The dual

(G∗ ∧ G∗ → G∗) of the intrinsic derivative of π at e (deπ : G → G ∧ G) defines a Lie algebra

structure on G∗. We denote the Lie algebra structure by [ , ]G∗ (see [4, 5]). Let G∗ be a

simply connected Lie group with Lie algebra G∗. G∗ is called the dual group of G which is

itself a Poisson Lie group. The linearization of G∗ at its identity e∗ corresponds to the Lie

algebra structure on G and the dual group of G∗ is the universal covering group of G (see

[3,5]).

In the 1-form space ∧1(P ) of a Poisson manifold (P, π), the Poisson structure π induces

a bracket operation in the following way: ∀ω1, ω2 ∈ ∧1(P ),

{ω1, ω2} = dπ(ω1, ω2) + iω#
1
◦ dω2 − iω#

2
◦ dω1

= −dπ(ω1, ω2) + Lω#
1
ω2 − Lω#

2
ω1,

where # : ∧1(P ) → χ(P ) satisfies

#(ωi) = ω#
i = iωiπ,

iωiπ denotes the contraction of π by ωi and Lω#
i

is the Lie derivative.

Proposition 2.2. # : ∧1(p) → χ(P ) is the homomorphism of Lie algebras.

It is natural that there is a Lie algebra structure in the space of 1-forms on Poisson Lie

group (G, π) and the right invariant 1-forms on G consist of a Lie subalgebra of ∧1(G).

Confining ∧1(G) to e∗, we induce a Lie algebra structure on G∗ from that on ∧1(G) and the

Lie algebra structure on G∗ coincides with the one induced on G∗ by the linearization of π

at e (see [5]).
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∀ξ ∈ G∗ we denote by ξl and ξr the left and the right invariant 1-forms on G respectively

such that ξl(e) = ξr(e) = ξ. By defining mappings

λ : G∗ → χ(G),

ξ 7−→ (ξl)#,

ρ : G∗ → χ(G),

ξ 7−→ (ξr)#,

we obtain a Lie algebra homomorphism and a Lie algebra antihomomorphism.

Definition 2.2. λ and ρ are called left infinitesimal dressing action and right infinitesimal

dressing action, respectively. If they are integrable, we get left dressing action and right

dressing action respectively.

The orbits of left and right dressing action are just the symplectic leaves in G (see [5]).

Definition 2.3. A left action σ : G×P → P of Poisson Lie group (G, πG) on a Poisson

manifold (P, πP ) is called a Poisson action if σ is a Poisson mapping, where the product

Poisson structure is attached to G× P .

Proposition 2.3. Let (G, πG) be a connected Poisson manifold. Then an action σ :

G × P → P is Poisson iff LXP πP = (deπG(X))P (∀X ∈ G), where deπG : G → G ∧ G is

the intrinsic derivative of πG at e and (deπG(X))P the bivector field on P corresponding to

(deπG)(X) ∈ G ∧ G under the infinitesimal action of σ (see [3,5]).

Definition 2.4. Let σ : G × P → P be Poisson action. A C∞-mapping J : P → G∗ is

called a momentum mapping of the action σ if XP = (J∗X l)# (∀X ∈ G), where X l is a

left invariant 1-form on G∗ with X l(e∗) = X.

In [3] Lu proved by a result from [6] that there is a unique momentum mapping J with

J(x0) = µ0 for any x0 ∈ P and µ0 ∈ G∗ if P is a simply connected symplectic manifold.

While for a general Poisson action momentum mapping may not exist. Even if P is a

symplectic manifold, it is still unknown whether a momentum mapping exists.

Proposition 2.4. If σ : G×P → P is an action of a Poisson Lie group G on a symplectic

manifold with a momentum mapping J : P → G∗, then there exists a Poisson structure πJ
on G∗ such that J : P → (G∗, πJ) is a Poisson mapping.

Such a πJ is called an affine Poisson structure on G∗ determined by J . Define a mapping

λJ : G → χ(G∗) with λJ (X) = (X l)#J (∀X ∈ G) where (X l)#J = iXlπJ . The integration of

λJ is called the left dressing action of G on G∗ determined by πJ , and it is also denoted by

λJ .

Now we have the following symplectic reduction theorem[3].

