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Abstract

The authors discuss the partition of a finite set of points in the plane into empty convex
polygons, and improve some upper bound and lower bound in the related enumeration problems.
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§1. Introduction

A finite set of points in the plane is called a convex polygon if it forms the set of vertices
of a convex polygon. In [5] Masatsugu Urabe studied the problem of partitioning a finite
point set in the plane such that each component is a convex polygon. In this paper we
improve some results in [5].

In the sequel, if not otherwise stated, P always denotes a set of 15 points in the plane,
no three collinear, CH(P ) the convex hull of P , S the set of the vertices of CH(P ), and S′

the set of the vertices of CH(P − S). Usually points of S are denoted by x’s, points of S′

by y’s and other points of P by z’s. Polygon always refers to convex polygon.
If an m-subset of P determines a convex m-gon whose interior contains no point of P ,

then the convex m-gon or the m-subset itself is called an empty m-gon of P . If P is
partitioned into k subsets S1, S2, . . . , Sk such that each Si, i = 1, 2, . . . , k, is the vertex set
of a convex polygon, then the partition obtained is called a convex partition of P . A convex
partition of P is called empty if each CH(Si) is an empty convex polygon of P , and disjoint
if CH(Si)

∩
CH(Sj) = ∅ for any pair of i, j.

Let g(P ) be the minimum number of empty convex polygons over all empty convex
partitions of P , and f(P ) be the minimum number of disjoint convex polygons over all
disjoint convex partitions of P . Define

G(n) =: max{g(P ) : |P | = n}, F (n) =: max{f(P ) : |P | = n}.
Masatsugu Urabe in [5] proved that

⌈n− 1

4
⌉ ≤ F (n) ≤ ⌈2n

7
⌉, ⌈n− 1

4
⌉ ≤ G(n) ≤ ⌈3n

11
⌉.
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In the present paper we show that

⌈n+ 1

4
⌉ ≤ F (n) ≤ ⌈2n

7
⌉, ⌈n+ 1

4
⌉ ≤ G(n) ≤ ⌈4n

15
⌉.

§2. Preliminaries

We need the following lemmas.
Lemma 2.1. F (n) ≥ G(n).

Lemma 2.2.[5] G(11) ≤ 3.
Lemma 2.3. Given a set of 5 points in the plane, no three collinear, there must exist an

empty 4-gon in it.
Lemma 2.4. Let |P | = 15. If there exists a straight line which separates a convex i-gon

(i ≥ 4) of P from the remaining 15− i points, then g(P ) ≤ 4.
Proof. Since i ≥ 4, we have 15 − i ≤ 11 and then from Lemma 2.2 the result follows

immediately.
The straight line extended by an edge of a convex polygon dissects the plane into two

open half planes, the one not including the convex polygon is called the outer side of the
line with respect to the convex polygon. For simplicity, we say outer side of an edge instead
of outer side of the straight line extended by an edge, if there is no risk of ambiguity.

From Lemma 2.4 and Lemma 2.2 it is easy to obtain the following facts.
Lemma 2.5 Let |P | = 15. If there exists an edge of CH(P − S) such that there are at

least two points of S on the outer side of the edge, then g(P ) ≤ 4.
Lemma 2.6. Let |P | = 15. If A is an empty convex 4-gon of P , and the convex hull of

the remaining 11 points contains no vertex of A, then g(P ) ≤ 4.
We call such a set of 11 points in P as in Lemma 2.6 a good 11-point set. So Lemma 2.6

says if there exists a good 11-point set in a 15-point set, then g(P ) ≤ 4.
Let x be a point in the exterior of a convex polygon A. The weight of x with respect to

A, denoted by wA(x), is defined to be the number of the edges of A whose outer sides with
respect to A contains x. If wA(x) = 1, x is called a single point with respect to A.

Lemma 2.7. Let |P | = 15. If there exists a point of S which is a single point with respect
to CH(P − S), then g(P ) ≤ 4.

