I.I.D. STATISTICAL CONTRACTION OPERATORS AND STATISTICALLY SELF-SIMILAR SETS**

HU DIHE*

Abstract

I.i.d. random sequence is the simplest but very basic one in stochastic processes, and statistically self-similar set is the simplest but very basic one in random recursive sets in the theory of random fractal. Is there any relation between i.i.d. random sequence and statistically self-similar set? This paper gives a basic theorem which tells us that the random recursive set generated by a collection of i.i.d. statistical contraction operators is always a statistically self-similar set.

Keywords Hausdorff metric, Statistical contraction operator, Statistically self-similar set, Statistically self-similar measure

2000 MR Subject Classification 60G55

Chinese Library Classification O211.6

Document Code A

Article ID 0252-9599(2002)04-0461-08

§1. Introduction

Hutchinson^[5] constructed a class of (strictly) self-similar sets by contraction operators and obtained their Hausdorff dimension and Hausdorff exact measure function. Later, Mauldin and Williams^[6], Graf^[3] and Falconer^[2] independently constructed the statistically self-similar measure and set in different way and investigated their probability properties and fractal properties. But no one has pointed out what is the probability character of statistically self-similar set.

In this paper, we will give a basic theorem which tells us that the random recursive set generated by a collection of i.i.d. statistical contraction operators is always a statistically self-similar set.

Let $N \geq 2$ be an integer, $C_0 = \{\emptyset\}$, $C_n = \{0, 1, \dots, N-1\}^n$ $(n \geq 1)$, $D = \bigcup_{n \geq 0} C_n$, $\{f_{\sigma}, \sigma \in D\}$ be a collection of statistical contraction operators. If $\sup_{\sigma \in D} \operatorname{Lip}(f_{\sigma}) = \alpha < 1$, $\{(f_{(\sigma,0)}, \dots, f_{(\sigma,N-1)}), \sigma \in D\}$ are i.i.d., then

$$K \triangleq \bigcap_{n=1}^{\infty} \bigcup_{(\sigma_1, \dots, \sigma_n) \in C_n} \overline{f_{\sigma_1} \circ f_{(\sigma_1, \sigma_2)} \circ f_{(\sigma_1, \dots, \sigma_n)}(E)}$$

Manuscript received June 21, 2001.

^{*}College of Mathematics and statistics, Wuhan University, Wuhan 430072, China.

E-mail: dhhu@whu.edu.cn

^{**}Project supported by the National Natural Science Foundation of China, the Doctoral Progamme Foundation of China and the Foundation of Wuhan University.

CHIN. ANN. OF MATH Vol.23 Ser.B

is always a statistically self-similar set, where $\operatorname{Lip}(\cdot)$ is the Lipschitz coefficient, (E, ρ) is a polish space, \overline{A} is the closure of A.

§2. Notations and Preliminaries

Let (Ω, \mathcal{F}, P) be a complete probability space, (E, ρ) be a separable complete metric space. $\mathcal{K}(E)$ denotes all non-empty compact sets in E, η is the Hausdorff metric on $\mathcal{K}(E)$, that is to say, $I, J \in \mathcal{K}(E)$,

$$\eta(I,J) = \sup \{ \rho(x,I), \rho(y,J) : x \in J, y \in I \}, \rho(x,I) \text{ is the distance from } x \text{ to } I.$$

 $(\mathcal{K}(E), \eta)$ is also a separable complete metric space.

For any subset A in a metric space, $\operatorname{diam}(A)$ denotes the diameter of A. \overline{A} donotes the closure of A. Let \mathbf{R}^d be the d-dimensional Euclidean space, $\mathbf{R} = \mathbf{R}^1$. We always denote the Borel field of topology space T by $\mathcal{B}(T)$, and all Borel probability measures by $\mathcal{P}(T)$. Let $f: E \to E, B \subset E, f(B)$ is the image of f on B.

Definition 2.1. Let $f: E \to E$.

$$\operatorname{Lip}(f) \triangleq \sup_{x \neq y, x, y \in E} \frac{\rho(f(x), f(y))}{\rho(x, y)}$$

is called the Lipschitz coefficient of f. If $\operatorname{Lip}(f) < 1$, then we call f a contraction operator and denote the class of all contraction operators from E to E by con(E).

We always assume that con(E) carries the topology of pointwise convergence.

Proposition 2.1.^[3] let $f: E \to E$.