Theorem 2.3. Let σ : G × P → P be a Poisson action of a Poisson Lie group G on a

symplectic manifold (P, ω). Let J : P → G∗ be a momentum mapping for σ. Then there is

an affine Poisson structure πJ on G∗ and a left dressing action λJ of G on G∗ determined

by πJ such that J is a Poisson mapping and equivariant with respect to σ and λJ . Moreover,

if µ ∈ G∗ is a regular value of J and the isotropy group K at µ under λJ acts freely and

properly on J−1(µ), then there is a unique symplectic form ωµ onMµ = K\J−1(µ) satisfying

p∗ωµ = i∗ω , where p : J−1(µ) →Mµ is the canonical projection and i : J−1(µ) →M is the

inclusion.
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In §4 we will prove that the existence of the momentum mapping J in the above Theorem

2.3 can be omitted.

§3. Symplectic Reduction of Symplectic Actions

Let σ : G×M → M be a left action of a Lie group G on a symplectic manifold (M,ω),

G the Lie algebra of G. If ∀g ∈ G, σ∗
gω = ω, then σ is a symplectic action. In this case,

∀X ∈ G, infinitesimal generator XM of the action σ corresponding to X is a symplectic

vector field, i.e., LXMω = 0, where LXM is Lie derivative. From canonical isomorphism

χ(M) → ∧1(M) on the symplectic manifold, there exists a unique 1-form θ(X) such that

iXM
ω = θ(X) and θ(X) is a closed 1-form, where χ(M) is the C∞ vector field space and

∧1(M) is 1-form space on M . We denote the inverse of the canonical isomorphism by the

map ♯ : ∧1(M) → χ(M). Then ♯(θ(X)) = θ(X)
♯
= XM . Therefore it induces a linear map

θ : g → ∧1(M) such that ∀X ∈ G, θ(X)♯ = XM . In the case of Poisson actions, θ is called a

premomentum map in [3]. In the case of symplectic actions, we also call θ a premomentum

map. Obviously, every symplectic action has a unique premomentum map. General Poisson

actions, however, may not have premomentum map. If existed, it is not unique.

Proposition 3.1. Premomentum map θ : G → ∧1(M) is a Lie algebra homomorphism.

Proof. According to Proposition 2.2, ∀X,Y ∈ G, by

θ([X,Y ])♯ = [X,Y ]M = [XM , YM ] = [θ(X)♯, θ(Y )♯] = {θ(X), θ(Y )}♯,

we complete our proof.

Let θx : G → T ∗
xM be the restriction of θ to the point x, i.e., ∀X ∈ G, θx(X) = θ(X)|x.

Then the image space θx(G) of θx is a subspace of T ∗
xM . Its annihilator space θx(G)⊥ ⊂ TxM

is written as △θ(x). The tangent space of the orbit G · x of the action σ at the point x is

denoted by

Tx(G · x) = {XM (x)|X ∈ G}.

Obviously, we can obtain the following properties.

Proposition 3.2. In the tangent space TxM of M at any point x, Tx(G · x) and △θ(x)

are symplectically orthogonal complemented spaces to each other, i.e., Tx(G ·x)⊥ω△θ(x) and

dimTx(G · x) + dim△θ(x) = dimM.

Obviously, {Tx(G · x)|x ∈ M} is completely integrable C∞ distribution on M ( it is

generally nonhomogeneous). If x ∈M such that there exists a neighborhood U of x and the

distribution is homogeneous on U , then the point x is called a regular point of the action σ.

If x is a regular point and dimTx(G · x) = t, the point x is called a regular point with rank

t. It is easy to see that all of the regular points in M form an open dense subset of M and

the regular points with rank t form an open subset. Obviously t ≤ dimG.

Proposition 3.3. Let x be a regular point of the action σ with rank t, U maximal

connected open set which consists of the regular points with rank t and contains the point x.

Then △θ|U is an (n− t) dimensional completely integrable C∞ distribution on U .

Proof. Obviously, △θ|U is an (n− t) dimensional C∞ distribution on U . Then we need
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only to prove that it is involutive. ∀V,W ∈ △θ|U and X ∈ G, x ∈ U ,

ω(x)(XM , [V,W ]) = ⟨θ(X), [V,W ]⟩(x)
= −dθ(X)(V,W )(x) + V (⟨θ(X),W ⟩)(x)−W (⟨θ(X), V ⟩)(x) = 0,

where dθ(X) = 0 is used. By Frobenius theorem, △θ|U is completely integrable.