Proof. If CH(P − S) is a segment, it is trivial that g(P ) ≤ 4. Generally, due to Lemma
2.5, it suffices to prove the lemma under the following assumption:

(∗) There is exactly one point of S on the outer side of each edge of CH(P − S).
Case 1. |S′| > 4. Suppose x ∈ S is a single point about CH(P −S) on the outer side of

the edge (y1, y2). Let (y0, y1) and (y2, y3) be adjacent edges of (y1, y2) in the boundary of
CH(P −S). Let x1 ∈ S be on the outer side of (y0, y1), x2 ∈ S on the outer side of (y2, y3).

Subcase 1.1. No point of S−{x} is on the same side of y0y3 as x. Choose a point z of P
in the quadrilateral y1y2y3y0 such that y1xy2z is an empty convex 4-gon which is separated
from the other 11 points by a line, and from Lemma 2.4 we have g(P ) ≤ 4. Here y0 or y3
may be chosen as z.

Subcase 1.2. Exactly two points of S − {x} are on the same side of y0y3 as x. By the
assumption (∗) they must be x1, x2. If the interior of the quadrilateral y1x1x2y2 intersects
P , then we can find a point z in the quadrilateral such that xy1zy2 is an empty convex 4-gon
which is separated from the remaining 11 points. By Lemma 2.4 we obtain g(P ) ≤ 4. If
the interior of y1x1x2y2 contains no point of P , then y1x1x2y2 is an empty convex 4-gon of
P and from the assumption (∗) the remaining 11-point set is good, and hence g(P ) ≤ 4 by
Lemma 2.6.
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Subcase 1.3. Exactly one point of S − {x} is on the same side of y0y3 as x. By the
assumption (∗) this point must be x1 or x2, say x1. If x and x2 are on the different sides
of x1y3, that is, x1y3 separates x, y1, y2 from the remaining points of S ∪ S′, then we can
choose a point z of P in the intersection of y1x1y3y2 and y0y1y2y3 (y3 may be chosen as z)
such that xy1zy2 is an empty convex 4-gon which is separated from the remaining points of
P by a line, and by Lemma 2.4 we have g(P ) ≤ 4. Otherwise, x, x2 are on the same side
of x1y3 and hence x1x2 separates x, y1, y2 from the remaining points of S ∪ S′, by the same
method as in Subcase 1.2 we have g(P ) ≤ 4.

Case 2. |S′| = 3, 4. By the reasoning similar to that in Subcases 1.2 and 1.3 we obtain
g(P ) ≤ 4.

Lemma 2.8. Let |P | = 15. If the outer side of each line extended by any edge of
CH(P − S) contains exactly one point of S, and no point of S is a single point with respect
to CH(P − S), then

|S′| =
∑
x∈S

w(x) ≥ 2|S|.

Proof. Let l1, l2, · · · lm denote the lines extended by the edges of CH(P − S), where
m = |S′|. For x ∈ S let

wlj (x) =

{
1, x ∈ S is on the outer side of lj ,
0, otherwise,

where j = 1, 2, · · · ,m. Obviously for any x ∈ S, w(x) =
m∑
j=1

wlj (x), and since the outer

side of each edge of CH(P − S) contains exactly one point of S,
∑
x∈S

wlj (x) = 1 for any

j = 1, 2, · · · ,m. Hence∑
x∈S

w(x) =
∑
x∈S

m∑
j=1

wlj (x) =

m∑
j=1

∑
x∈S

wlj (x) = m = |S′|.

Since each point of S is not single, we have w(x) ≥ 2 for each x ∈ S, and therefore |S′| =∑
x∈S

w(x) ≥ 2|S|.

Given any edge of CH(P ), there exists a point y ∈ S′ which is nearest to the edge. We
call the point y a near point to the edge or a near point of CH(P ). The point in S′ which
is not a near point to any edge of CH(P ) is called a non-near point of CH(P ).

Lemma 2.9. If (∗) there is exactly one point of S on the outer side of each edge of
CH(P − S), and (∗∗) no point of S is single about CH(P − S), then

(1) each edge of CH(P ) has exactly one near point ;

(2) the near points of two consecutive edges of CH(P ) are distinct ;

(3) between any two consecutive near points of CH(P ) there is at least one non-near
point ;

(4) near points and non-near points of CH(P ) appear alternatively if, moreover, |S′| =
2|S|.

Proof. (1) Suppose the contrary. If the edge (x1, x2) of CH(P ) had two near points
y1, y2 in S′, then the outer side of y1y2 would have two points of S, i.e. x1, x2, which
contradicts (∗).