- (1) If f is continuous, then $f(\mathcal{K}(E)) \subset \mathcal{K}(E)$;
- (2) $I, J \in \mathcal{K}(E) \Rightarrow \eta(f(I), f(J)) \leq \operatorname{Lip}(f)\eta(I, J)$;
- (3) $\operatorname{Lip}(f) : \operatorname{con}(E) \to [0,1)$ is lower-semicontinuous;
- (4) $f(J) : con(E) \times \mathcal{K}(E) \to \mathcal{K}(E)$ is continuous;

- (5) $g(J_1, \dots, J_m) = \bigcup_{i=1}^m J_i : \mathcal{K}(E)^m \to \mathcal{K}(E) \text{ is continuous};$ (6) $h(f_1, \dots, f_m) = f_1 \circ \dots \circ f_m : \operatorname{con}(E)^m \to \operatorname{con}(E) \text{ is continuous};$ (7) $I_i, J_i, \bigcup_i I_i, \bigcup_i J_i \in \mathcal{K}(E) \Rightarrow \eta\left(\bigcup_i I_i, \bigcup_i J_i\right) \leq \sup_i, \eta(I_i, J_i).$

Definition 2.2. Let $f^{(\cdot)}: \Omega \to \operatorname{con}(E)$. We call f a statistical contraction operators, iff f is a random element from Ω to con(E), i.e.

$$\{\omega \in \Omega, f^{(\omega)} \in A\} \in \mathcal{F} \ (\forall A \in \mathcal{B}(\operatorname{con}(E))).$$

We denote all statistical contraction operators by $con(\Omega, E)$.

We write $f^{(\omega)} = f(\omega), f^{(\omega)}(x) = f(\omega, x)$ sometimes.

The proofs of the following propositions are straightforward and we leave them to the

Proposition 2.2. Let $(\overline{\Omega}, \overline{\mathcal{F}})$ be a measurable space, $(\overline{\mathcal{K}}, \overline{\eta})$ be a separable complete metric space. $\overline{f}(\omega, J) : \overline{\Omega} \times \overline{\mathcal{K}} \to \overline{\mathcal{K}}$ satisfies: $\forall \omega \in \overline{\Omega}, \overline{f}(\omega, \cdot)$ is uniformly continuous; $\forall J \in \overline{\mathcal{K}}, \overline{f}(\cdot, J)$ is Borel measurable. Then $\bar{f}(\cdot,\cdot)$ is Borel measurable.

Proposition 2.3. If $f \in con(\Omega, E)$, then $f(\omega, J) : \Omega \times \mathcal{K}(E) \to \mathcal{K}(E)$ is Borel measurable; especially $f(\cdot, J)$ is Borel measurable for any fixed $J \in \mathcal{K}(E)$.

Proposition 2.4. $\{f_1, \dots, f_m\} \subset \operatorname{con}(\Omega, E) \Rightarrow f_1 \circ \dots \circ f_m \in \operatorname{con}(\Omega, E)$. **Proposition 2.5.** $\{f_1, \dots, f_m\} \subset \operatorname{con}(\Omega, E) \Rightarrow f_1 \circ \dots \circ f_2 \circ \dots \circ f_m(J)$ is a random element from Ω to $\mathcal{K}(E)$ for any fixed $J \in \mathcal{K}(E)$.

We always assume diam $(E) < \infty$ in this paper.

Let us introduce some notations now. 1_A always denotes the indicator function on set $A, M(\Omega, \mathcal{K}(E))$ denotes the collection of all random elements from Ω to $\mathcal{K}(E)$.

Let $N \geq 2$ be an integer, $C_0 = \{\emptyset\}, C_n = C_n(N) = \{0, 1, \dots, N-1\}^n, (n \geq 1), D = D(N) = \bigcup_{n \geq 0} C_n, C = \{(\sigma_0, \sigma_1, \dots) : 0 \geq \sigma_i < N\}.$

 $\forall \sigma = (\sigma_0, \dots, \sigma_{n-1}) \in C_n(N), \tau \in C(N) \bigcup D(N), \tau = (\tau_0, \tau_1, \dots), |\sigma| = n = \text{the length}$ of $\sigma, \sigma * \tau = (\sigma_0, \dots, \sigma_{n-1}, \tau_0, \tau_1, \dots)$ is the juxtaposition of σ and $\tau, \tau | k = (\tau_0, \tau_1, \dots, \tau_{k-1})$ (if $|\tau| \geq k$), $j|\tau = (\tau_j, \tau_{j+1}, \cdots)$ (if $|\tau| \geq j$). $\{0, 1, \cdots, N-1\}$ carries the discrete topology, and C carries the product topology, so C is compact.

