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Abstract

The authors introduce concepts of even and odd additive functionals and prove that an even
martingale continuous additive functional of a symmetric Markov process vanishes identically.
A representation for symmetric super-martingale multiplicative functionals are also given.
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§1. Introduction

Let E be a Lusin space with its Borel σ-algebra B(E), and m a σ-finite measure on

(E,B(E)). We denote by B(E×E) the product σ-algebra on E×E. Let X = (Ω,F ,Ft, θt,

Xt, P
x) be a Borel right process with state space E, lifetime ζ, transition semigroup (Pt)t>0

and resolvent (Uq)q>0. Throughout this paper we assume that X is m-symmetric; precisely

(f, Ptg) = (Ptf, g), f, g ∈ L2(m), (1.1)

where (u, v) :=
∫
uvdm is the natural inner product in L2(m) := L2(E;m). Then (Pt) may

be extended into a symmetric operator semigroup on L2(m) and there is a quasi-regular

Dirichlet form (E ,D) associated with it. A well-known consequence of symmetry (e.g., see

[12]) is for x ∈ E,

P x({ω ∈ Ω : Xt−(ω) exists in E for all t < ζ}) = 1.

By an additive functional (abbreviated sometimes as AF), we mean an adapted real

valued process on [0, ζ[ with additivity and right continuity. Let A = (At) be any additive

functional of finite variation pathwisely on any compact interval of [0, ζ[. We can (and

always do) take its perfected version.
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To describe the behavior of jumps of X, there exists a pair (N,H), which is usually called

the Lévy system of X, with N a kernel on (E,B(E)) satisfying N(x, {x}) = 0 for any x ∈ E

and H a positive continuous additive functional (abbreviated as PCAF in the sequel) of X

with bounded 1-potential, such that for any Borel function ϕ on E×E, the dual predictable

projection (or compensator) of the homogeneous random measure

κ(ω, dt) := ϕ(Xt−(ω), Xt(ω))1{Xt−(ω)̸=Xt(ω)}(dt)

is
∫ t

0
Nϕ(Xs)dHs, where

Nϕ(x) :=

∫
y∈E

N(x, dy)ϕ(x, y).

The measure J(dx, dy) := N(x, dy)ρH is called the jumping measure relative to m, where

ρH is the Revuz measure of H.

In §2, we shall prove that any even continuous martingale additive functional vanishes

identically and it generalizes a result of Fitzsimmons[3] in the diffusion case. Then we use this

result to prove that any symmetric super-martingale multiplicative functional is of bounded

variation in §3.

§2. Even and Odd Additive Functionals

Given a path ω ∈ Ω with ζ(ω) > t, define the reversal path rtω at time t as

rtω(s) :=

{
ω((t− s)−), 0 ≤ s < t;

ω(0), s ≥ t.

Then rtω(s−) = ω(t− s) if 0 < s ≤ t.

Lemma 2.1. A necessary and sufficient condition for a right process X to be m-

symmetric is that for any t > 0 and G ∈ Ft,

Pm(G ◦ rt; t < ζ) = Pm(G; t < ζ). (2.1)

Proof. The proof is exactly the same as Lemma 5.7.1 in [6] by noting that for any fixed

t > 0, Xt = Xt− a.s.

Let A = (At(ω)) be any adapted and right continuous real process. Set r(A)t := lim
s↓t

As ◦

rs, whenever the limit of right side exists. It follows from the fact that rtω(u) = rs◦θt−sω(u)

for 0 < u ≤ s ≤ t that if A is an additive functional, r(A) := (r(A)t) is also an additive

functional if r(A)t < ∞ a.s. for t < ζ. We say A is even if r(A) = A, and odd if r(A) = −A.

More detailed properties of even and odd additive functional in diffusion case are given in

[3].

Example 2.1. Let u ∈ D and be quasi-continuous. Then t 7→ u(Xt) is right continuous

and t 7→ u(Xt−) left continuous. Define

A
[u]
t := u(Xt)− u(X0),

which is an additive functional of X. Then, it is easy to check that

A
[u]
t ◦ rt = u(X0)− u(Xt−).

Hence A[u] is odd.

Example 2.2. By a result of [12], any increasing continuous AF (or PCAF) is even.

