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Abstract

The authors generalize the works in [5] and [6] to prove a Hopf index theorem associated to
a smooth section of a real vector bundle with non-isolated zero points.
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§1. Introduction

Let X be a closed and oriented manifold of dimension 2n. Let E → X be an oriented

real vector bundle of rank 2n. Let υ be a smooth section of E. We will denote the set of

zero points of υ by Y .

When υ is a transversal section of E, the set Y consists of isolated points. In [5], we got

a purely analytic proof of a Hopf index theorem associated to υ (see [4, Theorem 11.17]) by

constructing a super-twisted signature operator.

In this paper, using Witten’s deformation idea[8] and Bismut-Lebeau’s technique (see [2,

Sections 8, 9]) and also the super-twisted signature operator defined in [5], we will prove a

Hopf index theorem associated to a smooth section υ of E with non-isolated zero point set

which is nondegenerate in the sense of Bott[3].

Let p be a zero point of a smooth section υ of E. There is a linear map Lυ(p) from the

tangent space TpX to the fibre E|p of E at p defined by

Lυ(p)(U) =
2n∑
i=1

(Uµi)ξi(p), ∀U ∈ TpX, (1.1)

where {ξ1, ξ2, · · · , ξ2n} is a basis for E around p and υ =
2n∑
i=1

µiξi for some smooth functions

µi defined near p. Clearly, the definition of Lυ(p) does not depend on the choice of the basis
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{ξ1, ξ2, · · · , ξ2n}. When restricted to the zero point set Y of υ, by using (1.1) pointwisely

on Y , we get an intrinsic well-defined bundle homomorphism

Lυ : TX|Y → E|Y . (1.2)

Definition 1.1. A smooth section υ of E is said to be nondegenerate in the sense of

Bott[3] if

(i) the zero point set Y of υ can be expressed as a finite disjoint union

Y =
m∪

k=1

Yk (1.3)

of some oriented and connected submanifolds Yk of X ;

(ii) for each k, the kernel of the restriction Lυ,k of Lυ on Yk is equal to TYk.

For each k, since TX|Yk
and TYk are oriented vector bundles over Yk, we can give an

induced orientation on the normal bundle (TX|Yk
)/TYk of TYk such that the orientation on

TYk and then the induced orientation on (TX|Yk
)/TYk together coincides with the orienta-

tion on TX|Yk
. From Definition 1.1, the image Lυ,k(TX|Yk

) is isomorphic to (TX|Yk
)/TYk.

So Lυ,k(TX|Yk
) inherits an orientation from what on (TX|Yk

)/TYk. Thus we can also give

an induced orientation on the quotient bundle (E|Yk
)/Lυ,k(TX|Yk

) such that the orientation

on (E|Yk
)/Lυ,k(TX|Yk

) and then the orientation on Lυ,k(TX|Yk
) together coincides with the

orientation on E|Yk
.

With above data in hand, we can state the following Hopf index theorem associated to a

smooth section υ of E which is nondegenerate in the sense of Bott.

Theorem 1.1.

χ(E) =
m∑

k=1

χ ((E|Yk
)/Lυ,k(TX|Yk

)) , (1.4)

where χ(E) as well as χ ((E|Yk
)/Lυ,k(TX|Yk

))’s are the Euler characteristics of correspond-

ing bundles, respectively.

§2. Proof of Theorem 1.1

This section is divided in three parts. In (a), we recall the definition of a super-twisted

signature operator and its deformation by a section υ of E defined in [5]. Then we study

the local behavior of the associated deformed operator near the zero point set Y of υ when

υ is nondegenerate in the sense of Bott. In (b) we define for each Yk a twisted Dirac

operator and compute its index. In (c) we prove Theorem 1.1 by combining the technique

of Bismut-Lebeau[2, Sections 8,9] and a trick of Zhang[9].

(a) A Deformed Super-Twisted Signature Operator and Its Local Behavior

Given a Riemannian metric gTX on X, let ∇TX denote the associated Levi-Civita con-

nection. Given also an Euclidean inner product gE on E, let ∇E denote an Euclidean

connection on E. Then gTX and ∇TX (resp. gE and ∇E) lift naturally to a Hermitian

inner product and a Hermitian connection on the complex-valued exterior algebra bundle

Λ(T ∗X) (resp. Λ(E∗)) which we will denote by gΛ(T∗X) and ∇Λ(T∗X) (resp. gΛ(E∗) and

∇Λ(E∗)), respectively. For any U ∈ TX and ξ ∈ E, set

c(U) = ε(U∗)− ι(U), c̃(ξ) = ε(ξ∗)− ι(ξ), (2.1)
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where U∗ and ξ∗ correspond to U and ξ via gTX and gE respectively, and ε and ι are the

standard notations of exterior and interior multiplications. Then for any U, V ∈ TX and

any ξ, η ∈ E, one has

c(U)c(V ) + c(V )c(U) = −2gTX(U, V ),

c̃(ξ)c̃(η) + c̃(η)c̃(ξ) = −2gE(ξ, η). (2.2)

Recall that in [5] the Z2-grading Λ(T ∗X) = Λ+(T
∗X) ⊕ Λ−(T

∗X) (resp. Λ(E∗) =

Λ+(E
∗)⊕ Λ−(E

∗)) is given by the involution τΛ(T∗X) (resp. τΛ(E∗)) where with respect to

any oriented orthonormal basis {e1, e2, · · · , e2n} (resp. {ξ1, ξ2, · · · , ξ2n}) for TX (resp. E),

we have (see [5])

τΛ(T∗X) = (
√
−1)nc(e1)c(e2) · · · c(e2n)

