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ON ASYMPTOTIC NORMALITY OF
PARAMETERS IN LINEAR EV MODEL***

ZHANG SanNcuo***  CHEN XIrRu**

Abstract

This paper studies the parameter estimation of one dimensional linear errors-in-variables
(EV) models in the case that replicated observations are available in some experimental points.
Asymptotic normality is established under mild conditions, and the parameters entering the
asymptotic variance are consistently estimated to render the result useable in construction of
large-sample confidence regions.
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§1. Introduction

EV (Errors-in-Variables) model is just the regression model with both dependent and
independent variables subject to error (see, for example, [1, p.403], [2] and the literature
cited there). It is well known that in such models the parameters in the regression function
cannot be consistently estimated without some restrictive conditions imposed upon the error
variances. A way out is to take replicated observations. Consider that in many practical
applications, making artificial conditions upon error variances is not practical, but taking
replicated observations presents no essential difficulties. This procedure was studied in [3],
in which estimators of @ and 3 are introduced, and their weak and strong consistency are
proved under mild conditions. Their asymptotic normality are established respectively in
[4], but with a severe restriction that the errors are assumed normality distributed. Recently
we succeed in getting rid of this restriction, thus place the result on a broader base. This
constitutes the main result of this paper.

We write the model studied in this paper as

Cij =i +0i5,ni; =yi +e; =a+Pr; +e5,)=1,2,---n5i=1,2,--- k-
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with the following conditions imposed:

(§ij7€ij) ] = ].,27"' , T3 1= 1,2,"' , are lld,
(A){ Eéj1 = Ee11 = 0,0 < BEd3 = 02 < 00,0 < Ee?| = 03 < o0,
There are infinitely many integers in {n;} which are greater than one.

(B) : 611,11 are independent and d1; is symmetric .

Here (¢;5,7;;) are observable, 21,22, ,0%,03 and «, 3 are not.
In the following we adhere to the following notations:

n;
&= &j/ni, similarly n;, 6,5

j=1

k k
Ny = Zni,f_: an’fi/Nk; similarly 7, 6, ;

i=1 i=1
k k
i=1 1=1
Note that Z, S and &,7, --- all depend upon k. To simplify the writing, we put
k  n; k
DD =) i Y ai=) a
i=1

i=1 j=1

for any quantity a;; depending upon ¢,j and any quantity a; depending upon ¢. Other
summations will be written in its full detail.
As in [3], we introduce the consistent estimates for 02,02 and 3, a as follows:

61 =D (&5 — &)° /(N — k), (
6522(771‘3'—77@')2/(]%—]‘1)7 (
BZZ(&‘;’—5)(771*3‘—ﬁ)/(Z(ﬁij—f)Q—Nk&%), (1.
G =1~ fE. (
The purpose of this paper is to prove the asymptotic normality of & and B under condition
(A) and supplementary condition (B). This paper is organized as follow: in Section 2 and

Section 3, asymptotic normality of B and & are established respectively, in Section 4 we

introduce some estimators to make interval estimation and hypothesis testing of & and /3’ ,
in the large-sample sense.

§2. Asymptotic Normality of 3

The following lemmas will be needed in the following.
Lemma 2.1. Let w; be a sequence of independent random variables with zero means and

n
bounded variances. {a;} and {c; > 0} are constant sequences such that > (a; — an)*/cy, is

i=1
bounded and

n
lim Z (a; — an)* = co.
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Then

n
Z (ai — @n)wi/cn =20, asn — oo.
i=1

This is a special case of a result of [5]. Let

Qr = (& —&)° — Niot. (2.1)
Lemma 2.2.5] Assume that
lim inf(S/N) > 0. (2.2)
If condition (A) is satisfied, then
klgrolo Qr/S=1 as. (2.3)
Hence also
likrriioréf Qr/Ni >0 as. (2.4)