Consequently any continuous AF of bounded variation is even. On the other hand, using a

proof in [3] without any modification, we see that any CAF of zero energy is even.
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Example 2.3. Let ϕ be a Borel function on E ×E and A :=
∑
s≤·

ϕ(Xs−, Xs). Then A is

an AF as long as |At| < ∞ a.s. for t < ζ. It is easily seen that

At ◦ rt =
∑
s≤t

ϕ(X(t−s), X(t−s)−) =
∑
s<t

ϕ(Xs, Xs−).

Hence r(A)t =
∑
s≤t

ϕ̂(Xs−, Xs), where ϕ̂(x, y) := ϕ(y, x). It is now obvious that A is even if

ϕ is symmetric: ϕ̂ = ϕ and odd if anti-symmetric: ϕ̂ = −ϕ. This example may justify the

names ‘even’ and ‘odd’ more concretely.

We also define the even part of A as Aeven := 1
2 (A+ r(A)) and the odd part as Aodd :=

1
2 (A− r(A)). Then

A = Aeven +Aodd.

Hence the Fukushima’s decomposition can be reformulated as

u(X·)− u(X0) = (M [u])odd, −N [u] = (M [u])even.

We now prove that any even continuous martingale AF of X vanishes identically. This

was proved in [3], where X is a symmetric diffusion.

Lemma 2.2. Let A and B be AF’s and semi-martingale on [0, ζ[. Suppose that A is

even, B is odd and at least one of them is continuous. Then the square bracket process

[A,B] vanishes identically on [0, ζ[.

Proof. Since ∆[A,B] = ∆A ·∆B, [A,B] is a continuous AF of bounded variation and

therefore even by a result of J. Walsh. On the other hand, we may choose a sequence of

symmetric partitions {∆n = {tnk}} on [0, t] with mesh sizes tending to zero, such that

[A,B]t = lim
n

∑
∆n

(Atnk
−Atnk−1

)(Btnk
−Btnk−1

).

When t < ζ, [∑
∆n

(Atnk
−Atnk−1

)(Btnk
−Btnk−1

)
]
◦ rt

= −
∑
∆n

(Atnk
−Atnk−1

)(Btnk
−Btnk−1

).

Then it is easily seen that [A,B] is odd. Hence [A,B] vanishes identically.

Theorem 2.1. If M is an even local martingale continuous additive functional of X,

then M vanishes identically.

Proof. Take f ∈ L1(m) bounded, positive, and define u := Uqf with q > 0. Then

Au = qu − f and N
[u]
t =

∫ t

0
Au(Xs)ds is a continuous AF of bounded variation. Thus

[M,N [u]] = 0 and by the lemma above, [M,A[u]] = 0. It follows that [M,M [u]] = 0. Set

Zt :=

∫ t

0

e−qsdM [u]
s , Lt := eMt− 1

2 ⟨M⟩t .

Using Ito’s formula, we have

Zt = e−qtu(Xt)− u(X0) +

∫ t

0

e−qsf(Xs)ds+ [e−qλ,M [u]]t,
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where λt = t. However,

[e−qλ,M [u]]t = −
[ ∫ ·

0

e−qsds,M [u]
]
t
= −

∫ t

0

e−qsd[λ,M [u]]s.

Since λt is a PCAF, it follows from Lemma 2.2 that

[λ,M [u]] = [λ,A[u]] = 0.

Therefore

Zt = e−qtu(Xt)− u(X0) +

∫ t

0

e−qsf(Xs)ds.

Define dP x
L := LtdP

x on Ft for any t > 0. Since

[L,Z]t =

∫ t

0

e−qsLsd[M,M [u]]s = 0,

Z is a P x
L-local martingale by Girsanov theorem on [0, ζ). Since Z is uniformly bounded

on compact intervals, it is a true P x
L-martingale. Consequently P x

L(Zt) = 0. Letting t tend

to zero, we have Uq
Lf = Uqf , where (Uq

L) is the potential operators associated with P x
L .

It follows that P x
L = P x and L ≡ 1 on [0, ζ). Therefore M ≡ 0, being a continuous local

martingale of bounded variation.

§3. Representation of Symmetric Multiplicative Functionals

We are now given a super-martingale multiplicative functional M = (Mt) of X. Roughly

speaking, M satisfies the following conditions

(i) Mt ≥ 0 a.s. for all t > 0;

(ii) Mt+s = Mt ·Ms ◦ θt a.s. for all s, t > 0;

(iii) P x(Mt) ≤ 1 for all t > 0 and x ∈ E;

(iv) t 7→ Mt is right continuous a.s.