Definition 2.3. Let $\{f_0, \dots, f_{N-1}\} \subset \operatorname{con}(\Omega, E), Q \in \mathcal{P}(\mathcal{K}(E))$. We call Q a P – (f_0, \dots, f_{N-1}) statistically self-similar measure, iff $\forall B \in \mathcal{B}(\mathcal{K}(E))$, we have

$$Q(B) = P \times Q, N\left(\left\{(\omega; K_0, \cdots, K_{N-1}) \in \Omega \times \mathcal{K}(E)^N : \bigcup_{i=0}^{N-1} f_i(\omega, K_i) \in B\right\}\right).$$

Definition 2.4. Let $K: \Omega \to \mathcal{K}(E)$ be a random set (i.e. $K^{-1}(\mathcal{B}(\mathcal{K}(E))) \subset \mathcal{F}$), $\{f_0, \dots, f_n\}$ $f_{N-1}) \subset \operatorname{con}(\Omega, E)$. We call K a $P - (f_0, \dots, f_{N-1})$ statistically self-similar set, iff $P \circ K^{-1}$, the distribution of K, is a $P - (f_0, \dots, f_{N-1})$ statistically self-similar measure. **Proposition 2.6.** Let $f_0, \dots, f_{N-1} \subset \operatorname{con}(\Omega, E), K : \Omega \to \mathcal{K}(E)$ be a random set. Then

K is a $P - (f_0, \dots, f_{N-1})$ statistically self-similar set iff

$$K(\omega) \stackrel{d}{=} \bigcup_{i=0}^{N-1} f_i(\omega, K(\omega_i)).$$

where $\stackrel{d}{=}$ means equal in distribution.

Proof. It is easy to prove by the definition.

§3. Main Result

Theorem 3.1. Let $\{f_{\sigma}, \sigma \in D\} \subset \operatorname{con}(\Omega, E), f_{n,\sigma} = f_{\sigma|1} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n} \circ \cdots \circ f_{\sigma|n} (\sigma \in C_n, n \geq 1), \Psi_n = f_{\sigma|n$ $\bigcup_{\sigma \in C_n} f_{n,\sigma}(E), \ K = \bigcap_{n=1}^{\infty} \overline{\Psi}_n.$ (1) If $\sup_{\sigma \in D} \operatorname{Lip}(f_{\sigma}) = \alpha < 1$ a.s., then, for almost all $\omega \in \Omega$,

$$\lim_{n \to \infty} \eta \Big(K, \bigcup_{\sigma \in C_n} f_{n,\sigma}(J_{\sigma}) \Big) = 0 \ (\forall J_{\sigma} \in M(\Omega, \mathcal{K}(E))); K \in M(\Omega, \mathcal{K}(E)).$$
 (3.1)

(2) If the condition in (1) is satisfied, and $\{(f_{\sigma*0}, \cdots, f_{\sigma*(N-1)}), \sigma \in D\}$ are i.i.d. random elements from Ω to $\operatorname{con}(E)^N$, then $P-(f_0,\cdots,f_{N-1})$ statistically self-similar measure is unique, it is $P_K \triangleq P \circ K^{-1}$, so K is a statistically self-similar set.

In order to prove this theorem, we need some lemmas.

We write $Q^{\#B} = Q^B$ for a measure Q and a set B sometimes. If Q is a set, Q^B has the same meaning as above.

Let

$$t_{n}(\omega; J_{\sigma}, \sigma \in C_{n}) = \Psi_{n}^{(\omega)}(J_{\sigma}, \sigma \in C_{n})$$

$$= \bigcup_{\sigma \in C_{n}} f_{n,\sigma}^{(\omega)}(J_{\sigma}), (\omega \in \Omega, J_{\sigma} \in \mathcal{K}(E), n \geq 1),$$

$$T_{P}: \mathcal{P}(\mathcal{K}(E)) \to \mathcal{P}(\mathcal{K}(E)),$$
(3.2)

$$T_P: \mathcal{P}(\mathcal{K}(E)) \to \mathcal{P}(\mathcal{K}(E)),$$

 $T_P(Q) = (P \times Q^N) \circ t_1^{-1}, \ Q \in \mathcal{P}(\mathcal{K}(E)),$ (3.3)

164 CHIN. ANN. OF MATH. Vol.23 Ser.B

 $T_P^{(n)}$ is the *n*-compound mapping of T_p .

Lemma 3.1. Let $\{f_{\sigma}, \sigma \in D\} \subset \operatorname{con}(\Omega, E)$, $f_{n,\sigma}$, Ψ_n, t_n, T_P and $T_p^{(n)}$ be defined as before. $\forall \{Q, Q_k, k \geq 1\} \subset \mathcal{P}(\mathcal{K}(E))$, if $Q_k \stackrel{W}{\to} Q$ as $k \to \infty$ (where $\stackrel{W}{\to}$ means weak convergence), then $T_P(Q_k) \stackrel{W}{\to} T_p(Q)$.