Lemma 2.3.05 Let {x;}7 | be independent random variables with zero means and finite

n P n
Sai| < epnP/?71 Y Elayl?, where ¢, is
i=1 i=1

absolute moments of order p > 2. Then E

constant.
Lemma 2.4. Let {x;} be an i.i.d sequence with zero means. If E |z1|" < oo for some

a.s.

r >0, then max |z;| /Y™ 2% 0.
1<i<k

Proof. Since E|z;|" < oo, it follows that Y. P (|z1]| > k¥/") < co. Hence

k=1
oo
Z P (|x1| > skl/r) < oo for each € > 0, (2.5)
k=1
. 1/r — ) 1/r
P(U L bt > <) = (U Utind > em! )
m=k - m=ki=1
k 00
- P(U{m\ >k U (aml > eml/r})
i=1 m=k+1
k 00
< ZP(|xz| > ek/T) + Z P(|z,| > em®/T)
i=1 m=k+1
= kP(|lz1| > ek™") + Y P(laa] > em!/").
m=k+1
Since E|z,|" < oo, it follows that kP(|z,| > ek'/") — 0 as k — oo. By (2.5)
Z P(|z1| >em™) -0 as k — oo,
m=k+1
therefore we obtain for each ¢ > 0,
[ee]
. 1/r .
P( Qk{lrgniz%); || /m* T > E}) —0 ask— oo (2.6)

Thus we prove Lemma, 2.4.
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Theorem 2.1. If, in addition to (A), (B) and (2.2), the following conditions are satisfied:
(].) dr > 0,E|511|4+T <00,
_\2
(2) Jnax n;/Ni — 0, ax n (x; —2)° /S — 0 as k — oo,
(3) liminf Ny /k > 1;
k—o0
then
S(B-8)

k 1/2
{Niotod + (3207 + 03)8 + 52 ol (Ve X2 1/mi — 2 (B, — 30) + o] |

4 N(0,1). (27)
Proof. Write
B—B=Wi/Qx, (2.8)

where

Wi =B8(Nio? = 30 (05 = %) = B (wi = 00y + > (s — Deig. (29)
Qy; is defined in (2.1).
Let

mic = B(Nio? = 30 (65— 9)°) = B (s — 2)0, (2.10)
Wi —my, = Z (&ij — E)esj- (2.11)

Since

D& -9 => (0 =07 +2> (¢ —x)6i; + S,

by Kolmogorov’s SLLN, Lemma 2.1 and Lemma 2.2, it follows that
D (& =&/ (Nyoi +5) 25 1. (2.12)
Since
max [&;; — &| = max|d;; — 6 +x; — 7| < 2max [dy;| + max |v/n(2; — 7)],
Y 2y %] %
from the conditions (1), (2) and Lemma 2.4, we have
max |&;; — &|/y/Nkot + 5 =5 0. (2.13)
%,]
By (2.12) and (2.13), it follows that
max [&; — £|/y/D_ (& — ) =5 0. (2.14)
0.
Denote by A|B the conditional distribution of A given B. From the condition (B), (2.11),

(2.12), (2.14) and central limit theorem, it follows that the following assertion holds true
with probability one: As k — oo, the conditional distribution

‘{%} 4t N (0, 1). (2.15)

\/ Nkal +S
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Now turn to my. By (2.10), write my, = B(Ty + Nj62), where

T, = (Nk@'% — Z(SEJ) — Z (xi — .1_7)5@]
k N, _
:A@—kE:ﬁ’JwikE:mﬁ_E:mC“_

Ny, 5
Z _01 TL2§ an 73 z~
Nk_k Nie =k (2.16)
Let
k S 2 2 Ni 2 2 _
Yii = N.—k ; (6 —o1) = N — & (n:67 — 0f) —ni (v —3) 6,  EYj; =0,
k 2 N, 2
BYE = ( N k) ni (B6ty —of) + ( Nkf k) [(E6%, — 30%) /n; + 204]
2kN,
+ni (2 —7)° 0f — m (B}, —o1) -
Let
Ny (N, C -k ON2 (k—S n !
Bi=) EYj= s (O i k)(EJiﬂ—ai‘)Jr i (k=3n, )a%+saf. (2.17)