(2) If two consecutive edges (x1, x2) and (x2, x3) of CH(P ) shared a common near point
y2, it would be easy to get a contradiction to (∗).
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(3) If there were two consecutive near points y1, y2 of CH(P ) without any non-near
point between them, then the point x ∈ S on the outer side of y1y2 would be single about
CH(P − S), a contradiction to (∗∗).

(4) If there were two non-near points, say y′1, y
′
2, between the near point y1 to (x1, x2)

and the near point y2 to (x2, x3), then w(x2) ≥ 3 and

|S′| =
∑
x∈S

w(x) =
∑

x∈S−{x2}

w(x) + w(x2) > 2|S|,

a contradiction. Therefore when |S′| = 2|S|, near points and non-near points of CH(P )
appear alternatively.

§3. Main Theorems

Theorem 3.1. G(15) ≤ 4.

Proof. Since G(15) =: max{g(P ) : |P | = 15}, we need only to prove that for any finite
set P of 15 points in the plane we have g(P ) ≤ 4.

By Lemma 2.5 and Lemma 2.7, it suffices to prove our claim under the previous assump-
tions (∗) and (∗∗).

By (∗), (∗∗) and Lemma 2.8 it is easy to see that |S′| ≥ 2|S|, |S′|+ |S| ≤ 15, hence |S| ≤ 5
and so we have the following cases to consider.

Case 1. |S| = 5.

From (∗) and Lemma 2.8, |S′| ≥ 2|S| = 10, but |S′| ≤ 15 − |S| = 10, so |S′| = 10. Then
the 10 points of S′ form an empty 10-gon, while the 5 points of S can be partitioned into
three empty convex polygons, and hence g(P ) ≤ 4.

Case 2. |S| = 4. By an argument similar to that in Case 1 we have |S′| = 8, 9, 10, 11.
It is easy to obtain g(P ) ≤ 4 when |S′| = 9, 10, 11. Now consider |S′| = 8. Notice that here
|S′| = 2|S|. Let P − S ∪ S′ = {z1, z2, z3}. Consider the number of points of S′ on the outer
side of z1z2, z2z3 and z3z1. Without loss of generality we suppose that the number of points
of S′ on the outer side of z1z2 is the maximum and let it be t. Obviously t = 3, 4, 5, 6, 7.

(1) t=7. z1, z2 and the 7 points of S′ form an empty convex 9-gon, z3 and the remaining
point of S′ form a segment, i.e. an empty 2-gon, the 4 points in S form two segments and
hence we obtain an empty partition of P into 4 empty convex polygons, therefore g(P ) ≤ 4.

(2) t=6. By the argument similar to that in the case t=7 we get g(P ) ≤ 4.

(3) t=5. z1, z2 and the 5 points of S′ form an empty convex 7-gon. Since |S′| = 2|S|, by
Lemma 2.9, among the remaining 3 points of S′ there must be a near point to some edge
of CH(P ) from which we obtain an empty 3-gon, the other 4 points in S and S′ form two
segments and so g(P ) ≤ 4.

(4) t=4. z1, z2 and the 4 points of S′ form an empty convex 6-gon. Consider z3 and the
remaining 4 points y1, y2, y3, y4 clockwise in S′. By Lemma 2.9 we may suppose y1, y3 are
two near points to CH(P ). Without loss of generality, let z3 be on the same side of y2y4 as
y1. We obtain an empty convex 4-gon z3y2y3y4, the near point y1 and the edge to which y1
is closest form an empty 3-gon, and the last two points of P in S form a segment, therefore
g(P ) ≤ 4.

(5) t=3. By Lemma 2.9, we may suppose that the outer side of z1z2 contains y6, y7, y8 ∈ S′

among which y7 is the only near point to CH(P ). Denote the remaining 5 points of S′ by
y1, y2, y3, y4, y5 clockwise. By Lemma 2.9, y1, y3, y5 are near points to CH(P ). Notice that
z1y6y7y8z2 is an empty convex 5-gon. Since P is a set of points with no three collinear, z3
must be on one side of y2y4 and so either y1y2z3y4y5 is an empty 5-gon or y2y3y4z3 is an
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empty convex 4-gon. By the definition of near point, the remaining 5 points of S ∪ S′ form
an empty convex 3-gons and a segment or the remaining 6 points of S ∪ S′ form two empty
3-gons. And hence g(P ) ≤ 4.