Proof. $\forall g : \mathcal{K}(E) \to R$, if g is continuous and bounded, then

$$\begin{split} \int_{\mathcal{K}(E)} g(J) T_p(Q_k)(dJ) &= \int_{\mathcal{K}(E)} g(J) [(P \times Q_k^N) \circ t_1^{-1}](dJ) \\ &= \int_{\Omega \times \mathcal{K}(E)^N} g(t_1(\omega; J_i, i \in C_1)) (P \times Q_k^N)(d\omega; dJ_i, i \in C_1) \\ &= \int_{\Omega} P(d\omega) \Big(\int_{\mathcal{K}(E)^N} g(t_1(\omega; J_i, i \in C_1)) Q_k^N(dJ_i, i \in C_1) \Big). \end{split}$$

Since $Q_k \stackrel{W}{\to} Q$, we have $Q_k^N \stackrel{W}{\to} Q^N$ by Theorem 3.1 in Chapter 1 in [1]. But for any fixed $\omega \in \Omega$, $g(t_1(\omega; \cdot, \dots, \cdot)) : \mathcal{K}(E)^N \to R$ is continuous and bounded by Proposition 2.1, hence

$$\lim_{k \to \infty} \int_{\mathcal{K}(E)^N} g(t_1(\omega; J_i, i \in C_1)) Q_k^N(dJ_i, i \in C_1)$$
$$= \int_{\mathcal{K}(E)^N} g(t_1(\omega; J_i, i \in C_1)) Q^N(dJ_i, i \in C_1).$$

It follows from the bounded convergence theorem that

$$\lim_{k \to \infty} \int_{\mathcal{K}(E)^N} g(J) T_p(Q_k)(dJ) = \int_{\Omega} P(d\omega) \int_{\mathcal{K}(E)^N} g(t_1(\omega; J_i, i \in C_1)) Q^N(dJ_i, i \in C_1)$$
$$= \int_{\mathcal{K}(E)} g(J) T_p(Q)(dJ).$$

Lemma 3.1 is proved.

Lemma 3.2. Let $\{f_{\sigma}, \sigma \in D\}$, $f_{n,\sigma}, \Psi_n, t_n, T_P$ and $T_p^{(n)}$ be difined as in Lemma 3.1. If

$$P^{2}\left(\left\{(\omega, \bar{\omega}): \bigcup_{i \in C_{1}} f_{i}^{(\omega)}(t_{n}(\bar{\omega}; J_{i*\sigma}, \sigma \in C_{n})) \in A\right\}\right)$$

$$= P(\left\{\omega: t_{n+1}(\omega; J_{\tau}, \tau \in C_{n+1}) \in A\right\})$$

$$(\forall A \in \mathcal{B}(\mathcal{K}(E)), J_{\tau} \in \mathcal{K}(E), \tau \in C_{n+1}, \ n \geq 1), \tag{3.4}$$

then

$$T_p^{(n)}(Q) = (P \times Q^{C_n}) \circ t_n^{-1} \ (n \ge 1, \ Q \in \mathcal{P}(\mathcal{K}(E))).$$
 (3.5)

Proof. We prove (3.5) by induction. When n = 1, (3.5) is true by the definiton of T_P . If (3.5) is true for n, $\forall A \in \mathcal{B}(\mathcal{K}(E))$, let

$$F(A) = \left\{ (\omega; J_i, i \in C_1) : \bigcup_{i \in C_1} f_i^{(\omega)}(J_i) \in A \right\} = t_1^{-1}(A),$$

$$M(A) = \left\{ (\omega, \bar{\omega}; J_\tau, \tau \in C_{n+1}) : \bigcup_{i \in C_1} f_i^{(\omega)}(t_n(\bar{\omega}; J_{i*\sigma}, \sigma \in C_n)) \in A \right\},$$

then

$$M(A) = \{(\omega, \bar{\omega}; J_{\tau}, \tau \in C_{n+1}) : (\omega; t_n(\bar{\omega}; J_{i*\sigma}, \sigma \in C_n), i \in C_1) \in F(A)\},\$$

465

No.4

hence

$$1_{F(A)}(\omega; t_n(\bar{\omega}; J_{i*\sigma}, \sigma \in C_n), i \in C_1) = 1_{M(A)}(\omega, \bar{\omega}; J_{\tau}, \tau \in C_{n+1}). \tag{3.6}$$

It follows from the definitions of $T_p^{(n)}$ and t_n and (3.6) that

$$T_{p}^{(n+1)}(Q)(A)$$

$$= T_{p}((P \times Q^{C_{n}}) \circ t_{n}^{-1})(A)$$

$$= (P \times [(P \times Q^{C_{n}}) \circ t_{n}^{-1}]^{N})(t_{1}^{-1}(A))$$

$$= \int_{\Omega} P(d\omega) \prod_{i \in C_{1}} \int_{\mathcal{K}(E)} [(P \times Q^{C_{n}}) \circ t_{n}^{-1}](dJ_{i}) \cdot 1_{F(A)}(\omega; J_{i}, i \in C_{1})$$

$$= \int_{\Omega} P(d\omega) \prod_{i \in C_{1}} \int_{\Omega \times \mathcal{K}(E)^{C_{n}}} (P \times Q^{C_{n}})(d\bar{\omega}, dJ_{i*\sigma}, \sigma \in C_{n})$$

