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Abstract

This paper constructs a polyconvex stored energy function, satisfying the null condition, for

isotropic compressible elastic materials with given Lamé constants. The difference between this
stored energy function and St Venant-Kirchhoff’s is a three order term.
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§1. Introduction

As indicated in [5], the global existence of classical solutions to the Cauchy problem for
the nonlinear elastodynamic system is based essentially on two assumptions: the initial data
must be small and the nonlinear term must obey the null condition. The omission of either
of these two assumptions may lead to the blow-up phenomenon in finite time. Therefore, it
is important to discuss if there are any stored energy functions for actual materials, which
satisfy the null condition.

It is well-known that for any homogeneous, isotropic hyperelastic material, whose refer-
ence configuration is a natural state, its stored energy function is of the form

W (F) =
1

2
λ(trE)2 + µtrE2 + ◦(∥E∥2), (1.1)

where

E =
1

2
(I− FTF), (1.2)

F is the deformation gradient, λ and µ are the corresponding Lamé constants (see, for
example, [2, 4]). Moreover, Sideris showed in [5] that the null condition places no restriction
on the bulk and sheer moduli (equivalently, the Lamé constants λ and µ) of the equilibrium.
Let λ and µ be given positive constants. The problem we shall discuss in this paper is if
there exists a polyconvex stored energy function W (F) with the given Lamé constants λ
and µ, which satisfies Equation (1.1) and the null condition. Ciarlet and Geymonat proved
that for any given Lamé constants λ and µ, there exist polyconvex stored energy functions
of the form

W (F) = a∥F∥2 + b∥cofF∥2 + Γ(detF) + c, (1.3)
where

Γ(ξ) = pξ2 − q ln ξ (p > 0, q > 0), ∀ξ > 0, (1.4)
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a > 0, b > 0 and c ∈ R, that satisfy Equation (1.1) (see [2, 3]). In this paper, we shall
construct a family of simple functions Γ(ξ) behaving as ln ξ and ξ2 when ξ → 0 and ξ → +∞
respectively, such that the corresponding W (F) given by (1.3) is polyconvex and satisfies
the null condition. Moreover, (1.1) still holds for such W (F).

§2. Main Result and Proof

The main result in this paper is the following
Theorem 2.1. Let λ and µ be two given Lamé constants satisfying that µ > 0 and

λ+ µ > 0. There exist polyconvex stored energy functions of the form

W (F) = a∥F∥2 + b∥cofF∥2 + Γ(detF) + c, (2.1)

where a > 0, b > 0, c ∈ R and

Γ(ξ) = pξ2 − qξ ln ξ − r ln ξ, ∀ξ > 0 (2.2)

with p > 0, q > 0, r > 0, such that the null condition is satisfied and

W (F) =
1

2
λ(trE)2 + µtrE2 +⃝(∥E∥3). (2.3)

In (2.1) and (1.3), cofF is the cofactor matrix of F,E is given by (1.2) and ∥F∥2 = tr(FTF).
Remark 2.1. The stored energy function W (F) given in the theorem behaves as (detF)2

when detF → +∞ and tends to +∞ when detF → +0. So the inequality of coerciveness

W (F) ≥ C1(∥F∥2 + ∥cofF∥2 + (detF)2) + C2 (2.4)

holds with some constants C1 > 0 and C2 ∈ R.
For isotropic hyperelastic materials, the stored energy function W (F) can be expressed

in terms of the principal invariants i1, i2, and i3 of the matrix FTF− I. We have
Proposition 2.1. Let the reference configuration be a stress-free state. The stored energy

function W (F) satisfies the null condition if and only if(
2
∂3

∂i31
W (F) + 3

∂2

∂i21
W (F)

)
i1=i2=i3=0

= 0. (2.5)

For the definition of the null condition and the proof of Proposition 2.1, see [1, 5] or [6].
Proposition 2.2. The stored energy function of compressible Ogden’s material

W (F) = a(µα
1 + µα

2 + µα
3 − 3) + b((µ2µ3)

β + (µ3µ1)
β

+ (µ1µ2)
β − 3) + Γ(µ1µ2µ3), (2.6)

where a, b, α and β are positive constants, satisfies the null condition (2.5) if and only if

aα(α− 1)(α− 2) + 2bβ(β − 1)(β − 2) + Γ′′′(1) = 0, (2.7)

where µ1, µ2, and µ3 are the eigenvalues of the matrix (FTF)
1
2 .

Proof. Let κ1, κ2, and κ3 be the eigenvalues of the matrix FTF− I. Then µi = (κi+1)
1
2

and

µα
i = 1 +

1

2
ακi +

1

8
α(α− 2)κ2

i +
1

48
α(α− 2)(α− 4)κ3

i + ◦(κ3
i ), i = 1, 2, 3.

