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A CONSTITUTIVE EQUATION SATISFYING
THE NULL CONDITION FOR NONLINEAR
COMPRESSIBLE ELASTICITY **

QIN TiEHU*

Abstract

This paper constructs a polyconvex stored energy function, satisfying the null condition, for
isotropic compressible elastic materials with given Lamé constants. The difference between this
stored energy function and St Venant-Kirchhoff’s is a three order term.
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¢1. Introduction

As indicated in [5], the global existence of classical solutions to the Cauchy problem for
the nonlinear elastodynamic system is based essentially on two assumptions: the initial data
must be small and the nonlinear term must obey the null condition. The omission of either
of these two assumptions may lead to the blow-up phenomenon in finite time. Therefore, it
is important to discuss if there are any stored energy functions for actual materials, which
satisfy the null condition.

It is well-known that for any homogeneous, isotropic hyperelastic material, whose refer-
ence configuration is a natural state, its stored energy function is of the form

1
W (F) = 5A(trE)2 + utrE? + o(|E[?), (1.1)
where

E= l(I—FTF), (1.2)
F is the deformation gradient, A and /& are the corresponding Lamé constants (see, for
example, [2, 4]). Moreover, Sideris showed in [5] that the null condition places no restriction
on the bulk and sheer moduli (equivalently, the Lamé constants A and p) of the equilibrium.
Let A and p be given positive constants. The problem we shall discuss in this paper is if
there exists a polyconvex stored energy function W (F) with the given Lamé constants A
and p, which satisfies Equation (1.1) and the null condition. Ciarlet and Geymonat proved
that for any given Lamé constants A and u, there exist polyconvex stored energy functions

of the form
W(F) = a|F||* + b||cofF||* + T'(det F) + ¢, (1.3)

where

L&) =p&® —qlné (p>0,g>0),VE >0, (1.4)
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a > 0,b > 0 and ¢ € R, that satisfy Equation (1.1) (see [2, 3]). In this paper, we shall
construct a family of simple functions I'(¢) behaving as In ¢ and &2 when ¢ — 0 and £ — +o00
respectively, such that the corresponding W (F) given by (1.3) is polyconvex and satisfies
the null condition. Moreover, (1.1) still holds for such W (F).

§2. Main Result and Proof

The main result in this paper is the following
Theorem 2.1. Let A and u be two given Lamé constants satisfying that p > 0 and
A+ > 0. There exist polyconvex stored energy functions of the form

W(F) = a|F||* + b||cofF||* + I'(det F) + c, (2.1)
where a > 0,b > 0,c € R and
[(¢) = pe? — g6 Iné —ring, Ve > 0 (2:2)
with p > 0,q > 0,7 > 0, such that the null condition is satisfied and
1
W(F) = SA(E)? + ptrE? + OIEIP). (2.3)

In (2.1) and (1.3), cof F is the cofactor matriz of F, E is given by (1.2) and |F|* = tr(FTF).
Remark 2.1. The stored energy function W (F) given in the theorem behaves as (det F)?
when det F — +o00 and tends to +0o0 when det F — +0. So the inequality of coerciveness
W (F) > Oy (|F||” + [|cofF||* + (det F)?) + C» (2.4)
holds with some constants C; > 0 and C5 € R.
For isotropic hyperelastic materials, the stored energy function W (F) can be expressed
in terms of the principal invariants iy, s, and iz of the matrix FTF — I. We have
Proposition 2.1. Let the reference configuration be a stress-free state. The stored energy
function W (F) satisfies the null condition if and only if
0? 0?
225 W(F) + 3 W(F)) —0. 2.5
( 053 (F) + 013 (F) i1=ia=i3=0 (2:5)
For the definition of the null condition and the proof of Proposition 2.1, see [1, 5] or [6].
Proposition 2.2. The stored energy function of compressible Ogden’s material

W(F) = a(ps + 1§ + pg — 3) + b((u2ps)” + (usp)’

+ (nap2)” = 3) + T(papopia), (2.6)
where a,b,« and B are positive constants, satisfies the null condition (2.5) if and only if
ac(a—1)(a—2) +206(6 — 1)(B —2) +T"'(1) = 0, (2.7)

where 11, o, and ps are the eigenvalues of the matriz (FTF)%.
Proof. Let k1, k2, and k3 be the eigenvalues of the matrix FTF —I. Then u; = (k; + 1)%
and

1 1 1 - .
pd =14 —an; + —ala —2)k? + —ala —2)(a — 4k +o(k3), i=1,2,3.

