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THE DETERMINANT REPRESENTATION OF THE
GAUGE TRANSFORMATION OPERATOQORS *%%*
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Abstract

The determinant representation of the gauge transformation operators is establised. In this
process, the generalized Wronskian determinant is introduced. As a simple application, the au-
thors present a construction of the special 7-function obtained firstly by Chau et al. (Commun.
Math. Phys., 149(1992), 263), which involves the generalized Wronskian determinant. Also,
some properties of this determinant are given.
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¢1. Introduction

The KP hierarchy '3 and the ¢cKP hierarchy [*=8! in terms of the pseudo-differential
operators, are important topics in research of soliton theory. Of course, how to find a class
of the solution of these integrable hierarchies is still an attractive problem. Recently, two
kinds of gauge transformation operators have been successfully applied to solve the KP
hierarchy and cKP hierarchy!®~17. One of them is differential type (i.e., ¥p or Tp) and the
other is integral type (i.e., ¥; or T7) (see [9,15]). Chau et all®!5] have obtained a new and
more universal determinant expression (see (3.17) in [9] ) of the 7 function by successive
application of such two gauge transformation operators. This determinant[®! resembles the
well-known Wronskian determinant except that elements in the first some rows are in the
integral form. We call it the generalized Wronskian determinant. So far no one, to the
best of our knowledge, has provided a direct and simple proof of the appearance for the
generalized Wronskian determinant and discussed properties analogous to the Wronskian
determinant. On the other hand, to obtain the expression of each component in multi-
component cKP hierarchy by using gauge transformation method, the key object is the
determinant representation of the gauge transformation operators.

The main aim of the present letter is to establish the determinant representation of the
gauge transformation operators. As a simple and direct application, we will answer the first
question above-mentioned in detail.
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§2. The Determinant Representation

For the KP hierarchy and cKP hierarchy , there are two kinds of the gauge transformation
operators!?19]:

Type I: Tp(x) =xo0dox *, (2.1)

Type II: Ti(p)=ptod topu. (2.2)

Here x and p are the eigenfunction and the adjoint eigenfunction of the above integrable

hierarchies, respectively. 0 = E%, and 07! is the inverse of 0. The symbol o denotes the
product of two operators. For example,
0
aof:fa—"_ai‘i :f8+fwva2of:fma:+2f$a+f82;
on the other hand, the symbol - denotes an operator acting on something following it,

0-f=fs,0% f= fre. Ifweintroduce the conjugate operation * for two operators A and
B as

a*zia’ (871)*:*871, (AOB)*:B*OA*,

then

(T5' ()" = =Tr(x),  (T7 (W)™ = =To(w). (2.3)
In particular, it follows that

To(x)-x=0, (T;'(w) -p=0. (24)

We omit furthermore information about the generation functions x and p, which can be
founded in [9,13,15], and turn to the representation of the gauge transformation operator in
the following.

We would like to stress that the following discussion in this section only depends on
the form of the guage transformation operators, which does not depend on any concrete

integrable hierarchy. Take two sets of functions {fi(o),i =1,2,---,n;,fO} and {ggo),i =
1,2,---,n; g(O)} as the generation function of the gauge transformation operators, and sup-

pose they satisfy following rule in the gauge transformation:
(1) The first step

—1
1y =1 () = V000 O, (2.5)
we define the rule of transformation under Tg) as
=1
FO = T](Jl)(fl(())) O g = (Tg)(fl(o))) g = _TI(fl(O)) AR (2.6)
=1
=1 10 o = (@) e =m0V, (27

ifi>2 for fV.
(2) The second step

—1
15 =T () = 5 e 00 57, (28)
we define the rule of transformation under Tg ) as
w—1
fO =T FO, gD = (TP )T g = 1) gV, (29)

—1
=125 1 9P = (P ) gl = =T () - 9,
(2.10)

if ¢ > 3 for fi(Q), under the gauge transformation of the Type I. For Type II, we may suppose
the transformed rule:
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(1) The first step