So we have

µα
1 + µα

2 + µα
3 − 3 =

1

2
α(κ1 + κ2 + κ3) +

1

8
α(α− 2)(κ2

1 + κ2
2 + κ2

3)

+
1

48
α(α− 2)(α− 4)(κ3

1 + κ3
2 + κ3

3) + ◦(| κ |3)

=
1

2
αi1 +

1

8
α(α− 2)(i21 − 2i2)

+
1

48
α(α− 2)(α− 4)(i31 − 3i1i2 + 3i3) + ◦(| κ |3), (2.8)
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where i1 = κ1 + κ2 + κ3, i2 = κ2κ3 + κ3κ1 + κ1κ2 and i3 = κ1κ2κ3.
In a similar way, we can get

(µ2µ3)
β + (µ3µ1)

β + (µ1µ2)
β − 3

=
1

2
β(2i1 + i2) +

1

4
β(β − 2)(i21 − i2 + i1i2 − 3i3)

+
1

48
β(β − 2)(β − 4)(2i31 − 3i1i2 − 3i3) + ◦(| κ |3), (2.9)

Γ(detF) = Γ(µ1µ2µ3) = Γ((1 + i1 + i2 + i3)
1
2 ). (2.10)

Using (2.10), it is easy to verify that

∂2

∂i21
Γ
∣∣∣
i1=i2=i3=0

=
1

4
(Γ′′(1)− Γ′(1)), (2.11)

∂3

∂i31
Γ
∣∣∣
i1=i2=i3=0

=
1

8
(Γ′′′(1)− 3Γ′′(1) + 3Γ′(1)). (2.12)

Then, it follows immediately from (2.8)–(2.12) that(
2
∂3

∂i31
W (F) + 3

∂2

∂i21
W (F)

)
i1=i2=i3=0

=
1

4
aα(α− 1)(α− 2) +

1

2
bβ(β − 1)(β − 2) +

1

4
Γ′′′(1).

This completes the proof of the proposition.
Lemma 2.1. Let p ≥ r/2 and q = 2r > 0. Then the function Γ(ξ) = pξ2 − qξ ln ξ− r ln ξ

is convex on (0,+∞).
Proof. It suffices to show that

Γ′′(ξ) ≥ 0, ∀ξ ∈ (0,+∞). (2.13)

In fact, noting q = 2r, we have

Γ′′′(ξ) = 2rξ−2(1− ξ−1). (2.14)

Therefore, ξ = 1 is the unique stationary point of the function Γ′′(ξ) on (0,+∞) . Noting that
p ≥ r/2 and Γ′′′′(1) = 2rξ−3(3ξ−1 − 2) |ξ=1= 2r > 0, we have min

ξ∈(0,+∞)
Γ′′(ξ) = Γ′′(1) ≥ 0,

then inequality (2.13) holds.
Proof of Theorem 2.1. We can verify that the stored energy function W (F) given by

(2.1) satisfies (2.3) if and only if the following equations hold:

3a+ 3b+ Γ(1) + c = 0, (2.15)

2a+ 4b+ Γ′(1) = 0, (2.16)

2b+
1

2
Γ′(1) +

1

2
Γ′′(1) =

1

2
λ, (2.17)

− 2b− Γ′(1) = µ (2.18)

(see [2, 3]).
(2.15) can be satisfied by a suitable choice of constant c. Moreover, it is easy to see that

(2.16)–(2.18) are equivalent to

Γ′′(1)− Γ′(1) = λ+ 2µ, (2.19)

2a− Γ′(1) = 2µ, (2.20)

2b+ Γ′(1) = −µ. (2.21)

Then, noting (2.20)–(2.21), we see that a > 0, b > 0 are equivalent to

−2µ < Γ′(1) < −µ. (2.22)
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We now choose positive constants p, q such that Γ(ξ) satisfies (2.19),(2.22),

Γ′′(ξ) ≥ 0 on (0,+∞), (2.23)

Γ′′′(1) = 0. (2.24)

Conditions (2.23)–(2.24), which hold if p ≥ r/2 > 0 and q = 2r (see Lemma 2.3), imply
that the stored energy function W (F) is polyconvex and satisfies the null condition (by
Proposition 2.2).

Taking q = 2r, (2.24) follows from (2.14), and

Γ′(1) = 2p− 3r,Γ′′(1) = 2p− r. (2.25)

Then, p ≥ r/2 > 0 is equivalent to

Γ′′(1)− Γ′(1) > 0, (2.26)

Γ′′(1) ≥ 0. (2.27)

(2.26) is satisfied automatically, moreover, (2.27) is equivalent to

−(λ+ 2µ) ≤ Γ′(1) (2.28)

provided that (2.19) holds. Let

η = min{2µ, λ+ 2µ}. (2.29)

It is clear that η > µ, and if

−η < Γ′(1) < −µ, (2.30)

then both (2.22) and (2.27) are satisfied.
Noting (2.25), it comes from (2.19) that

r =
1

2
(Γ′′(1)− Γ′(1)) =

1

2
λ+ µ. (2.31)

Then, noting (2.25), we see that (2.30) is equivalent to
1

2
(−η +

3

2
λ+ 3µ) < p <

1

2
(
3

2
λ+ 2µ). (2.32)

Finally, using (2.20), (2.21), (2.25), (2.31), (2.32) and q = 2r we get

a = −3

4
λ− 1

2
µ+ p, b =

3

4
λ+ µ− p,

p ∈
(1
2

(
− η +

3

2
λ+ 3µ

)
,
1

2

(3
2
λ+ 2µ

))
,

q = λ+ 2µ, r =
1

2
(λ+ 2µ).

The proof of the theorem is completed.
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