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I.LI.D. STATISTICAL CONTRACTION OPERATORS
AND STATISTICALLY SELF-SIMILAR SETS**

HU Dme*
Abstract

I.i.d. random sequence is the simplest but very basic one in stochastic processes, and
statistically self-similar set is the simplest but very basic one in random recursive sets in the
theory of random fractal. Is there any relation between i.i.d. random sequence and statistically
self-similar set? This paper gives a basic theorem which tells us that the random recursive
set generated by a collection of i.i.d. statistical contraction operators is always a statistically
self-similar set.
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§1. Introduction

Hutchinson!® constructed a class of (strictly) self-similar sets by contraction operators
and obtained their Hausdorff dimension and Hausdorff exact measure function. Later,
Mauldin and Williams(6!, Grafl¥! and Falconer? independently constructed the statistically
self-similar measure and set in different way and investigated their probability properties
and fractal properties. But no one has pointed out what is the probabilty character of
statistically self-similar set.

In this paper, we will give a basic theorem which tells us that the random recursive set
generated by a collection of i.i.d. statistical contraction operators is always a statistically
self-similar set.

Let N > 2 be an integer, Co = {0}, C,, = {0,1,--- ,N=1}"(n>1),D= | Cy,{f0s,0 €

n>0

D} be a collection of statistical contraction operators. If sup Lip(f,) = a < 1, {(fo,005
oceD
fe.n—1));, 0 € D} are i.i.d., then

K2 U To o T  Jormmon (B)

n=1 (o1, ,0n)ECH
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is always a statistically self-similar set, where Lip(-) is the Lipschitz coefficient, (E, p) is a
polish space, A is the closure of A.

§2. Notations and Preliminaries

Let (Q,F,P) be a complete probability space, (E,p) be a separable complete metric
space. K(E) denotes all non-empty compact sets in E, 7 is the Hausdorff metric on K(E),
that is to say, I,J € K(E),

n(I,J) =sup{p(x,I),ply,J): x € Jyyel}, p(x,I) is the distance from z to I.

(K(E),n) is also a separable complete metric space.

For any subset A in a metric space, diam(A) denotes the diameter of A. A donotes the
closure of A. Let R? be the d-dimensional Euclidean space, R = R!'. We always denote the
Borel field of topology space T by B(T'), and all Borel probability measures by P(T). Let
f:E— E,BCE,f(B) is the image of f on B.

Definition 2.1. Let f: E — E.

Lip(f) 2 sup 2@ F0)
z#y,x,yeE p(-T, y)
is called the Lipschitz coefficient of f. If Lip(f) < 1, then we call f a contraction operator
and denote the class of all contraction operators from E to E by con(E).
We always assume that con(FE) carries the topology of pointwise convergence.
Propositon 2.1.13 et f: E — E.
(1) If f is continuous, then f(K(E)) C K(E);

(2) 1, J € K(E) = n(f(I), f(J)) < Lip(f)n(I, J);

(3) Lip(f) : con(E) — [0,1) is lower-semicontinuous;

(4) f(J): con(E) x n(l ) = K(E) is continuous;

5) g(J1, -+ Im) = L:J1 K(E)™ — K(E) is continuous;

(6) h(fr,- - 7fm) fio - o fi i con(E)™ — con(E) is continuous;
() 1, J. UL U J; € K(E) = n(U U ) < swpon(, 1),

Definiton 2.2. Let f(): Q — con(E). We call f a statistical contraction operators, iff
f is a random element from Q to con(E), i.e.

{we, f@ e A} € F (VA € B(con(E))).

We denote all statistical contraction operators by con(Q, E).

We write ) = f(w), f“)(2) = f(w,z) sometimes.

The proofs of the following propositions are straightforward and we leave them to the
reader.

Propositon 2.2. Let (Q,F) be a measurable space, (KC,7) be a separable complete metric
space. f(w,J): QxK — K satisfies: Yw € Q, f(w, ) is uniformly continuous; ¥.J € K, f(-,J)
is Borel measurable. Then f(-,-) is Borel measumble.

Proposition 2.3. If f € con(Q, E), then f(w,J) : Q@ x K(E) — K(E) is Borel measur-
able; especially f(-,J) is Borel measurable for any fized J € K(E).

Proposition 2.4. {f1, -, fm} Ccon(Q, E) = f10---0 f,, € con(, E).

Proposition 2.5. {f1, -+, fm} C con(QLE) = fro---0 fao---0 fi,(J) is a random
element from Q to K(E) for any fixzed J € K(E).

We always assume diam(FE) < oo in this paper.
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Let us introduce some notations now. 14 always denotes the indicator function on set
A, M(Q,K(E)) denotes the collection of all random elements from Q to IC(E).