—1
T =1 (") = 9" 007 o gl”, (2.11)

L1
FO =1M (G O g0 = (T (g)) . g @ = —Tp(?) - g,

(2.12)
1 1), (0 1 1, (0)y* 1 0 0
1 =100 1O, g = (T e™) 9 = ~To(g”) - 9"
(2.13)
fori > 2in gfl);
(2) the second step
-1
7 =117 (95)) = g5 007 0 g8, (2.14)
w1
F@ =1 ") 10, g = (T (g8")" g = ~Tp(gs") - gV,
(2.15)
w1
12 =126 1Y, 0 = (19" 9 = ~To(ed) - 9" (2.16)
2.16

for i > 3 in gEl). Obviously the gauge transformation operators can be successively applied
according to the rule in (2.5)—(2.16). For the n-step gauge transformation , as shown in
[13,15],

Ty =TS (f5 ) o T8 V(£ o o T (D) o TS (F5V) 0 T (£,

n

it is easy to get

0 0 0
Wn+1(1()7f2( )7"'a T(L)af)
0 0 0
Wa(F7, 157, 1)

f(")ETn-f:

based on the Wronskian’s properties-Jacobi expansion theorem and Crum identity!3:15:18],
Here W, ( 1(0)7 1(0)7~-~ , T(LO)) is the Wronskian determinant. But the formula of ¢(™ =

(Tn_l)* - g% can not be obtained in the the same way as [13,15]. Also, for the (n + k)-step
gauge transformation

Tn+k _ T](n+k) (g](€n+k71)) o T[(n+k71)(g(n+k72)) 0.0 T](n+1)(g§n))

k—1
o Ty V(DYoo TP () 0 TS (1)

it is more difficult to find the final form of the
FOR =1 O

because it will encounter the generalized Wronskian determinant. However, such two ques-
tions will be solved obviously once the determinant representation of the 75, is established.

Now let us discuss our main result. First of all, for simplicity in the following Theorem
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2.1, we call
IWk,n EIWk,n(g[(gO)?g](gO)lv' 79%0)7 1(0) 2(0)7"' ) "r(LO))
0 0 (0 0) 0 0 (0 (0
/ g(% )) : ff(o)) [ )) : fé(o) / 9(56 )) : fé(o)) - g fn )
k-1 J1 J o1 f2 Jk-1"J3 f
_|J g§0)( -)fl(o) S 950)( ~)f§0) J g§0)( -)féo) SR 950)( y )
f 0 f 0 f 0 . nO
© (0 (0) . (0) (2.17)
1,z 2,z 3,z n,r
(fl(o))(.nfkfl) (fQ(O))(.nfkfl) (féo))(.nfkfl) e ( (0))(n k—1)

the generalized Wronskian determinant. In particular,

IWO,n:Wn( (0) f2 y Ty 'r(LO))v
o+ £
(fi(O))(k) = gk

the notation f f= f fdx, in which the integration constant equals zero. Additionally, for
the following 7}, 1, an expansion with respect to the last column is understood, in Which all
sub- determinants are collected on the left of the symbols 0*(i = —1,0,1,2,- k); for

the T~ + . an expansion with respect to the first column is understood (collectlng all minors
on the right of fi(o) 0071

Theorem 2.1. For the n > k,

n+k n+k—1 n+k—1 n+k—2 n+1 n
Topr =T (g 7)o T 0 () 1 (g)

k—1
° Té”)(fT(Ln—l)) o Tgflfl)(f(” 2)) T(l)(fl(o))
1
Win(g g g A B0 )
ffl(O) '9120) ff(o) (0) ff(o) gl(€0) 9 lo g](CO)
0 0 (0 (0 (0 O _ 0
JHO G0 THO GO [0 0 atogD,
FAO G0 H G0 A0 gt
1 3 i 1 L 218)
(0) (0) (0) P '
1,x 2,z n,x
(f(o))(n—k:) (f(O))'(n—k) (f(O )(n k) gn—k
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and
Tn%}k
0 — 0 0 0 0 0 0 0O\ (n—k—
FO007 g0 g0 g0 0 g0 (ke
0 0 0 0 0 0 0O\ (n—k—
Jo 1" Jo 55 (7))

f3" e 07!

fr(zo) 091

F0 0071 g9 fO
Jo - O
(~1)"!