Let Nx be the maximal integral submanifold of △θ|U through the point x. It is an (n− t)
dimensional submanifold. Let K = {g ∈ G|σg(Nx) ⊂ Nx}, then K is a Lie subgroup of G.

It is called a stable subgroup of Nx. When the action σ is restricted to K and Nx, we have

σ|K×Nx : K ×Nx → Nx. Suppose that this action is free and proper, then the orbit space

NK = K \ Nx of K is a C∞ manifold and the canonical projection map p : Nx → NK is

a submersion[1]. A 2-form ωK is defined on NK : ∀y ∈ Nx, p
∗ωK(p(y)) = i∗ω(y), where

i : NX →M is the inclusion map.

Now we prove that the definition of ωK is reasonable.

For any V1, V2,W ∈ TyNx = △θ(y) such that p∗V1 = p∗V2 = V , we have

ωK(p(y))(p∗V1, p∗W )− ωK(p(y))(p∗V2, p∗W )

= (p∗ωK)(y)(V1,W )− (p∗ωK)(y)(V2,W )

= (i∗ω)(y)(V1 − V2,W ) = ω(y)(V1 − V2,W ).

Since V1 − V2 ∈ Ty(K · y), i.e.,V1 − V2 is tangent to the K-orbit, the right hand side is 0,

which shows that at each point y ∈ Nx, ωK(p(y))(V, p∗W ) is independent of the choice of

the vector in p−1
∗ (V ).

In addition, ∀Y ∈ K, the Lie algebra of the stable subgroup K, which is a subal-

gebra of G, the infinitesimal generator for Y under the action σ|K×Nx is YM |Nx . It is

clear that LYM |Nx
(i∗ω) = 0, from which we conclude that σ∗

k(i
∗ω) = i∗ω, ∀k ∈ K.

Now for any V (y),W (y) ∈ TyNx, set V (ky) = σk∗V (y), W (ky) = σk∗W (y). Since

p∗ ◦ σk∗ = p∗, p∗(V (ky)) = p∗(V (y)), p∗(W (ky)) = p∗(W (y)). So

(i∗ω)(ky)(V (ky),W (ky)) = [(σ∗
k ◦ i∗)ω](y)(V (y),W (y)) = (i∗ω)(y)(V (y),W (y)).

It is easy to see that ωK(p(y)) is independent of the choice of the points in p−1(p(y)). It

follows that ωK is well defined.

Now we prove that ωK is a symplectic form on NK .

p∗(dωK) = d(p∗ωK) = d(i∗ω) = i∗(dω) = 0.

Since p is a submersion, p∗ is an injection, hence dωK = 0. Suppose V ′ ∈ Tp(y)NK and

ωK(p(y))(V ′,W ′) = 0, ∀W ′ ∈ Tp(y)NK . Let V,W ∈ TyNx and p∗V = V ′, p∗W = W ′.

Then

i∗ω(y)(V,W ) = p∗ωK(y)(V,W ) = ωK(p(y))(V ′,W ′) = 0.

Hence V ∈ Ty(K · y), i.e., V ′ = p∗V = 0. It follows that ωK is a closed nondegenerate

2-form on NK , i.e., a symplectic form on NK . Now we have proved:

Theorem 3.1. Suppose σ : G ×M → M is a symplectic action of a Lie group G on

a symplectic manifold (M,ω) and x ∈ M is a regular point with rank t. Then there exists

a connected n− t dimensional submanifold Nx passing x with the property that the tangent

space of Nx at each point is the symplectic orthogonal complement space of the tangent space

of the G-orbit at the same point. Besides we assume K ⊂ G is the stable subgroup of Nx
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such that the action σ|K×Nx : K × Nx → Nx is both free and proper. Then on the orbit

space NK = K \ Nx there exists a unique symplectic form ωK such that (NK , ωK) is the

symplectic reduced phase space of (M,ω), where ωK satisfies p∗ωK = i∗ω, p : Nx → NK is

the canonical projection and i : Nx →M is the inclusion.