Let N > 2 be an integer, Cy = {0},C,, = C,,(N) = {0,1,--- ,N —1}",(n > 1),D =
D(N)= U C,, C={(00,01,---): 0>0; <N}

n>0

Vo = (00, + ,0n-1) € Cr(N),7 € C(N)UD(N), 7 = (19,71, ), |0| = n = the length
of 0,017 = (00, "+ ,0n—1,70,T1, ") is the juxtaposition of o and 7, 7|k = (70,71, , Tk—1)
(if |7| > k), jlT = (15, Tj41,---) (if |[7] > 7). {0,1,--- N — 1} carries the discrete topology,
and C carries the product topology, so C' is compact.

Definition 2.3. Let {fy,---,fn-1} C con(Q,E),Q € P(K(E)). We call Q a P —
(fo, -+, fn—1) stalistically self-similar measure, iff VB € B(K(E)), we have

Q(B) = P x Q,N({(M;KO, K1) € Qx K(E)N NJ filw. K;) € B}).
1=0

Definition 2.4. Let K : Q — K(E) be a random set (i.e. K=Y (B(K(E))) C F), {fo, -,
fn_1) Ceon(Q, E). Wecall K a P—(fo,- -, fn_1) statistically self-similar set, iff PoK 1,
the distribution of K, is a P — (fo,-++ , fn—1) statistically self-similar measure.

Proposition 2.6. Let fo, -+, fn-1 C con(Q, E), K : Q — K(E) be a random set. Then
K isa P —(fo, -+, fn=1) statistically self-similar set iff

N—-1
Kw) 2 | filw, K(w)).
=0

where 2 means equal in distribution.
Proof. It is easy to prove by the definition.

§3. Main Result
Theorem 3.1. Let {fy,0 € D} C con(Q, E), fno = foj10- -0 fojn(oc € Cpyn>1),¥,, =
U fn,a(E)a K = ﬂlﬁn

oceCy, n=
(1) If sup Lip(f,) = a < 1 a.s., then, for almost all w € ),
oceD
lim n(K, | folJo)) =0 (W € MQK(E)):K € MQ,K(E).  (3.1)
n—oo Jecn
(2) If the condition in (1) is satisfied, and {(fox0, -, fox(N=1)),0 € D} arei.i.d. random
elements from Q to con(E)N, then P — (fo, -, fn_1) statistically self-similar measure is

unique, it is Px = Po K~', so K is a statistically self-similar set.

In order to prove this theorem, we need some lemmas.

We write Q#8 = QF for a measure @ and a set B sometimes. If Q is a set, Q” has the
same meaning as above.

Let

tn(w; Jy 0 € Cp) = 0@ (J,,0eC)

= |J f9), (we, J, e K(E), n>1), (3.2)
oeCyp

Tp : P(K(E)) = P(K(E)),
Tp(Q) = (P x QY)oty", Q € P(K(E)), (3.3)
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Tf!” is the n-compound mapping of T},.
Lemma 3.1. Let {f,,0 € D} C con(L, E), fnos ¥n,tn, Tp and ngn) be defined as
before. Y{Q,Qk, k > 1} C P(K(E)), if Qk ®Qask — oo (where % means weak

convergence), then Tp(Qk) L T,(Q).
Proof. Vg : K(E) — R, if ¢ is continuous and bounded, then

[ am@a@n=[ oiexaf)es i)
K(E)

K(E)

_ / gt (w: Ji i € COYP x QN (dw; dJs,i € Cr)
QxXK(E)N
_ /QP(dw)</K(E)N oltr (s Jii € COIQY (AT i € ).

Since Qy ® Q, we have Q¥ ® QY by Theorem 3.1 in Chapter 1 in [1]. But for any fixed
weQ gti(w;,---,--+)) : K(E)YN — R is continuous and bounded by Proposition 2.1,
hence

lim g(tl(w; Ji,i S Cl))QéV(dJZ,Z S Cl)
k—o00 )C(E)N

= / g(tl(w; Jiy i € Cl))QN(dJ“Z S Cl)
K(E)N
It follows from the bounded convergence theorem that

lim ()T (Qu)(dT) = / Pldw) / g(t1(w: Jivi € CL)QN (AT, i € Cy)
O JK(E)N Q K(E)N

~ [ sm@an)
K(E)

Lemma 3.1 is proved.
Lemma 3.2. Let {fs,0 € D}, frno, Yn,tn, Tp and ngn) be difined as in Lemma 3.1. If

P2({(w,w) s U 1 (60 (@3 S0 € Cu)) € A})

1€Cq
=P{w: tps1(w; Jr, 7 € Cpy1) € A})
(VA e B(K(E)),Jr € K(E),T € Cpg1, n > 1), (3.4)
then
TM(Q) = (PxQ%)ot;t (n>1, Q € P(K(E))). (3.5)