(fu)nh=2
(fT(LO))(n—k—2)

fggo) : f7(10_)1 f7(LO)1 f7(LO—)1,a;
fgf)) . ﬂ(IO) (0) (0)

n n,x

(2.19)

IWk77L(gl(gO)7g](g )1a e

0 0 0
7g§)7 1() 2()7

. 7f7(L0))

Proof. The process of the recursive construction of 7,44 shows that Tj,4x is an (n +
k)-th pseudo-differential operator with a normalized leading coefficient, which annihilates

all generation functions f1(0)7 fQ(O)7 e

0 0

with a,_r =1, and

It follows that T, - fl-(

a / O (O .

—(f{ R,

/ R 1

—(fS) =R,

s [0+

~(fO)nR,

and

by - (/gff)-fl(o)) + by (/9£°)~f2(0)) +

bl'(/gl(co_)l'

bl-(/ (0) f(o>)

, ,(LO), and its conjugate operator (T J:k)* annihilates

,g,(go) from (2.4). We may assume

-1
Tn+k=Zapoa ogll—l—Zapo@ (2.20)
p=—k
T, = Zf 07! (2.21)
R (i=1,2,---,n) and (Tnjrk)* -ggo) = 0; explicitly,

-ta_q /ggo)f( + aOf(O + alf(O) 4 anfk—1<f1(0))(n_k_l)

+a_1/ O£ L apf® 1+ anf 1ot g () kD

+a_1/g§0)fr§0)+a0f1(0)+a1f7(L(,)9)c+ e ()Y

(2.22)
~+bn'</g,(€0)-f7(l0)) =0,
(0)> +by- (/gé‘”l (0)) ot b (/ o f’(’O)) - (2.23)

(/g§o>_f2<0>>+ ~-+bn-(/g§°>-f,§°)) — 0.
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Equations (2.22) can be solved via Cramer’s rule and result in

(_1)n+1+k—i+1

a_, =
IWk n(g](gO)a 7950)7 1(0) 2(0)7 : 7f7gLO))
[fO. 4O [0 O O v [0
(© 0 0 0 0 0 0 0
AR Y
L N S S SR G YY)
(0) 0) (0) (0)
fl f 3 . n
(0) (0) (0) (0)
1,z 2,z 3,x n,r
(AR (D (B ()
where i = 1, 2, --- , k, % represents that the row containing g; is deleted;
Y (71)n+1+i+k+1
;=
IWk n(g)(gma' : 7950); 1(0)7 2(0)7"' 3 7(10))
% s IR IR
0 0 0 0 0 0
TR 020 S50 T h e [
ff(O) (0) f f(O) (0) f féo) '9%0) . f f (0)
o o ©) <0>
o 2@ o o |
1,z 2,z f37w T n,r (225)
ozn_ o:n_ ozn_. ozn_.
(A0 ()R (g ()

in which i = 0,1,2,--- ,n —k — 1, and 7 indicates that the ith derivative is omitted. Hence,
taking (2.24) and (2.25) back into (2.20) leads to (2.18)

Let us turn to the determination of the coefficients in T, J:k The T +k is the inverse
operator of T}, 1k, so it must satisfy the following relation

(TasroT,})_ =0. (2.26)