$$\cdot 1_{F(A)}(\omega; t_{n}(\bar{\omega}; J_{i*\sigma}, \sigma \in C_{n}), i \in C_{1})$$

$$\stackrel{(3.6)}{=} \prod_{i \in C_{1}} \int_{\Omega} P(d\omega) \int_{\Omega \times \mathcal{K}(E)^{C_{n}}} (P \times Q^{C_{n}})(d\bar{\omega}, dJ_{i*\sigma}, \sigma \in C_{n}) \cdot 1_{M(A)}(\omega, \bar{\omega}; J_{\tau}, \tau \in C_{n+1})$$

$$= \prod_{\tau \in C_{n+1}} \int_{\mathcal{K}(E)} Q(dJ_{\tau}) \int_{\Omega^{2}} P^{2}(d\omega, d\bar{\omega}) \cdot 1_{M(A)}(\omega, \bar{\omega}; J_{\tau}, \tau \in C_{n+1}). \tag{3.7}$$

But, by the definition of M(A) and (3.4),

$$\int_{\Omega^2} P^2(d\omega, d\bar{\omega}) \cdot 1_{M(A)}(\omega, \bar{\omega}; J_{\tau}, \tau \in C_{n+1})$$

$$= P^2\Big(\Big\{(\omega, \bar{\omega}) : \bigcup_{i \in C_1} f_i^{(\omega)}(t_n(\bar{\omega}; J_{i*\sigma}, \sigma \in C_n)) \in A\Big\}\Big)$$

$$= P(\{\omega : t_{n+1}(\omega, J_{\tau}, \tau \in C_{n+1}) \in A\}).$$

It follows from the above equation and (3.7) that

$$T_P^{(n+1)}(Q)(A) = (P \times Q^{C_{n+1}}) \cdot t_{n+1}^{-1}(A).$$

Lemma 3.2 is proved.

Lemma 3.3. If the conditions in Lemma 3.2 are satisfied, and

$$\sup_{\sigma \in D} \operatorname{Lip}(f_{\sigma}) = \alpha < 1 \quad \text{a.s.},$$

- (1) $T_P^{(n)}(Q) \xrightarrow{W} P_k \triangleq P \circ K^{-1} \text{ as } n \to \infty \ (\forall Q \in \mathcal{P}(\mathcal{K}(E))), K \text{ is defined as in Theorem}$
- (2) $P (f_0, \dots, f_{N-1})$ statistically self-similar measure is unique, it is P_k , so K is a statistically self-similar set.

Proof. (1) It is enough to prove (1) that for any open set $G \subset \mathcal{K}(E)$ and closed set $F \subset \mathcal{K}(E)$ we have

$$\liminf_{n \to \infty} T_P^{(n)}(Q)(G) \ge P_K(G), \tag{3.8}$$

$$\lim_{n \to \infty} T_P^{(n)}(Q)(F) \le P_K(F). \tag{3.9}$$

We only prove (3.9). By Fubini theorem and Lemma 3.2 we have

$$T_P^{(n)}(Q)(F) = P \times Q^D\Big(\Big\{(\omega; J_\sigma, \sigma \in D) \in \Omega \times \mathcal{K}(E)^D : \bigcup_{\sigma \in C_n} f_{n,\sigma}^{(\omega)}(J_\sigma) \in F\Big\}\Big),$$

hence

$$\begin{split} & \limsup_{n \to \infty} T_P^{(n)}(Q)(F) \\ & \leq P \times Q^D \Big(\bigcap_{m=1}^{\infty} \bigcup_{n \geq m} \Big\{ (\omega; J_{\sigma}, \sigma \in D) \in \Omega \times \mathcal{K}(E)^D : \bigcup_{\sigma \in C_n} f_{n,\sigma}^{(\omega)}(J_{\sigma}) \in F \Big\} \Big) \\ & \leq P \times Q^D \Big(\Big\{ (\omega; J_{\sigma}, \sigma \in D) \in \Omega \times \mathcal{K}(E)^D : \lim_{n \to \infty} \bigcup_{\sigma \in C_n} f_{n,\sigma}^{(\omega)}(J_{\sigma}) \in F \Big\} \Big) \\ & = P \times Q^D \big(\{ (\omega; J_{\sigma}, \sigma \in D) \in \Omega \times \mathcal{K}(E)^D : \mathcal{K}(\omega) \in F \} \big) \\ & = P(\{ \omega \in \Omega : \mathcal{K}(\omega) \in F \}) = P_k(F). \end{split}$$

(3.9) is proved.