(Ny, — k)* (Ny, — k)*

From Lemma 2.3 and E |61;]*"" < oo, simple calculations show that

24+71/2
E‘Z ‘ < cnjt, (2.18)
Elni6} — o?P*7? < C, (2.19)
Eln; (x; — &) 6|*7/% < Cln; (x; — 7)%) /4 (2.20)

By the condition (3), it follows that
k/(Nk — k) =O(1), Nig/(Np—k)=0(1).
Thus together with (2.18), (2.19) and (2.20) we obtain

ZE|YM|2+T/2 _ O(Z (n}”“ ¥ ng (21 — 7) ]1+r/4)> (2.21)
By the condition (2), (2.2) and (2.21), it follows that
Biir/z S EYPT? =0(1). (2.22)
Since Ty, = > Vg4, from (2.17), (2.22) and central limit theorem, we have
Ti/Br <5 N(0,1). (2.23)
Since ENy6%/By, = 0% /By, — 0, together with (2.23) we obtain
my/ (BBr) <5 N(0,1). (2.24)

Summarizing above it follows that the following assertion holds true with probability one:

As k — oo, the conditional distribution @ Wi 5o ij} tends to the distribution of
ko7 +

Y1 + Y5, where Y7, Y5 are independent, and

Y1 ~ N (0,8°B;/[(Nyot + S) 03]) , Y2 ~ N(0,1).
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Hence
Wy d.f

2 N(0,1). 9.25
V(Nio? + S) 02 + 32B? ©.1) (2.25)
Returning to (2.8), and noticing (2.2), we obtain

s (8-8) y
— N(0,1).
V/(Nyo? + 5) o2 + B2B?

Therefore we prove Theorem 2.1.

From the discussion above, we can see that if the distribution of §1; is normality, by using
the same method as in [4], the conditions can be simplified. We have the following

Theorem 2.2. If, in addition to (A), (B) and (2.2), the following conditions are satisfied:

(1) 611 ~ N (070'%),

(2) max |z; — | /vV'S = 0 as k — oo,
1<i<k

then
5(8-9)
\/(620% +02) S + Nyoio3 + 2kNy/ (Ny, — k) 207 —NOD. (2.26)

§3. Asymptotic Normality of &

Theorem 3.1. If, in addition to (A), (B) and (2.2), the following conditions are satisfied:
1) 3r > 0, E |51, < oo,

_\2
(2) 11212'<ka/1\71€ — 0, oax n (x; = %) /S =0 as k — o0,

(3) liminf Ny /k > 1;
k—o00
then
Ni

2
S(é — a)/{Nki"Qafa% + (B%0F + 0’%)(55’2 + ]%) + 5z {m

k
_ 2Nk 1/2 g,
(N ngt = k) (BSY, - 301) + o} <5 N(0,1). (3.1)

( ; ) 1 VN —k 1”

Proof. By (1.4), it follows that
G-a=E(B8-B)+e-85=W/Q (3.2)
where W} = —EWy, — QrBd + QiE, W, is defined in (2.9). Let
mj, = —Emy — QufB9, (3.3)
where my, is defined in (2.10). We obtain

Wi—mi = =8 (& — &) e + Que = D [Q/Nie — € (&5 — )]sy (3.4)

Since
a.s

ST IQu/Ne —E( — P = Q3N+ Y (6, -8, d=E-z %0,
by Lemma 2.2 and (2.12) we have
> 1Qk/Nk — € (&5 — O)1P/[S/Ni + 2 (Nyoi + S)] = 1. (3.5)
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Since
max |Qu/Ni = £(&ij — )| < Qu/Ni + [€][2max |di;] + max |y/ni(z; - 2)]],
from the conditions (1), (2), Lemma 2.2 and Lemma 2 4, it follows that
max |Qu/Ni — € (6 — ) (/82 Ny + 22 (Niod + 5) =5 0. (3.6)
By (3.5) and (3. ), it follows that