Proof. We prove (3.5) by induction. When n = 1, (3.5) is true by the definiton of Tp.
If (3.5) is true for n, VA € B(K(E)), let

F(A) = {(widnie Cr): [ £200) e A} =174 (a),
1€Ch
M((A) = {(w,&); JryT € Cpy1) U fi(w)(tn(of); Jivo,0 € Cp)) € A},
i€eCy
then
M(A) = {(w,@; Jr, 7 € Cry1) : (Wt (D; Jine, 0 € Cy),i € C1) € F(A)},
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hence
Lpa) (Wi tn (@0 Jivo, 0 € Cp),i € C1) = 1pypay(w, @3 Jr, 7 € Crga). (3.6)
It follows from the definitions of T\ and t, and (3.6) that
T30 (Q)(4)
=T,((Px Q™) ot ) (A)
(P x [(Px Q) ot TV)(t7(A))

/Pdw [T [ ((PxQ%) ot )ds)  Lroay(wsii € Cr)
ieCq K:(E)
/P dw)
i€Cy
'1F(A Wity ( Ji*U,O'GCn),Z.GCH)

)(
H/ dw/ (PxQC")(d(D,dJi*(,,crGC’n)~1M(A)(w,GJ;JT,T€Cn+1)
QXK (E)Cn

1€Ch

H / Q(dJ;) / Pz(dw, dw) - lM(A) (w,w; Jr, 7 € Cpy1). (3.7
TECH 11

But, by the definition of M (A) and (3.4),

/Q - (P x Q°)(d@, dJiwg, 0 € Cy)
X n

P?(dw, dw) - Lyrcay(w,@; Jr, 7 € Cpya)
QQ

_p2({ ) U e M,aeC))eA})
i€Cy
=P{w:tpt1(w, Jr, 7 € Cpy1) € A}).

It follows from the above equation and (3.7) that

T (Q)(A) = (P x Q) - .1, (4).
Lemma 3.2 is proved.
Lemma 3.3. If the conditions in Lemma 3.2 are satisfied, and

sup Lip(fs) =a <1 as.,
oeD

then

(1) T}(;,")(Q) B P 2PoK ! asn— (VQ € P(K(E))), K is defined as in Theorem
3.1;

(2) P — (fo, -, fn—1) statistically self-similar measure is unique, it is Py, so K is a
statistically self-similar set.

Proof. (1) It is enough to prove (1) that for any open set G C K(E) and closed set
F C K(F) we have

lim inf 7" (Q)(G) > Px(G), (3.8)
limsup 75" (Q)(F) < Pic(F). (3.9)

We only prove (3.9). By Fubini theorem and Lemma 3.2 we have
TI(Dn)(Q)(F):PxQD({(w Jo,0€D)eQxK(E)Y: ] f§ })

ceCy,
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hence
lim sup Tl(gn) (Q)(F)
n— o0
b N
<PxQ (Dlnym{ w;Jy,0 € D) €Qx K(E gyc })
< PxQ"({wiJpoeD)eQx KB : lim | f D

oceCy
=PxQP({(w;J,,0 € D) e Qx K(E)P : K(w) € F})
=P{weN: K(w) € F}) = Py(F).
(3.9) is proved.

(2) Now we want to show that P — (fo, -, fnv—1) statistically self-similar measure is
unique, it is Pg. It follows from Lemma 3.1 and (1) that

_ 1 (n+1) R B (n) _ ; (n) _
P = lim Tp " (Py) = lim Tp(Tp (Pr)) = Tp( lim Tp"(Fy)) = Tp(Px),

this means that Py is a statistically self-similar measure.

Suppose @Q is any P — (fo,-- -, fn—1) statistically self-similar measure, then
Q=Tr(Q = =T"(Q).

Let n — co. By (1) in this lemma, we get
Q= lim TV(Q) = Px.
n—oo
Lemma 3.3 is proved.
Lemma 3.4. Let {f,,0 € D} C con(, E), {(fox0,** , fox(n—1)); 0 € D} be a class of

i.i.d. random elements from 0 to con(E)N. Let

cw03) W) when o € C, (w, @) € Q2

77 =312, whenoe | Ch, (w,@) € Q%

k>2
Then .
(1) {(fox0, -+ fox(n—1),0 € D} is a class of i.i.d. random elements from Q? to con(E)N
and

(an"'va 1) (an '7fN—1)7

n+1 n+1

(fg,a' S U Ck) 4 (fg,U S U Ck) (n > 1),
k=2 k=2

d o
where = means equal in distribution.

n+1
(2) For any fired {J;, Jo,i € C1,0 € |J Cr} C K(E), {(fox0(Jo), - s foxn—1)(IN-1)),
k=2
o € D} is a class of i.i.d. random elements from Q to K(E)N, and {(foxo(Jo), -,
f(,*(N y(Jn-1)), 0 € D} is a class of i.i.d. random elements from Q* to K(E)N, and