(2) Now we want to show that $P - (f_0, \dots, f_{N-1})$ statistically self-similar measure is unique, it is P_K . It follows from Lemma 3.1 and (1) that

$$P_K = \lim_{n \to \infty} T_P^{(n+1)}(P_k) = \lim_{n \to \infty} T_P(T_P^{(n)}(P_K)) = T_P(\lim_{n \to \infty} T_P^{(n)}(P_k)) = T_P(P_K),$$

this means that P_k is a statistically self-similar measure.

Suppose Q is any $P - (f_0, \dots, f_{N-1})$ statistically self-similar measure, then

$$Q = T_P(Q) = \dots = T_P^{(n)}(Q).$$

Let $n \to \infty$. By (1) in this lemma, we get

$$Q = \lim_{n \to \infty} T_P^{(n)}(Q) = P_K.$$

Lemma 3.3 is proved.

Lemma 3.4. Let $\{f_{\sigma}, \sigma \in D\} \subset \operatorname{con}(\Omega, E), \{(f_{\sigma*0}, \cdots, f_{\sigma*(N-1)}), \sigma \in D\}$ be a class of i.i.d. random elements from Ω to $\operatorname{con}(E)^N$. Let

$$\tilde{f}_{\sigma}^{(\omega,\bar{\omega})} = \begin{cases} f_{\sigma}^{(\omega)}, & when \ \sigma \in C_1, (\omega,\bar{\omega}) \in \Omega^2, \\ f_{\sigma}^{\bar{\omega}}, & when \ \sigma \in \bigcup_{k \geq 2} C_k, \ (\omega,\bar{\omega}) \in \Omega^2. \end{cases}$$

Then

(1) $\{(\tilde{f}_{\sigma*0}, \cdots, \tilde{f}_{\sigma*(N-1)}, \sigma \in D\}$ is a class of i.i.d. random elements from Ω^2 to $con(E)^N$

$$(\tilde{f}_0, \dots, \tilde{f}_{N-1}) \stackrel{d}{=} (f_0, \dots, f_{N-1}),$$

$$(\tilde{f}_{\sigma}, \sigma \in \bigcup_{k=2}^{n+1} C_k) \stackrel{d}{=} (f_{\sigma}, \sigma \in \bigcup_{k=2}^{n+1} C_k) \ (n \ge 1),$$

where $\stackrel{d}{=}$ means equal in distribution.

(2) For any fixed $\{J_i, J_{\sigma}, i \in C_1, \sigma \in \bigcup_{k=2}^{n+1} C_k\} \subset \mathcal{K}(E), \{(f_{\sigma*0}(J_0), \cdots, f_{\sigma*(N-1)}(J_{N-1})), \}$

 $\sigma \in D$ } is a class of i.i.d. random elements from Ω to $\mathcal{K}(E)^N$, and $\{(\tilde{f}_{\sigma*0}(J_0), \cdots, \tilde{f}_{\sigma*(N-1)}(J_{N-1})), \sigma \in D\}$ is a class of i.i.d. random elements from Ω^2 to $\mathcal{K}(E)^N$, and

$$(\tilde{f}_0(J_0), \dots, \tilde{f}_{N-1}(J_{N-1})) \stackrel{d}{=} (f_0(J_0), \dots, f_{N-1}(J_{N-1})),$$
 (3.10)

$$\left(\tilde{f}_{\sigma}, (J_{\sigma}), \sigma \in \bigcup_{k=2}^{n+1} C_k\right) \stackrel{d}{=} \left(f_{\sigma}(J_{\sigma}), \sigma \in \bigcup_{k=2}^{n+1} C_k\right). \tag{3.11}$$

Proof. (1) is obvious, we only need to prove (2). Let μ be a probability measure on $\mathcal{B}(\mathcal{K}(E)^N)$ such that $\mu(A) = 1$ or 0 according to $(J_0, \dots, J_{N-1}) \in A$ or not. Let

$$g_{\sigma}: \Omega \times \mathcal{K}(E)^{N} \to \operatorname{con}(E)^{N} \times \mathcal{K}(E)^{N}, \sigma \in D,$$

$$g_{\sigma}(\omega; \tilde{J}_{\sigma}, \cdots, \tilde{J}_{N-1}) = (f_{\sigma*0}^{(\sigma)}, \cdots, f_{\sigma*N-1}^{(\sigma)}; \tilde{J}_{0}, \cdots, \tilde{J}_{N-1}),$$

$$h: \operatorname{con}(E)^{N} \times \mathcal{K}(E)^{N} \to \mathcal{K}(E)^{N},$$

$$h(r_{0}, \cdots r_{N-1}; \tilde{J}_{0}, \cdots, \tilde{J}_{N-1}) = (r_{0}(\tilde{J}_{0}), \cdots, r_{N-1}(\tilde{J}_{N-1})).$$