H}3X|Qk/Nk —&(&; - §_)|/\/Z (Qr/Nk — & (&5 — @]2 23 0. (3.7)

From the condition (B), (3.4), (3.5), (3.7) and central limit theorem, it follows that the
following assertion holds true with probability one: As k — oo, the conditional distribution

W —
\/[SQ/NI@ + z2 (Nkal + S
Now turn to mj.. By (3.3), (2.1) and (2.10), it follows that

= 5[5( _Z(u’_5> BY (xi—z ”}—{Z(@-j—E)Q—Nk&f]ﬁS

= —amy, — S5 — B8y (x:i — 7) &y

‘{5”} 4 N0, 1). (3.8)

=-5 (ka + ZN,0% + S0 + SZ (v; — T) 6ij) , (3.9)
where T}, is defined in (2.16). Write mj, = —8 (T}, + ZNk6® + 6> (v; — Z) 0;5), where
_ N kx Nz
Ty =T+ 80 = (5§j—a%)—NkikZ(ni5§_g2
—an i — T .IZ—S/Nk] (3.10)
Let
Y, = L 3 (67 —o1) — Ni® (n:i67 — 03) —n;[(xi — ) — S/Ny] 6, EY); =0
ki Nk_kal ij 1 N, — ki 1 i [\ k105 ki )
kT 2 Nz \?
BY(E = () m (Boh =) + (523) (B8t —301) /i +201]
2k Ny, z2
sl =) = S/N of — o, (B — o).
Let
22Ny, (Nk Yon; ' — k2 222N (k— Y n; !
=Yooy = TR ) (g 2N L0 )
(N — k) (N — k)
+ (52% + S?/Ny,) o7 (3.11)

By (2.18), (2.19), (2.20) and the condition (3), we have
S BT = O(z:(n;”/4 + [n(@s — @) |z 22

+ (/N2 3 ni*r/“). (3.12)
By the condition (2), (2.2) and (3.12) we obtain

1 2+4r/2
e 2L BT = o) (3.13)
k
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Since T}, = > Y}, from (3.11), (3.13) and central limit theorem, it follows that
T,/B; <5 N(0,1). (3.14)

Since

2
E|§Y" (@i — )8/ By ' < BERE B> (wi-7)6
E|ZNy6?/By,| = |2| 0} /Bj, — 0, together with (3.14) we obtain

=015/ (NyB}?) — 0,

d.f,
my./ (BBy) — N(0,1). (3.15)
Summarizing above it follows that the following assertion holds true with probability

Wi
tends to the
\/[82/Nk +22(Ny,o?+5)]03 is}

distribution of Yy + Y3, where Y{,Yy are independent, and
Y{ ~ N (0, 3°B;? /{[S?/Ni, + z* (Nyoi + S)]o3}) . Y5 ~ N(0,1).

one: As k — oo, the conditional distribution

Hence
W/
b 45 N(0,1). (3.16)
VIS /N; + 2 (Neo? + S oF + B
Returning to (3.2), and noticing (2.2), we obtain
Sé—o) 45 N (0, 1).
VIS?/Ni + 2% (Nyo? + S)| 02 + 2B?
Therefore we prove Theorem 3.1.
From the discussion above, we can see that if the distribution of §1; is normality, by using
the same method as in [4], the conditions can be simplified. We have the following
Theorem 3.2. If, in addition to (A), (B) and (2.2), the following conditions are satisfied:
(].) 511 NN(O 0'1)
(2) max lz; — Z| /VS = 0 as k — oo