Without loss of generality we assume that M0 = 1 a.s., since we can always appeal a killing

of a hitting time to reach this. Let Y = (Ω,F ,Ft, Yt, θt, Q
x) be the right process transformed

by M , precisely it is a right process with the same state space E and transition kernel (Qt)

defined by

Qtf(x) := P x(Mtf(Xt)), x ∈ E

for f ∈ pB(E). The process Y is locally absolutely continuous with respect to X; i.e.,

Qx|Ft << P x|Ft for any t > 0 and x ∈ E. It is well-known that the converse aeertion holds

too. Therefore the transformation of super-martingale multiplicative functionals is one of

great importance in the theory of Markov processes and it includes many useful ones such

as killing transform, Doob’s h-transform, drift transformation. We denote the respective

resolvent by (V q)q>0. Notice that Y is realized on the same sample space as X, and that

Xt(ω) = Yt(ω) = ω(t).

The processes are distinguished actually by their respective laws P x and Qx, but we use

Yt for emphasis when dealing with Qx. We say M is (m-)symmetric if Y is also an (m-)

symmetric Markov process E. The following lemma is easy to check by Lemma 2.1.

Lemma 3.1. A necessary and sufficient condition for M to be symmetric is that M is

even: Mt ◦ rt = Mt a.s. for each t < ζ.
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Now we state the main result of this section. Though it assumes M never vanishes, the

general case where M may vanish may be reduced to the non-vanishing case by the work on

killing of the terminal time S shown in [13].

Theorem 3.1. If M is symmetric and never vanishes, then there exist a symmetric

Borel function ϕ > −1 on E × E which vanishes on diagonal and a PCAF A such that for

all t > 0,

Mt = eLt−At

∏
0<s≤t

[1 + ϕ(Xs−, Xs)]e
−ϕ(Xs−,Xs), t < ζ, (3.1)

where L is the compensated martinagle of
∑

0<s≤·
ϕ(Xs−, Xs). The PCAF A is determined by

M up to Pm-evanescence. In particular, ϕ is uniquely determined by M modulo null sets of

the measure J . Moreover,∫ t

0

N(1{|ϕ|≤1}ϕ
2 + 1{ϕ>1}ϕ)(Xs) dHs < +∞ (3.2)

for all t < ζ, Pm-a.s.

Proof. It is known that M , as a super-martingale MF of X, admits a representation

(refer to [1] or [10]). There is a local martingale AF L, a PCAF A, and a Borel function

ϕ : E × E∆ → (−1,+∞) such that

∆Lt := Lt − Lt− = ϕ(Xt−, Xt), ∀t < ζ, Pm-a.s.,

such that

Mt = eLt− 1
2 ⟨L

c⟩t−At

∏
0<s≤t

[1 + ϕ(Xs−, Xs)]e
−ϕ(Xs−,Xs), ∀t < ζ, Pm-a.s. (3.3)

The AF L and the PCAF A are determined by Z up to Pm-evanescence. In particular, ϕ is

uniquely determined by Z modulo null sets of the measure J and stisfies the integrability in

the theorem. Since M is symmetric, it is easily seen that its Dolean-Dade logarithm LogM

is an even additive functional. Clearly

LogMt = Lc
t +

∑
s≤t

ϕ(Xs−, Xs)−
∫ t

0

Nϕ(X)dH −At.

Hence

Lc
t − r(Lc)t +

∑
s≤t

(ϕ− ϕ̂)(Xs−, Xs) = 0.

It follows from the continuity of Lc that
∑
s≤·

ϕ(Xs−, Xs) is even and therefore ϕ can be

taken to be symmetric. Finally it follows that Lc is an even continuous martingale additive

functional and vanishes identically by Theorem 2.1.

Remark 3.1. The result tells that a symmetric super-martingale MF has a rather simple

representation and is actually of bounded variation. Actually we may prove that any even

semi-martingale AF is of bounded variation by a similar approach. Notice that a general

even additive functional is not of bounded variation. For example, for any element u in the

associated Dirichlet space, N [u], the CAF of zero energy in Fukushima’s decomposition, is

not of bounded variation in general.

Remark 3.2. For a σ-finite measure µ, it is not hard to see that the super-martingale
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MF’s which transform X to µ-symmetric Markov processes are unique up to a µ-symmetric

super-martingale MF, which is of the simple form as above.
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