Then, by Proposition 2.1, $\{g_{\sigma}, \sigma \in D\}$ is a class of i.i.d. random elements from probability space $(\Omega \times \mathcal{K}(E)^N, \mathcal{F} \times \mathcal{B}(\mathcal{K}(E)^N), P \times \mu)$ to $con(E)^N \times \mathcal{K}(E)^N$, h is a continuous operator. Hence

$$\{(f_{\sigma*0}^{(\omega)}(\tilde{J}_0), \cdots, f_{\sigma*(N-1)}^{(\omega)}(\tilde{J}_{N-1})) = h(g_{\sigma}(\omega; \tilde{J}_0, \cdots, \tilde{J}_{N-1})), \ \sigma \in D\}$$

is a class of i.i.d. random elements from $(\Omega \times \mathcal{K}(E)^N, \mathcal{F} \times B(\mathcal{K}(E)^N), P \times \mu)$ to $\mathcal{K}(E)^N$; especially, for fixed (J_0, \dots, J_{N-1}) ,

$$\{(f_{\sigma*0}^{(\omega)}(J_0)\cdots,f_{\sigma*(N-1)}^{(\omega)}(J_{N-1}))=h(g_{\sigma}(\omega;J_0,\cdots,J_{N-1})),\sigma\in D\}$$

is a class of i.i.d. random elements from (Ω, \mathcal{F}, P) to $\mathcal{K}(E)^N$.

We can prove $\{(\tilde{f}_{\sigma*0}(J_0), \cdots, \tilde{f}_{\sigma*(N-1)}(J_{N-1})), \sigma \in D\}$ is a class of i.i.d. random elements from $(\Omega^2, \mathcal{F}^2, P^2)$ to $\mathcal{K}(E)^N$ in the same way. (3.10) and (3.11) are obvious. Lemma 3.4 is proved.

Now let us prove Theorem 3.1. (1) is a special case of Theorem 2.1 in [4]. In order to prove the conclusion (2) of Theorem 3.1, using Lemma 3.3, it is enough to prove (3.4) is true under the conditions in the Theorem 3.1. Let $B(n+1) = \bigcup_{k=1}^{n+1} C_k$,

$$q: \operatorname{con}(E)^{B(n+1)} \times \mathcal{K}(E)^{B(n+1)} \to \mathcal{K}(E),$$

$$q(S_{\tau}; J_{\tau}, \tau \in B(n+1)) = \bigcup_{i \in C_1} \bigcup_{\sigma \in C_n} S_i \circ S_{i*(\sigma|1)} \circ \cdots \circ S_{i*(\sigma|n)}(J_{i*\sigma}).$$

Then q is a continuous operator by Proposition 2.1. Hence $q(\tilde{f}_{\tau}^{(\omega,\tilde{\omega})}; J_{\tau}, \tau \in B(n+1))$ and $q(f_{i}^{(\omega)}, f_{i*\sigma}^{(\tilde{\omega})}; J_{i}, J_{i*\sigma}, i \in C_{1}, \ \sigma \in B(n))$ are random elements from $(\Omega^{2}, \mathcal{F}^{2}, P^{2})$ to $\mathcal{K}(E)$ for fixed $J_{\tau}, (\tau \in B(n+1))$.

Since $\{(f_{\sigma*0}^{(\omega)}, \cdots, f_{\sigma*(N-1)}^{(\omega)}), \sigma \in D\}$ are i.i.d., it follows that

$$\forall \left\{ A_i, B_\tau, i \in C_1, \tau \in \bigcup_{k=2}^{n+1} C_k \right\} \subset \mathcal{B}(\operatorname{con}(E))$$

we have

$$P^{2}(f_{i}^{(\omega)} \in A_{i}, f_{i*(\sigma|j)}^{(\bar{\omega})} \in B_{i*(\sigma|j)}, i \in C_{1}, \sigma \in C_{n}, 1 \leq j \leq n)$$

$$= P^{2}(f_{i}^{(\omega)} \in A_{i}, i \in C_{1}, f_{\sigma*j}^{(\bar{\omega})} \in B_{\sigma*j}, \sigma \in B(n), j \in C_{1})$$

$$= P^{2}(f_{i}^{(\omega)} \in A_{i}, i \in C_{1})P^{2}(f_{\sigma*j}^{(\bar{\omega})} \in B_{\sigma*j}, \sigma \in B(n), j \in C_{1})$$

$$= P^{2}(f_{i}^{(\omega)} \in A_{i}, i \in C_{1})P^{2}(f_{(|\tau|-1)|\tau}^{(\bar{\omega})} \in B_{\tau}, \tau \in \bigcup_{k=2}^{n+1} C_{k}).$$
(3.12)