1<i<
then

2e—a) 5 SHNO,D). (317)
[ Nua20303 + (8207 + 03) (S72 + 52/Ni) + 272 2 ot}

¢4. Estimation of E&f,

Since 62,62, Qg, & and B, & are consistent estimates of 07,03, 5,7 and 3, a respectively,
we can replace the latter by the former in the denominator of (2.7) and (3.1) respectively
without invalidating the asymptotic normality. In order that the modified form can be used
to make interval estimation and hypothesis testing of 5 and «, in the large-sample sense, we
need to estimate E&f;. For estimating Ed7;, we use

N 4 .
fig = [Z (& — &) = (6—15/n; +9/nj) af]/z (ni —4+6/n; —3/n?).  (4.1)
Remark 4.1. From (4.1) we can see that those {¢;;,1 < j < n;} with n; equaling 1 do
not contribute in estimating ji5. When we discuss the consistency of fi4, we can without loss
of generality assume that all n; > 2 in this section.
Lemma 4.1.[7 Let {zn} be a sequence of independent random variables with zero means.
If ap, T o0 and . Elz,|" /ak < oo for some p,1 < p < 2, letting S, = > x;, then
i=1

n=1

Sp/an =5 0.
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Lemma 4.2.0] Let {x;}7 | be independent random variables with zero means and finite
absolute moments of order p,1 < p < 2. Then

n p n
i=1 i=1
Lemma 4.3. Let {J;;} be an i.i.d sequence with zero means. Write

Ha = {Z (0ij — 5, — Z (6 —15/n; + 9/n?) oﬂ /Z (n; —4+6/n; —3/n?). (4.2)

(1) If E|611 " < 0o for some 1> 0, then py 2= E§%,.

(2) If ny < N for all i and E|611|*"" < oo for some r > 0, then py == E&%,.

(3) If 611 is symmetric distribution and ES$; < oo, then g =3 ES3;.

Proof. Since n; > 2 for all 4, this shows that n; — 4 + 6/n; — 3/n? > n;/8. Therefore

N/ > (ni—4+6/n; —3/n7) <8. (4.3)

E

Let
Y, = Z (035 — (5¢)4 - Z (6 —15/n; + 9/nf) of — Z (n; —4+6/n; — S/n?)Eé‘fl.
From Yj, = 3 (n; — 4+ 6/n; — 3/n?) (g — Ed1,) and (4.3), we only need to verify that
Yi:/Nr — 0 a.s.or pr. (4.4)

Simple calculations show that

Uz

Yi= Y (o — Bol) =4 [ 8% — Bl
=1

+6 Z [i 67,62 — ESYy /i — ot (n; — 1) /nz}
Jj=1

- 32 [ni6; — Eé},/n? — 307 (n; — 1) /n?]
= le — 4L2k + 6L3k — 3L4k. (45)
By Lemma 2.3, it follows that

. _ r i 4+r
B =7 B 6y
i=1

< Cypyn; FTAE |5 M (4.6)

Hence
E|nid! — B84 /n} — 301 (n; — 1) fn]T7"
< gr/4 [E |ni5;1|1+7“/4 + (E5%1)1+T/4 + 31+r/40;l+r} <C.

In the following C' will denote a constant, although not necessarily the same constant each
time. Thus

> E|nis} — B8ty n? — 301 (n — 1) /2| NI < o0 (4.7)
i=1

Combining En;6f = E§t, /n? + 30f (n; — 1) /n? and Lemma 4.1, it can be shown that
Ly /Ny = Z [ni6} — BS1,/n? — 307 (n; — 1) /n?] /N, =5 0. (4.8)
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From (4.6) it follows that

14r/4

2 ¢2 r/4 = 2+47/2 2+471/2
E‘Zéwél n o7 R
4.9)
1+7/4 r r\1/2 (
<n (BT B8
</ Cor B 00|77
Hence
1+r/4
E‘Z 62,62 — Boly fni — o (ni — 1) fn
r 14r/4 r
<3/ [E‘Z(Sfjdf + (Bok) T g bt } <c.
Thus
2 £2 4 4 Lr/d  1tr/4
ZE 2%51 E&t ni — ot (ni — 1) /ns /N, < 0. (4.10)
Combining