Here for a pseudo-differential operator

A:Zaiai, A+:Zai8i,

i>0
A=A => a0

<0
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By (2.20) and (2.21), we have

n—k
(TnJrkoTnJrk) (Zapoap—i—a koa ng)-i-“--i-a,lo@_loggo))
p=0

o (Z o0 oby)
n—k n

_Zzaof( (Z’)Oa Ob +Zak03 ))08_1obj

p=0 j=1
n

+Y a_g-yod o o (" gl 00 o,

+ Za_l 00 to (f;o) -gio)) 00 tob;. (2.27)

Using 9 lofod ! = ff 001 — 971 o ([ f), the above equation can be written as

(Tn+k (¢] Tn-‘rk)

n n—=k

=2 > apo ()P oo o,

=1 p=0

+Zn:a—k(/g;(€0) 'f](o)) 00! ob; — Xn:a_k 00 to (/g,io) 'f](o)) ob;
j=1 j=1

+ Za_(k_l)(/g,i )1 . f](O)) 0871 o bj — Za_(k_l) 08*1 o (/g](co_)l . fj(o)) o bj
j=1

j=1

+ En:al(/ggo) . f;o)) 0t ob; — En:a,l 00 1o (/ggo) . f;0)> ob;. (2.28)
j=1 j=1

It is easy to see that the right hand side of (2.28) equals zero, because of (2.22) and (2.23).
On the other hand, according to the identity
fodtog=) 0""0ofWog
>0
ith fO) = yf , the T, b itt
with f a1 the +k can be rewritten as

Tn_—i-k = Z Za 1—i f(O) ob; + §—ntk Z(fj(o))(n,kfl) ob,

n—k—2>i>0 j=1 j=1

+ ) Za—l Lo (fOYD op;. (2.29)

i>n—k j=1
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However, in order to satisfy T}, % o Tnjk =1, T;le should be taken the form as

T, 1k = 97"* 4 the lower order terms. (2.30)

So, comparing the (2.29) and (2.30) gives the following system of equations,

A1+ £+ [0 + -+ [0, =0,
FOby+ £y + f$0bs + - + b, =

(fl(o))(n—k—2)b1 + (fz(O))(n—k—z)b2 + (f?EO))(n—k—z)bB Foeet (fr(lO))(n—k—2)bn -0,
(fl(o))(n—k—l)bl + (fQ(O))(n—k—l)b2 + (féo))(n_k_l)b:g 4ot (fy(lo))(n_k_l)bn -1

(2.31)
From (2.23) and (2.31), the b; (i =1,2,--- ,n) is obtained as follows:
ff(O) O) foO ’AL fan
[ f10) (0_)1 IN: (0) 0) ; ff(o) 0)
(_1)n+i (:0 : E
by =~—2 . ) (0) i (0) (2.32)
i 1 2 n ’
Wen ©0) O G 0)
1,z 2,x n,r
: : i :
(fl(o))(nfkfz) (fQ(O))(nszfz) ; (fT(LO))(nszfz)
wherei = 1,2,--- ,n. The symbol i denotes the column with fi(o) is deleted. The determinant

representation of Tnjk is obtained by taking b; back into (2.21).

Under the case of n = k, we need some modification of the formula about the T jk. We
may assume

—k
Tovr =1+ Z apo 0~ Oglpl)’ (2.33)

p=—1

which is consistent with (2.20), but T J:k must be deformed as
T =1+ [P0 ob;. (2.34)

By similar argument about Theorem 2.1, we can show
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Theorem 2.2. Under the case of n =k, the T,y1 is also given by (2.18), i.e
Tn+k _ T[(n+k)( (n+k71)) o T(n+k71)(gl(€riﬁk72)) o TI(nJrl) (g§n))

o T (F ) o T V(2 - T (1)

n

1
= 0 0 0 0
[Wkﬂ(g](g)ag](g)la" agg )5 1() 2()7"'7 72))
ff(O) (0) ff(O) ]io) ff(O) (0) 9 1o g](;))
0 0 0 0 0 o _ 0
P THY -, Ty ool
| L L (235
[ 1O g© ff<o © ff g9 91og® (2.35)
1 f§°) LT &
but the Tn+k becomes
90 91(@0) 9120)1 o 950)
0 _ 0) #(0 0) (0 0) £(0
1(O)Oa 1 f (O)f(o) f ](€)1 1() fggo)fl(o) )
Tk = fg”oa‘l J’g” SO 7/ SO - SUREER S o £ : (2.36)
IWin
NPT R PN R PN

Proof. The proof is omitted because it is similar to Theorem 2.1.
Particularly, the sufficient condition about the existence of the determinant representation
of the gauge transformation operator is IWy, ,, # 0.