Similarly, we also have

$$P^{2}(f_{i}^{(\omega)} \in A_{i}, f_{\sigma|j}^{(\bar{\omega})} \in B_{i*(\sigma|j)}, \sigma \in C_{n}, i \in C_{1}, 1 \leq j \leq N)$$

$$= P^{2}(f_{i}^{(\omega)} \in A_{i}, i \in C_{1})P^{2}\left(f_{(|\tau|-1)|\tau}^{(\bar{\omega})} \in B_{\tau}, \tau \in \bigcup_{k=2}^{n+1} C_{k}\right). \tag{3.13}$$

But, by the definition of $\{\tilde{f}_{\sigma}, \sigma \in D\}$ and Lemma 3.4, we have

$$(f_0^{(\omega)}, \dots, f_{N-1}^{(\omega)}, f_{i*(\sigma|1)}^{(\bar{\omega})}, \dots, f_{i*\sigma}^{(\bar{\omega})}, i \in C_1, \sigma \in C_n)$$

$$\equiv (\tilde{f}_0^{(\omega,\bar{\omega})}, \dots, \tilde{f}_{N-1}^{(\omega,\bar{\omega})}, \tilde{f}_{i*(\sigma|1)}^{(\omega,\bar{\omega})}, \dots, \tilde{f}_{i*\sigma}^{(\omega,\bar{\omega})}, i \in C_1, \sigma \in C_n)$$

$$\stackrel{d}{=} (f_0^{(\omega)}, \dots, f_{N-1}^{(\omega)}, f_{i*(\sigma|1)}^{(\omega)}, \dots, f_{i*\sigma}^{(\omega)}, i \in C_1, \sigma \in C_n). \tag{3.14}$$

It follows from (3.12)–(3.14) that

$$((f_i^{(\omega)}, f_{\sigma|1}^{(\bar{\omega})}, \cdots, f_{\sigma}^{(\bar{\omega})}), \sigma \in C_n, i \in C_1)$$

$$\stackrel{d}{=} ((f_i^{(\omega)}, f_{i*(\sigma|1)}^{(\omega)}, \cdots, f_{i*\sigma}^{(\omega)}), \sigma \in C_n, i \in C_1). \tag{3.15}$$

Hence

$$q(f_{i}^{(\omega)}, f_{i*(\sigma|j)}^{(\omega)}; J_{i}, J_{i*(\sigma|j)}, i \in C_{1}, \sigma \in C_{n}, 1 \ge j \le n)$$

$$\stackrel{d}{=} q(f_{i}^{(\omega)}, f_{\sigma|j}^{(\bar{\omega})}; J_{i}, J_{i*(\sigma|j)}, i \in C_{1}, \sigma \in C_{n}, 1 \le j \le n).$$
(3.16)

But

$$q(f_{i}^{(\omega)}, f_{\sigma|j}^{(\bar{\omega})}; J_{i}, J_{i*(\sigma|j)}, i \in C_{1}, \sigma \in C_{n}, 1 \leq j \leq n)$$

$$= \bigcup_{i \in C_{1}} f_{i}^{(\omega)} \Big(\bigcup_{\sigma \in C_{n}} f_{\sigma|1}^{(\bar{\omega})} \circ \cdots \circ f_{\sigma|n}^{(\bar{\omega})} (J_{i*\sigma}) \Big)$$

$$= \bigcup_{i \in C_{1}} f_{i}^{(\omega)} (t_{n}(\bar{\omega}; J_{i*\sigma}, \sigma \in C_{n})),$$

$$q(f_{i}^{(\omega)}, f_{i*(\sigma|j)}^{(\omega)}; J_{i}, J_{i*(\sigma|j)}, i \in C_{1}, \sigma \in C_{n}, 1 \leq j \leq n)$$

$$= \bigcup_{i \in C_{1}} \bigcup_{\sigma \in C_{n}} f_{i}^{(\omega)} \circ f_{i*(\sigma|1)}^{(\omega)} \circ \cdots \circ f_{i*\sigma}^{(\omega)} (J_{i*\sigma})$$

$$= t_{n+1}(\omega, J_{\tau}, \tau \in C_{n+1}),$$

hence (3.16) means (3.4) is true. The theorem is proved.

References

- [1] Billingsley, P., Convergence of probability measure [M], New York, John Wiley and Sonc. Inc. 1968.
- [2] Falconer, K. J., The multifractal spectrum of statistically self-similar measure [J], J. Theoretical Probab., 7(1994), 681–702.
- [3] Graf, S., Statistically self-similar fractals [J], Probab. Th. Related Fields, 74(1987), 357–392.
- [4] Hu, D., The construction of statistically recursive sets [J], Wuhan Univ. J., 3(1998), 265–269.
- [5] Hutchinson, J. E., Fractals and self-similarity [J], Indiana Univ. Math. J., 30(1981), 713-747.
- [6] Mauldin, R. D. & Williams, S. C., Random recursive constructions: asymptotic geometric and topological properties [J], Tran. Amer. Math. Soc., 295(1986), 325–346.