Case 3. |S| = 3. From (∗) and the equality 2|S| ≤ |S′| ≤ 15− |S| we get 6 ≤ |S′| ≤ 12.
When |S′| = 10, 11, 12, we get g(P ) ≤ 4 immediately by the simple argument as before.
Now we discuss the remaining cases.

Subcase 3.1. |S′| = 9.

Now that |S′| > 2|S|, by (∗) and Lemma 2.9 there exists a non-near point between any two
near points of CH(P ). Denote P − (S ∪ S′) = {z1, z2, z3}. Consider the maximum number
of points of S′ on the outer sides extended by the edges of 3-gon z1z2z3, and without loss
of generality let the maximum number t be attained on the outer side of z1z2. Clearly
t=3, 4, 5, 6, 7, 8.

(1) t ≥ 5. The conclusion g(P ) ≤ 4 is obvious.

(2) t=4. z1, z2 and the 4 points of S′ on the outer side of z1z2 form an empty convex
6-gon. CH(P ) has three near points. Since |S′| = 9, and |S| = 3, we see that |S′| > 2|S|.
By Lemma 2.9 there exists a non-near point between any two near points of CH(P ). So
among the 4 points of S′ on the outer side of z1z2 there are at most 2 near points and hence
there exists a near point of CH(P ) in the remaining 5 points of S′. This near point and
its corresponding edge in CH(P ) form an empty 3-gon. Now by Lemma 2.3, we can get an
empty convex 4-gon from the 5 points left in S′ and z3. The remaining two points in P form
a segment, and we obtain g(P ) ≤ 4.

(3) t=3. The outer side of each edge of 3-gon z1z2z3 contains three points of S′. z1, z2
and the 3 points of S′ on the outer side of z1z2 form an empty convex 5-gon. From the
remaining 6 points in S′ we can always choose 4 points to form an empty convex 5-gon
with z3 while the remaining two points in S′ are adjacent in the boundary of CH(P − S).
These two points and a point in S form an empty 3-gon and the last two points in S form
a segment, and thus g(P ) ≤ 4.

Subcase 3.2. |S′| = 8.

In this case there are 4 points of P in the interior of CH(P−S), that is, |P−(S∪S′)| = 4.

Fig.1 Three open regions R1, R2, R3

(1) CH(P − (S ∪ S′)) is a triangle, say, z1z2z3 whose interior contains exactly one point
z0. The rays z0z1, z0z2, z0z3 divide the plane into three open regions R1, R2, R3. Suppose
t =: max

1≤i≤3
|Ri ∩ S′| = |R1 ∩ S′|. Clearly t=3, 4, 5, 6, 7. If t ≥ 4, immediately we have

g(P ) ≤ 4. Now suppose t = 3. Considering the definition of t, we may suppose |R1 ∩ S′| =
|R2 ∩S′| = 3, |R3 ∩S′| = 2. It is easy to form a partition of P into one empty convex 6-gon,
one empty convex 4-gon, one empty 3-gon and a segment, which leads to g(P ) ≤ 4.

(2) CH(P − (S ∪ S′)) is an empty 4-gon, denoted by z1z2z3z4. z1z2 and z3z4 determine
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three open regions in the plane: R1, R2, R3 (see Fig.1). Let t =: max
1≤i≤3

|Ri ∩ S′|. Clearly t=

3, 4, 5, 6, 7. From t ≥ 4 it is easy to deduce g(P ) ≤ 4. We focus on the case t=3. When
t=3, there must be two regions each of which contains 3 points of S′.

(a) |R1 ∩ S′| = 3, |R2 ∩ S′| = 3, |R3 ∩ S′| = 2. In each of the closures of R1 and R2

we may construct an empty convex 5-gon of P ; then we can select one point of S to form
an empty triangle together with the two points of S′ in R3; the last two points of S form a
segment. Hence we have g(P ) ≤ 4.

(b) |R1∩S′| = 2, |R2∩S′| = 3, |R3∩S′| = 3. In exactly the same way as in the previous
case we get g(P ) ≤ 4.