We would like to point out that the T, and T, +k in Theorem 2.1 and Theorem 2.2
reduces to the determinant expression of T, and (7,;!)* in [11] under the case of k = 0.

¢3. Example

In this section, in order to show the usage of the determinant expression of the T, and
Tf_&k, we will apply it to the KP hierarchy. This well-known integrable hierarchy can be

described asl

0B,, 0B,
o0xy, 8xm

[BmaB ] 0 (man:273>"' a)a (31)

where B,, = (L") denotes the part of the differential operators, and
L=0+4ud ' +uz0 2 +---. (3.2)

An important character for the KP hierarchy is that there exists a sigle function 7(x), the
so-called tau function, such that

0? 1 02 o3
923 logr, wug= 292,02, 8;101} log 7. (3.3)

Thus the central task is to establish the final form of the tau function after the n + k step
gauge transformations. Following [9], we need to introduce linear system

U =

0
8mn¢(x17x27“"):Bn'(rb(xlal?a'“?) (34)
and its conjugation systems
0 x
71#(1‘17]"27"' a):_Bn'w(xth"” 7) (35)

oz,
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to construct two kinds of the gauge transformation , i.e.,
TD:q’)oaoqﬁ_l, (36)
Tr =y 'od oy,

as mentioned in (2.1) and (2.2).

Let us discuss the transformed result for inintial KP hierarchy Br(LO) with initial wave
functions {4(©), (bZ(O)J =1,2,---,n} and {w(o),z/}i(o)}. We will use them to generate gauge
transformation and its repeated iteration. Considering the results in [9] and previous (2.18)
and (2.19), the following Lemma 3.1 and Theorem 3.1 can be reduced easily, so we omit
their proof. For the n-step gauge transformation chain,

TG gy TGN pa T g TS

¢ oY
{95 )

(n)
Bl T gy

n

B0)

n

we have
Lemma 3.1.

To =T5 (67 ) o T5 ™V (00 5) -0 T (657) 0 Ty (61)
S
(0) (0) (0) (0) 9
L @ o o ©
= W : l,zz 2,xT 3,xx e n,TT 9? ; (38)
O: 0: 0: 0: ) :
()™ (@)™ (g™ (o)) o
and
7 = W, (617,68 @) - 7@
in which i =1,2,--- ,n.
For the (n + k)-step gauge transformation, n > k,
BO Tfa”ﬁﬁ”) BW Tg)ﬁ;(zn) B® Tg’ﬁ’éz)) B® ... =D Tg’”(ﬁ(f“l)) B
TI(”L+2§¢§7L)) B7€LH+1) TI(TL+2)&€§"+1)) B’r(Ln+2) . B’r(LnJ,_k_]_) Tl(n+k) (&(71+k71)) B’Eln+k)’
we have
Theorem 3.1.
n+k n+k—1 n+k—1 n+k—2 n+1 n
T =T (D) o TP D (572 ) ()
n — n—1 n—2 1 0
oI5 (g1 D) o TH V(@) - T (61”)
1
LT LSRN LA LI O )
Jo-w” o) -u” e el o tou
fﬁbgo) 'wl(gl f¢go) : 1@1 f¢£to) '¢l(q()21 ot Owl(c(l)l
o: 0 0: 0 0: 0 _ : 0
L L
b S 1 ’
(0) (0) (0) 5 (3.10)
1,z 2,x e n,T
(¢§0))'(n—k) ((bgo)j(n—k) ((;5510))'(7;—1@) an.—k:




No.4 HE, J. S., LI, Y, S. et al. GAUGE TRANSFORMATION OPERATORS 485

n n+k— n+k— n n
POEHR) etk l) | pnke2) ) )

0 0 0 0 0
:IWk,n( ](¢)7 ]E;_)laa E)a g)agbg)??ngLO))T(O) (311)

The above Lemma 3.1 and Theorem 3.1 show that the determinant representation of
gauge transformation is convenient for us to get the transformed wave function and the
conjugation wave function. This fact is very important for us to solve the components of
cKP hierarchy, which will be discussed in future. Moreover, one can see that it is still
necessary to present the above discussion, although 7("**) is given in [9] without proof.

As we stated in the introduction, the Jacobi expansion theorem and the Crum identity
(see [13, 15, 18]) are important properties when we consider the repeated iteration of the
gauge transformations. By using the determinant expression of the gauge transformation
operator, we also provide alternative proof of the Jacobi expansion theorem of the Wronskian.

Comparing ¢ = T},-¢(9) with ¢(®) = Tgt) (qﬁ%n_l))d)(”*l) = %n_l) . (QSE::B )m7 we re-obtain
the well-known o
Corollary 3.1 (Jacobi Expansion Theorem).[!3:15:18]
( (¢>§°), <o>’, 7¢<o>17¢(0)))
Wa(o1”, 6", o, o)
_ W1 (o) () : ¢£LO)1, %O)Aﬁ( NW, 1(¢§0), éo),~-- 7¢£1021)' (3.12)
W2(¢1 88 o1 o)

Now we can generalize this theorem to the case of the generalized Wronskian determinant.
Corollary 3.2.

IWk:n+1(wk ) k 1a"' 7’(/}1 5 50)7"' 7¢£LO)7¢(O)) IWk,nIkal,nJrl
IW/C ln('(/]k 1° k 2a' ’1#1 ¢1 yWPo 5t 7¢n—1) z k—1,n
Corollary 3.3. For k > 1,
(0 0
(IW’C, (w(O) ’(/)k 1a k 2) 7w1 )a a"'7 %))
(0 0
Iw, ,n( wk 1 k 2) awl)a a"'7 gl,)) z
0 0 0 0
_ IWk ln(wk 17 ](6)27"'7 §)7 ()77¢())
IWI?,n( ) ,(/)k 1" 7’(/J1 ) " 7¢ )
'IWk+1,n(d}(O) ¢ k 17"' ) §0)7 © ) "t 7¢(O)) (314)

¢4. Conclusion

Our main results, Theorem 2.1 and Theorem 2.2, are the determinant representations of
the gauge transformation operator. Applying Theorem 2.1 to the KP hierarchy, we have
provided an exact proof (Theorem 3.1) of the transformed 7 function, which involves the
generalized Wronskian determinant. Furthermore, the Jacobi expansion theorem and the
Crum identity of the Wronskian determinant have been re-obtained by using Theorem 2.1.
Particularly, Corollary 3.2 and Corollary 3.3 mean the generalization of the Jacobi expansion
theorem for the generalized Wronskian determinant.

The advantage of the determinant representation of the gauge transformation operator is
that it not only brings out the transformed wave function but also leads to the transformed
conjugation wave function (see the details in Theorem 3.1). This fact inspires us to plan to
reduce the generalized Wronskian 7-function of the KP to the k-constrained sub-hierarchy,

which is similar to the work of Oevel and Strampp['?) for the Wronskian 7-function. Using
Theorem 2.1, the exact proof the binary-type 7-function introduced by [15] can be obtained.
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This new 7-function also involves the generalized Wronskian determinant, which does not
hold for the cKP hierarchy with the one component. Hence, based on Theorem 2.1, we will
consider to solve the 1-constrained KP hierarchy with one component: L =9+ ¢o 90t ot
in a forthcoming paper.
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