(fo(Jo)s- -+ s Fno1(In=1) 2 (fol o)+ fnv—1(In—1)), (3.10)

n+1 n+1

(fm ,0 € U Ck) = ( ,0 € U Ck) (3.11)
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Proof. (1) is obvious, we only need to prove (2). Let p be a probability measure on
B(K(E)N) such that p(A) =1 or 0 according to (Jo, -+, Jy_1) € A or not. Let

Jo - A x K(E)N = con(E)N x K(E)N,0 € D,

9o (@i Ty Ia) = ([ Folyai o ),
h:con(EYN x K(E)YN = K(E)N
h(ro,--rn-15Jo, -+ In—1) = (ro(Jo), -+ ,rv—1(In-1)).
Then, by Proposition 2.1, {g,,0 € D} is a class of i.i.d. random elements from probability

space (2 x K(E)N, Fx B(K(E)N), P x p) to con(E)N x K(E)N, h is a continuous operator.
Hence

(Do) F 1y (In-1)) = hgo(w; Jo, -+, In-1)), o € D}

is a class of i.i.d. random elements from (Q x K(E)N,F x B(K(E)N), P x ) to K(E)N
especially, for fixed (Jo, -, In—1),

{5200+ s Fosln 1) (In-1)) = h(go (@i Jo, -+, Iy 1)), € D}

is a class of i.i.d. random elements from (2, F, P) to K(E)Y

We can prove {(fox0(Jo), - , fg*(N_l)(JNfl)), o € D}isaclass ofi.i.d. random elements
from (Q2, F2, P?) to K(E)Y in the same way. (3.10) and (3.11) are obvious. Lemma 3.4 is
proved.

Now let us prove Theorem 3.1. (1) is a special case of Theorem 2.1 in [4]. In order to

prove the conclusion (2) of Theorem 3.1, using Lemma 3.3, it is enough to prove (3.4) is
n+1
true under the conditions in the Theorem 3.1. Let B(n + 1) = U Cr,

q : con(E)BMHD 5 K(B)BHD) 5 K(B),

(Ser‘mTEB 7’L+1 U U Si oSz* (o]1) © Si*(a\n)(‘]i*o—)-
i€Cy o€Chp

Then ¢ is a continuous operator by Proposition 2.1. Hence q(fﬁw’@); Jry7 € B(n+1)) and
q(fi(w) 1(:10)7 Ji, Jixo,i € C1, 0 € B(n)) are random elements from (2% F2, P?) to K(E) for

fixed J,, (T € B(n+ 1)).

Since {(f), -+, é:szil)),a € D} are i.i.d., it follows that

n+1
V{Ai,BT,i el Te kL:JQ ck} C B(con(E))

we have

PQ(f(w) € Al,fl (olj) € Bis(olj),1 € C1,0 € Cp, 1 < j <n)

K3

= P2(f{*) € Aii € C1, £} € Bouj,0 € B(n),j € C1)

= P2(f{*) € Ayi € C1)P*(f') € Byujoo € B(n),j € C1)
n+1

P e A i e CHPX(fE) ), € Brme | ). (3.12)
k=2
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Similarly, we also have

PQ(fZ(W) € Amf(g-@) € B'L*(U|j)7a € Cn,Z € Clvl SJS N)

n+1
= P2(f*) € A; i € C1)P? (f((ﬁ_l)h €B, re|J ck). (3.13)
k=2
But, by the definition of {fg, o€ D} and Lemma 3.4, we have
(f(w) Ty ]%)217 z*(o’|1 o z(*g—alecha-ec )
= ( éw w)v ) NJ(\?L,“{)7 z'(;d(,:i)l)’ T i(:;w)vi €Cy,0¢€ Cn)
LS L) e f e o e ). (3.14)

It follows from (3.12)—(3.14) that
((fz(w) (5'17 . ,f(“)) o €CpicCh)

L (@, fl(’:)()o"l),.” SN sec,, iea). (3.15)
Hence
A Ty T Doty 1€ Cry 0 € Coy 12 ] <)
£ g I3 T Titolyy 1€ Cry 0 € Coy 1< G <), (3:16)
But

(f'(W)vfa(-L‘:;');Jiin*(o\j)a i€ Clv S Cn7 1<j< ’ﬂ)

= U f“’)( U o0 f00)
ieCq oeCyp

:Ufw) s Jisos 0 € Ch)),

i€Cq

(f fl*(ff\J Jis Jin(olj)s 1 € Cr,0 € Cpy 1 <5 <)
- U U f() z(:J(zf\l)o”'o i(fg)(‘]i*a)

i€Cy o0eCy,
= tn+1(w7 JT) TE Cn+1),

hence (3.16) means (3.4) is true. The theorem is proved.
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