EZ&%(?? E&t ni + ot (ni — 1) /ns
and Lemma 4.1, it follows that
L3k/NkEZ [Zéfjéf 6‘111/ni—0% (n,—l)/n,}/Nk £>0 (4.11)

By Kolmogorov’s SLLN it follows that
Lik/Niy =Y (8} = ESY) /N 25 0. (4.12)
Combining (4.5), (4.8), (4.11) and (4.12), in order to prove (4.4) we only need to verify

Loy /Ny, = Z [ié;’j& - E5‘111]/Nk — 0 as. or pr. (4.13)
j=1

Since

(4+7)/3 < nBE |5, M

)

~ 3
£

j=1

by the Holder inequality and (4.6), we obtain
B[3SSoal " < (300,

j=1 j=1

<nME (O )V B |5 M (4.14)

14+r/4 (4471)/3\ 3/4 1/4
) (E|5z‘4+r>

Hence

ng
E‘Z 53,6, — Eoly
j=1

14r/4 r
‘ < or/4 [n£4+r)/s ) (C4+,,)1/4E|§11\4+T + (E5111)1+ /4}

<C - (4.15)



No.4 ZHANG, S. G. & CHEN, X. R. ON ASYMPTOTIC NORMALITY OF PARAMETERS 505

Note that
EY " 6%6; = Ed},.
j=1

By Lemma 4.3 it follows that

r i 1+r/4
E | Lo /N[ "7/* = E‘Z [Z 58,6: Eaﬂ /Nk‘
j=1
<20 NI 0, (4.16)
Thus
i
Lon/Ne = [ %00 — Boly| /N 255 0,
j=1
we prove Lemma 4.3 (1).
If n, < N for all i, by (4.15) it follows that
> i 147/4
S E‘Z 53,6, — Ea%l\ INT < oo, (4.17)
=1 j=1

By Lemma 4.1,
Lon/Ne = [ %0 — oty | /N 255 0,
j=1

we prove Lemma 4.3 (2).
If 81 is symmetric distribution and E§%; < oo, by Lemma 2.3 it follows that

E’j:l(sfjéi 3/2 < (E‘gtf’] 2>3/4 (E|5¢\6)1/4

3/4 . 1/4
S (nlE |511|6) (C@ﬂ?dE ‘(511|6)
= (06)1/4 Elonl°. (4.18)
Hence
i 3/2
E’Z 53,6, — E(s;*l] <c.
j=1
We obtain
iE‘i 636, — E6t ‘3/2/]\7?”/2 < 00 (4.19)
35 11 7 . .
i=1  j=1
By Lemma 4.1,

sz/Nk = Z [Zl 65’]62 - E(S[llli|/Nk E} 0)
j=1

we prove Lemma 4.3 (3).
Theorem 4.1. Let {0;;} be an i.i.d sequence with zero means.

(1) If E 611" < 0o for some 1> 0, then fiy 2= E§%,.
(2) If ny < N for all i and E|611|*"" < oo for some r > 0, then jg == E&%,.
(3) If 611 is symmetric distribution and ESS, < oo, then fiy =2 Ed},.
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Proof. By Lemma 4.3, we only need to verify

ﬂ4 — 4 E) 0. (420)
From (4.1), (4.2) and

§ij — & =05 — 0y,
it follows that

fa— o = [Z (6 —15/n; + 9/n$)/ S (ny — 4+ 6/n; — 3/n3)} (et —6h). (21
Since 6 — 15/n; +9/n? < 3n; and (4.3), this shows that

S (6 15/ni+9/n$)/2(ni —4+6/n; —3/n2) < 24 (4.22)

By (4.21), (4.22) and 67 = o7, we prove (4.20). Therefore Theorem 4.1 is proved.
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