Particularly, suppose σ : G ×M → M is a Hamiltonian action with an Ad∗-equivariant

momentum mapping J :M → G∗. Suppose dimG = m, dimM = n and µ ∈ G∗ is a regular

value of J . Then

TxJ
−1(µ) = kerJ∗ (∀x ∈ J−1(µ)),

which is an (n − m) dimensional vector subspace of TxM . Noting that V ∈ TxJ
−1(µ) is

equivalent to ω(x)(YM , V ) = 0 (∀Y ∈ G), i.e., V ∈ TxJ
−1(µ) is equivalent to V ∈ △θ(x) =

Tx(G ·x)⊥, we have dimTx(G ·x) = m. It is obvious that x is a regular point of the action σ

with rank n−m. By Theorem 3.1 for every point y on the (n−m) dimensional submanifold

Nx, TyNx is the symplectic orthogonal complement space of Ty(G · y).
Without loss of generality we may suppose ∃V ∈ χ(M) with V |Nx being tangent to Nx

and its flow φ(t) with φ0(x) = x, φ1(x) = y. Since V (φt(x)) ∈ △θ(φt(x)), we have

J∗(Vφt(x)) = 0,

i.e.,J(φt(x)) = J(x) = µ, namely, J(y) = µ. Hence Nx ⊂ J−1(µ). Conversely, if J−1(µ) is

connected, then J−1(µ) ⊂ Nx.

Therefore Nx is the connected component of J−1(µ) containing x. Now consider the

stable subgroup K of Nx. ∀g ∈ G, g ∈ K ⇐⇒ σg(Nx) ⊂ Nx. Since J is Ad∗-equivariant,

we have

J(σg(y)) = Ad∗g(J(y)) = Ad∗gµ (∀y ∈ Nx).

Hence g ∈ K ⇐⇒ Ad∗gµ = µ, which shows that K is the isotropy group at µ under the

coadjoint action. It follows that Theorem 2.1 is actually a special case of Theorem 3.1.

For a Hamiltonian action σ : G ×M → M whose momentum mapping J : M → G∗ is

not Ad∗-equivariant, there is an action ψ of G on G∗ such that J is equivariant with respect

to σ and ψ. When µ ∈ G∗ is a regular value of J , each x ∈ J−1(µ) is a regular point for σ

with rank n −m. By the same reason as above Nx is the connected component of J−1(µ)

containing x. Now the stable subgroup K of Nx is just the isotropy group at µ under the

action ψ. Hence Theorem 2.2 is a special case of Theorem 3.1, too.

Remark 3.1. For a general symplectic G-space we are not sure about the existence of

momentum mapping. Even if the momentum mapping does exist, it may have no regular

value. If this happens, Theorems 2.1 and 2.2 will be of no effect, while Theorem 3.1 ensures

the existence of the symplectic reduced phase space. If there exists a momentum mapping

J and the regular value µ of J , J−1(µ) or its connected component is an (n −m) dimen-

sional submanifold. The submanifold has the lowest dimension among the N ′
xs obtained in

Theorem 3.1.

§4. The Case of Poisson Action

Let σ : G × M → M be a left Poisson action of a Poisson Lie group (G, πG) on a

symplectic manifold (M,ω). Then σ has a pre-momentum mapping θ : G → ∧1(M) such

that θ(X)# = XM (∀X ∈ G). Propositions 3.1 and 3.2 still hold in this case.
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By Proposition 2.3, we have the following

Proposition 4.1. Let (G, πG) be a Poisson Lie group and (M,ω) a symplectic man-

ifold. Then a left action σ : G × M → M is a Poisson action iff dθ(X)(ω#
1 , ω

#
2 ) =

⟨[σ∗ω1, σ
∗ω2]G∗ , X⟩ (∀ω1, ω2 ∈ ∧1(M), X ∈ G), where σ∗ : ∧1(M) → C∞(M,G∗) is deter-

mined by the dual of the infinitesimal action for σ, i.e. ⟨σ∗ω,X⟩ = ⟨ω,XM ⟩ ∈ C∞(M) (∀ω ∈
∧1(M), X ∈ G) and [ , ]G∗ is Lie bracket on G∗ determined by the Poisson tensor πG.

Proof. By Proposition 2.3, σ is a Poisson action ⇐⇒ LXM
πM = (deπG(X))M (∀X ∈ G).

Now

LXM
πM (ω1, ω2) = ⟨XM , {ω1, ω2}⟩ − ω#

1 (⟨XM , ω2⟩) + ω#
2 (⟨XM , ω1⟩)

= −⟨{ω1, ω2}#, θ(X)⟩+ ω#
1 ⟨ω#

2 , θ(X)⟩ − ω#
2 ⟨ω#

1 , θ(X)⟩

= dθ(X)(ω#
1 , ω

#
2 ).

On the other hand,

(deπG(X))M (ω1, ω2) = ⟨σ∗ω1 ∧ σ∗ω2, deπG(X)⟩ = ⟨[σ∗ω1, σ
∗ω2]G∗ , X⟩,

and this completes the proof.