2 8 ¢ 48
So we have
1 1
B+ S+ S =3 = Sale k) + Sala — 28+ iF + i)

1

+gele—2)(a- 4) (k5 + K5+ K3) +o(l & °)

1 . 1 . .

= ai + ga(a — 2)(i% — 2iy)

1

+ —ala—2)(a — 4)(i3 — 3iyia + 3i3) +o(| & ), (2.8)

48
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where i1 = K1 + Ko + k3,19 = Koks + K3k1 + K1ke and i3 = K1koK3.
In a similar way, we can get

(p2ps)® + (psp1)? + (n1p2)’ — 3

= $8(2i +i2) + 1808 ~ (i — iz + iniz — 3is)

4
1 . . . :
+ 1588 = 2)(B — 4)(2i1 = Bixiz — 3ig) + o(| & ), (2.9)
T(det F) = D(papizpts) = D((1+ iy + iz + i) 7). (2.10)
Using (2.10), it is easy to verify that
Pr ~ Ly -y (2.11)
0i2 " liy=ip=ig=0 4 ’ '
L — Loy —srra) + 31 (2.12)
013 liy=is=ig=0 8 ' '
Then, it follows immediately from (2.8)—(2.12) that
03 0? 1 1 1
2—W(F — W(F = - -1 -2 = -1 -2 ~T(1).
(25 W) +355WE) = qeala = Dla—2)+ 5653 - 15 -2+ 3T"()

This completes the proof of the proposition.

Lemma 2.1. Let p > r/2 and q = 2r > 0. Then the function T'(§) = p€2 —g€In& —rin¢
is convex on (0, +00).

Proof. It suffices to show that

I"(€) >0, V&€ (0,400). (2.13)
In fact, noting g = 2r, we have

I(€) = 2r€2(1 — €1). (2.14)
Therefore, £ = 1 is the unique stationary point of the function I'”’(£) on (0, +00) . Noting that

p > /2 and I'"(1) = 2r3(3671 — 2) |¢=1= 2r > 0, we have . H)ﬂn )F”(f) =TI"(1) >0,
€(0,+00

then inequality (2.13) holds.
Proof of Theorem 2.1. We can verify that the stored energy function W (F) given by
(2.1) satisfies (2.3) if and only if the following equations hold:

3a+3b+T(1)+c=0, (2.15)

92a + 4b +T"(1) = 0, (2.16)
Ty pry = L

20+ 5T'(1) + 5T7(1) = S (2.17)

o -T'(1) =p (2.18)

(see [2, 3]).
(2.15) can be satisfied by a suitable choice of constant ¢. Moreover, it is easy to see that
(2.16)—(2.18) are equivalent to

I7(1) = I'(1) = A+ 2z, (2.19)
2a —I'(1) = 24, (2.20)
2+ T'(1) = —pu. (2.21)

Then, noting (2.20)—(2.21), we see that a > 0,b > 0 are equivalent to
—2u <T'(1) < —p. (2.22)



438 CHIN. ANN. OF MATH. Vol.23 Ser.B

We now choose positive constants p, ¢ such that I'(¢) satisfies (2.19),(2.22),
") >0 on (0,+00), (2.23)
(1) = 0. (2.24)
Conditions (2.23)—(2.24), which hold if p > /2 > 0 and ¢ = 2r (see Lemma 2.3), imply
that the stored energy function W(F) is polyconvex and satisfies the null condition (by

Proposition 2.2).
Taking ¢ = 2r, (2.24) follows from (2.14), and

') =2p—-3r,I'"(1)=2p—r. (2.25)
Then, p > r/2 > 0 is equivalent to

(1) — T'(1) > 0, (2.26)

(1) >o0. (2.27)
(2.26) is satisfied automatically, moreover, (2.27) is equivalent to

—(A+2p) <T'(1) (2.28)
provided that (2.19) holds. Let

n = min{2u, A + 2u}. (2.29)

It is clear that n > p, and if

—-n<T'(1) < —p, (2.30)

then both (2.22) and (2.27) are satisfied.
Noting (2.25), it comes from (2.19) that

1 1

r= 2 (00) T (1) = Dt (2:31)
Then, noting (2.25), we see that (2.30) is equivalent to
1 3 1.3

—(— - —(=A+2pu). 2.32

5 (= 5A+3p) <p < S(5A+20) (2.32)

Finally, using (2.20), (2.21), (2.25), (2.31), (2.32) and ¢ = 2r we get
— _§/\ — 1 + b= §/\ T
a= 4 2,U b, 1 w =D,

1 3 1/3
Hoedres) b3 n),
pe(z( ”+2A+3“> 2(2A+ a
1
¢=A+2ur =S (A+20).
The proof of the theorem is completed.
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