(c) |R1 ∩ S′| = 3, |R2 ∩ S′| = 2, |R3 ∩ S′| = 3.

(i) The two points of S′ in R2 are adjacent vertices of CH(P − S). In each of the
closures of R1, R3, we may construct one empty convex 5-gons, and then we can select one
point from S to form an empty 3-gon together with the two points of S′ in R2, and the last
two points of S form a segment, and thus we get g(P ) ≤ 4.

(ii) The two points of S′ in R2 are not adjacent vertices of CH(P−S). Then we have
a configuration of the 15 points of P as in Fig.2. Let Z = {z1, z2, z3, z4}. Noticing the weights
of points in S′ with respect to Z, we assume wZ(y1) = wZ(y3) = wZ(y5) = wZ(y7) = 1,
and wZ(y2) = wZ(y4) = wZ(y6) = wZ(y8) = 2. If there is a near point of CH(P ) in
{y1, y3, y5, y7}, it is easy to get a partition of P into four empty convex polygons and hence
g(P ) ≤ 4. Otherwise, no point in {y1, y3, y5, y7} is a near point of CH(P ). Without loss
of generality we assume the three near points of CH(P ) are y2, y4, y6. Also we assume that
wS′(x1) = 4 and wS′(x2) = wS′(x3) = 2. Considering the positions of points of Z we have
two more subcases:

(A) There exists at least one point of Z between x1y1 and x1y7. Then z4 must be
such point.

• z4 is between x1y7 and x1y8. If z4 is not in the interior of y1y6y7y8, then no
point of Z is in the interior of y1y6y7y8 and in Z z4 is nearest to y1y6. Therefore we can
partition P into 4 empty convex polygons as follows: 5-gon y1z4y6y7y8, 3-gon y2x1x2, 4-gon
y3z1z2z3, and 3-gon y4y5x3. If z4 is in the interior of y1y6y7y8, then the empty convex 4-gon
x1y8z4y7 is separated from the remaining 11 points of P by y1y6 or a line parallel to y1y6.
Therefore we reach the conclusion g(P ) ≤ 4.

• z4 is between x1y1 and x1y8. Similar to the above reasoning we consider the
relative position of z4 with respect to the interior of y2y7y8y1 and easily we obtain g(P ) ≤ 4.

(B) No point of Z is between x1y1 and x1y7. Then either both z4, z3 are between
x1y7 and x1y6 or both z4, z1 are between x1y1 and x1y2. In the former case we have an
empty convex 4-partition of P : 5-gon x1y7z4z3y6, 3-gon z2y3y5, 4-gon y8y1y2z1, and 3-gon
y4x2x3. Similarly we have an empty convex 4-partition of P in the latter case. All these
facts lead to the conclusion that g(P ) ≤ 4.

Subcase 3.3. |S′| = 6, 7. By similar argument we obtain the conclusion g(P ) ≤ 4.

Theorem 3.2. G(n) ≤ ⌈ 4n
15 ⌉.

Proof. It suffices to prove that for any set P of n points, no three collinear, in the plane,
g(P ) ≤ ⌈ 4n

15 ⌉, that is, P has a ⌈ 4n
15 ⌉-empty convex partition. Take a line l not parallel to any

line determined by any two points of P . Move l parallel to itself and divide the plane into
⌈ n
15⌉ open strip regions such that each region contains 15 points of P except probably the

last region R which contains r points of P , 1 ≤ r ≤ 15. If n is divisible by 15, then each
aforesaid region contains 15 points of P which has a 4-empty convex partition and therefore
P has a 4n

15 -empty convex partition. Now suppose n is not divisible by 15. Then in the ⌈ 4n
15 ⌉
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regions each of the first ⌊ n
15⌋ contains 15 points of P and the last region contains r points of

P with 1 ≤ r ≤ 14. For the points of P in the first ⌊ n
15⌋ regions there exists a 4⌊ n

15⌋-empty
convex partition. When r =1, 2, 3, the r points of P in R has a 1-empty convex partition,
4⌊ n