Assume that G is connected, dimG = m and dimM = n. Let x ∈ M be a regular point

for σ with rank t ≤ m. By a discussion similar to that in §3 we get a connected open set U

containing x such that

dimTy(G · y) = t, dim△θ(y) = n− t (∀y ∈ U),

and △θ(y) is a symplectic orthogonal complement space of Ty(G · y). Now Proposition 3.3

still holds but its proof is slightly different from that in §3.
Proposition 4.2. For a Poisson action σ : G × M → M of Poisson Lie group G

on symplectic manifold (M,ω), △θ|U is an (n − t) dimensional completely integrable C∞

distribution on U .

Proof. For any V,W ∈ △θ|U , taking ω1, ω2 ∈ ∧1(U) with ω#
1 = V, ω#

2 =W , we have

ω(XM , ω
#
i ) = 0 (∀X ∈ G, i = 1, 2).

Therefore

⟨σ∗ωi, X⟩ = ⟨ωi, XM ⟩ = 0.

Hence σ∗ωi = 0(i = 1, 2) since X ∈ G is arbitrary. By Proposition 4.1, we have

dθ(X)(ω#
1 , ω

#
2 ) = ⟨[σ∗ω1, σ

∗ω2]G∗ , X⟩ = 0.

It follows that

0 = dθ(X)(V,W ) = V (⟨θ(X),W ⟩)−W (⟨θ(X), V ⟩)− ⟨θ(X), [V,W ]⟩ = −⟨θ(X), [V,W ]⟩.
Hence [V,W ] ∈ △θ|U , i.e., △θ|U is involutive. So △θ|U is completely integrable by Frobe-

nius’s theorem.

Next we will follow the procedure in §3. Suppose Nx is the maximal integral submanifold

passing through x for △θ|U and K ⊂ G the stable subgroup of Nx. Confine the action σ to

K ×Nx : σ|K×Nx : K ×Nx → Nx and suppose that σ|K×Nx is free and proper. Then the

orbit space NK = K \Nx is a C∞-manifold and the canonical projection p : Nx → NK is a

submersion. Now we define a 2-form ωK on Nx such that

p∗(ωK(p(y))) = i∗ω(y) (∀y ∈ Nx).
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Repeating the procedure in §3 we can prove that ωK is well defined and a symplectic

form on NK . Now we come to the conclusion that (NK , ωK) is the symplectic reduced phase

space of (M,ω) under σ. So we have proved the following

Theorem 4.1. If σ : G ×M → M is a left Poisson action of a connected Poisson Lie

group G on a symplectic manifold (M,ω) and x ∈ M is a regular point for σ with rank

t, then there exists a connected (n − t) dimensional submanifold Nx through x such that

the tangent space of Nx at each point is the symplectic orthogonal complement space of the

tangent space of the G-orbit at the same point. Furthermore suppose K ⊂ G is the stable

subgroup of Nx such that the action σ|K×Nx : K ×Nx → Nx is free and proper, then there

is a unique symplectic form ωK on the orbit space NK = K \ Nx such that (NK , ωK) is

the symplectic reduced phase space of (M,ω) with p∗ωK = i∗ω, where p : Nx → NK is the

canonical projection and i : Nx →M is the inclusion.

Assume that the conditions in Theorem 2.2 hold. Let dimG = m and dimM = n. If

µ ∈ G∗ is a regular value of J , x ∈ J−1(µ) is a regular point for σ with rank m. The

(n−m) dimensional manifold Nx obtained in Theorem 4.1 is just the connected component

containing x in J−1(µ) and the stable subgroup K of Nx is just the isotropy group at µ

under the left dressing action λJ of G on G∗. Hence we see that Theorem 2.2 is a special

case of Theorem 4.1. Finally, Theorem 3.1 can also be regarded as a special case of Theorem

4.1 for a Poisson action is a symplectic action in case of the 0-Poisson structure is attached

to G. Therefore Theorem 4.1 includes all the results obtained hitherto about symplectic

reduction theory of the actions of Lie groups on symplectic manifolds.

For a Poisson action there exists Poisson reduction[3,7,8].