15⌋ + 1 = ⌈ 4n
15 ⌉, and so P has a ⌈ 4n

15 ⌉-empty convex partition. When r =4, 5, 6, 7, it is

easy to see that the r points of P in R has a 2-empty convex partition, 4⌊ n
15⌋ + 2 = ⌈ 4n

15 ⌉.
When r= 8, 9, 10, 11, by Lemma 2.2, the r points of P in R has a 3-empty convex partition,
4⌊ n

15⌋ + 3 = ⌈ 4n
15 ⌉. When r = 12, 13, 14, by Theorem 3.1, the r points of P in R has a

4-empty convex partition, 4⌊ n
15⌋ + 4 = ⌈ 4n

15 ⌉, so in each case P has a ⌈ 4n
15 ⌉-empty convex

partition.

Fig.2 A configuration of the 15 points of P

§4. The Lower Bound of F (n),G(n)

Lemma 4.1.[5] If n ≥ 10, then F (n) ≥ G(n) ≥ ⌈n−1
4 ⌉.

Lemma 4.2. If n = 4k + 1 (k = 0, 1, 2, · · · ), then F (n) ≥ G(n) ≥ ⌈n+1
4 ⌉.

Proof. By Lemma 2.1 it suffices to prove G(n) ≥ ⌈n+1
4 ⌉. When k = 0, 1, 2, obviously

G(n) = ⌈n+1
4 ⌉. Consider k ≥ 3. We need only to construct a configuration P of n = 4k + 1

points, no three collinear, such that g(P ) ≥ ⌈n+1
4 ⌉, i.e. g(P ) ≥ k + 1. Take a regular

(2k + 1)-gon u1u2 · · ·u2k+1 with center at point o. Then choose v1, v2, · · · , v2k+1 such that
P = {u1, u2, · · · , u2k, v1, v2, · · · , v2k+1} meets the following requirements (see Fig.3):

(1) no three points from {u1, u2, · · · , u2k} are in a vertex set of an empty convex polygon
of P ;

(2) if ui, uj (except u1, u2k) are in a vertex set of an empty convex polygon of P , then
v2k+1 is not in that vertex set.

Then any empty convex partition of P contains at least k+1 empty convex polygons and
we reach the conclusion that g(P ) ≥ k + 1 = ⌈n+1

4 ⌉.



494 CHIN. ANN. OF MATH. Vol.23 Ser.B

Fig.3 A regular (2k + 1)-gon with center at o

Lemma 4.3. If n = 4k (k is a positive integer), then F (n) ≥ G(n) ≥ ⌈n+1
4 ⌉.

Proof. We prove G(n) ≥ ⌈n+1
4 ⌉. For n = 4, 8, obviously G(n) = ⌈n+1

4 ⌉. For n > 10 we
construct the following point set P :

Let P1 = {u1, u2, · · · , u2k+1} be the vertices of a regular 2k + 1-gon. u2k−3u2k−1 and
u2k−2u2k meet at o1; u2k−1u2k+1 and u2ku1 meet at o2. In the interior of u2k−2u2k−1o1
choose a point ν2k−2 close to o1. In the interior of u2ku2k+1o2 choose a point ν2k−1 close
to o2. In the interior of u2k−1u2kui and ui−1uiui+1 choose a point νi close to ui−1ui+1 (i =
1, 2, · · · , 2k − 3). In this way we obtain the 4k-point set

P = {u1, u2, · · · , u2k+1, ν1, · · · , ν2k−1}
with no three collinear. It is easy to see that each vertex set of an empty convex polygon in
P contains at most 2 points of P1. Therefore any empty convex partition of P contains at
least k + 1 empty convex polygon and we have g(P ) ≥ k + 1.

Theorem 4.1. F (n) ≥ G(n) ≥ ⌈n+1
4 ⌉ for any positive integer n.

Proof. By Lemma 4.2 and Lemma 4.3 it suffices to prove only for 4k + 2, 4k + 3 (k =
0, 1, 2, · · · ). When n = 4k + 2, 4k + 3 we have ⌈n−1

4 ⌉ = ⌈n+1
4 ⌉. From Lemma 4.1 we obtain

F (n) ≥ G(n) ≥ ⌈n+1
4 ⌉ for n > 10. G(n) ≥ ⌈n+1

4 ⌉ when n = 2, 3, 6, 7, and the proof is
complete.
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