Proposition 4.3. Let σ : G × P → P be a left Poisson action of Poisson Lie group G

on Poisson manifold P . If the orbit space G \ P is a manifold, then there exists a unique

Poisson structure on G \ P such that the canonical projection p : P → G \ P is a Poisson

mapping.

Proof. ∀f, g ∈ C∞(G \P ), p∗f, p∗g ∈ C∞
G (P ), where C∞

G (P ) is the G-invariant function

space on P , which is a Lie subalgebra of C∞(P ). Now we define a bracket operation on

C∞(G \ P ), satisfying

p∗{f, g} = {p∗f, p∗g}P .

It is obvious that this { , } is the Poisson structure on G \ P satisfying the condition in

Proposition 4.3.

G \ P with this Poisson structure is called the Poisson reduction phase space of P under

the action σ.

Example 4.1. Let G be a Lie group. Using the multiplication of G, we can get the

action of G on G. There is a natural symplectic structure on T ∗G such that T ∗G becomes

a symplectic manifold. The action of G on G can be lifted to an action of G on T ∗G. The

action is a symplectic action. On reduction phase space G \ T ∗G ∼= G∗, there is a Poisson

structure such that projection T ∗G→ G \ T ∗G is a Poisson map.

In the case that P is a symplectic manifold and σ : G×P → P is still a Poisson action, the

following theorem shows the relation between the symplectic reduction phase space obtained

in Theorem 4.1 and the above Poisson reduction phase space.
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Theorem 4.2. Suppose that (M,ω) is a symplectic manifold and σ : G ×M → M is a

Poisson action with Poisson reduction phase space G \ P . Then each symplectic reduction

phase space under σ is a symplectic leaf in G \P . Conversely, each symplectic leaf in G \P
is a symplectic reduction phase space.

Proof. Let x ∈ M be a regular point of the action σ. The Nx in Theorem 4.1 is a

submanifold of M and ∀y ∈ Nx, the K-orbit K · y = G · y ∩ Nx. Let pK : Nx → MK be

the canonical projection in the symplectic reduction and p : M → G \M be the canonical

projection in the Poisson reduction. Obviously, pK(y) = p(y). If G \M is a manifold, then

MK is a submanifold of G \M .

Let v ∈ Tp(y)(G \M) belong to the characteristic distribution of G \M , i.e. there exists

f ∈ C∞(G\M), such that the Hamiltonian vector field Hf satisfies Hf (p(y)) = v. Since p is

a Poisson mapping, p∗(Hf◦p(y)) = v. We know that f ◦p is a G-invariant function onM and

Hf◦p(y) ∈ △θ(y), i.e. Hf◦p(y) is tangent to Nx. It follows that v = p∗(Hf◦p(y)) ∈ Tp(y)MK .

Conversely, if v ∈ TpK(y)MK , then there exists v′ ∈ TyNx ⊂ TyM such that p∗v
′ = v. Since

v′ is symplectically orthogonal to Ty(G · y) in TyM , there exists G-invariant function f

on M satisfying Hf (y) = v′. It follows that p∗(Hf (y)) = v belongs to the characteristic

distribution at p(y) ∈ G \M . Hence as a submanifold MK is exactly a symplectic leaf in

G \M.

∀f, g ∈ C∞(G \M), y ∈ Nx,

{f, g}(p(y)) = {p∗f, p∗g}M (y) = ω(y)(Hg◦p,Hf◦p)

= p∗ωK(y)(Hg◦p,Hf◦p) = ωK(p(y))(Hg,Hf ).

This means that ωK is just the symplectic structure induced by the Poisson structure on

G \M on the symplectic leaf MK . Finally, for any symplectic leaf S in G \ P , take any

point p(x) ∈ S. Since G \P is a manifold, x must be a regular point under σ. Therefore the

symplectic reduction phase space obtained in Theorem 4.1 is the symplectic leaf through

p(x) in G \ P , that is S.
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[ 6 ] Bourbaki, N., Groupes et algébres de lie [M], Chapitres 2 et 3, Hermann, Paris, 1972.
[ 7 ] Semenov-Tian-Shansky, M. A., Dressing transformations and Poisson group actions [J], Publ. RIMS,

Kyoto University, 21(1985), 1237–1260.
[ 8 ] Weinstein, A., Coisotropic calculus and Poisson groupoids [J], J. Math. Soc. Japan, 40:4(1988), 705–

727.