(resp. τΛ(E∗) = (
√
−1)nc̃(ξ1)c̃(ξ2) · · · c̃(ξ2n)). (2.3)

From the data above, Λ(T ∗X)⊗̂Λ(E∗) is a Z2-graded Hermitian vector bundle with the

Hermitian inner product gΛ(T∗X) ⊗ gΛ(E∗) and the Hermitian connection

∇Λ(T∗X)⊗̂Λ(E∗) = ∇Λ(T∗X)⊗̂1 + 1⊗̂∇Λ(E∗) (2.4)

and also the Z2-grading

Λ(T ∗X)⊗̂Λ(E∗) =
(
Λ(T ∗X)⊗̂Λ(E∗)

)
+
⊕

(
Λ(T ∗X)⊗̂Λ(E∗)

)
− (2.5)

given by the involution

τΛ(T∗X)⊗̂Λ(E∗) = τΛ(T∗X)⊗̂τΛ(E∗), (2.6)

where (
Λ(T ∗X)⊗̂Λ(E∗)

)
± = (Λ+(T

∗X)⊗ Λ±(E
∗))⊕ (Λ−(T

∗X)⊗ Λ∓(E
∗)) . (2.7)

Note that c(U) and c̃(ξ) act on Λ(T ∗X)⊗̂Λ(E∗) obviously by c(U)⊗ 1 and 1⊗ c̃(ξ) for any

U ∈ TX and ξ ∈ E, respectively. Moreover, c(U) and c̃(ξ) anticommute with the involution

τΛ(T∗X)⊗̂Λ(E∗) and satisfy

c(U)c̃(ξ) + c̃(ξ)c(U) = 0. (2.8)

In [5] we have defined a super-twisted signature operator DX acting on the set Γ(Λ(T ∗X)

⊗̂Λ(E∗)) of smooth sections of Λ(T ∗X)⊗̂Λ(E∗). With respect to an orthonormal basis

{e1, e2, · · · , e2n} for TX, we have

DX =
2n∑
k=1

c(ei)∇Λ(T∗X)⊗̂Λ(E∗)
ei . (2.9)

Denote the restrictions of DX on Γ
(
(Λ(T ∗X)⊗̂Λ(E∗))±

)
by DX

± . By Theorem 1.1 in [5],

we have

ind DX
+ = (−1)n22nχ(E). (2.10)

Following Witten’s deformation idea (see [8]), we define the following deformation of DX

by a smooth section υ ∈ Γ(E):

DX
T = DX + T

√
−1c̃(υ) : Γ

(
Λ(T ∗X)⊗̂Λ(E∗)

)
→ Γ

(
Λ(T ∗X)⊗̂Λ(E∗)

)
. (2.11)

Note that this deformation is a little different from what in [5].
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When restricting DX
T to Γ

(
(Λ(T ∗X)⊗̂Λ(E∗))+

)
, we have

DX
T,+ : Γ

(
(Λ(T ∗X)⊗̂Λ(E∗))+

)
→ Γ

(
(Λ(T ∗X)⊗̂Λ(E∗))−

)
, (2.12)

ind DX
T,+ = ind DX

+ = (−1)n22nχ(E). (2.13)

By proceeding as the proof of Lemma 1.2 and Lemma 1.3 in [5], one verifies easily that the

localization principle Lemma 1.3 in [5] also holds for the deformed super-twisted operator

DX
T here. Thus we can localize our problem and need only to concentrate on the analysis

near the zero point set Y of the section υ.

In the following we assume that υ is a nondegenerate section of E in the sense of Bott.

Set lk = dimYk in (1.3). For simplicity, we will write Y (resp. l) instead of Yk (resp. lk)

when no confusion appears.

Let π : N → Y be the orthogonal bundle to TY in TX|Y . Denote Lυ(N) by EN and

denote the orthogonal bundle to EN in E|Y by EY , where E|Y is the restriction of E on Y .

The following isomorphisms of vector bundles are clear:

N ∼= (TX|Y )/TY ∼= EN = Lυ(TX|Y ), EY
∼= (E|Y )/Lυ(TX|Y ). (2.14)

According to the choices of the orientations in Section 1, the vector bundles TY , N , EY and

EN are all oriented and Lυ is an orientation-preserving isomorphism between N and EN .

Since Theorem 1.1 is purely topological and does not depend on the metrics and connec-

tions on the bundles involved, we can and will choose gTX such that Y is a totally geodesic

submanifold of X. Thus the restriction ∇TX|Y of ∇TX on TX|Y preserves Γ(TY ) and Γ(N)

respectively. When restricting ∇TX|Y to TY (resp. N), we get a connection ∇TY (resp.

∇N ) on TY (resp. N). Clearly, ∇TY is the Levi-Civita connection on Y associated to

the restricted metric gTY = gTX |Y . Denote the connections on Λ(T ∗Y ) and Λ(N∗) lifted

from ∇TY and ∇N by ∇Λ(T∗Y ) and ∇Λ(N∗), respectively. On the other hand, since Lυ is

an isomorphism between N and EN , we can and will choose a Euclidean inner product gE

on E such that when restricted to Y , Lυ is an isometry from N onto EN . We can also

choose a Euclidean connection ∇E such that its restriction ∇E|Y on E|Y preserves Γ(EY )

and Γ(EN ), respectively. Similarly, we can define the connections ∇EY , ∇EN , ∇Λ(E∗
Y ) and

∇Λ(E∗
N ) on the bundles EY , EN , Λ(E∗

Y ) and Λ(E∗
N ), respectively.

Let ϵ0 > 0 be such that for any ϵ ∈ (0, ϵ0), the set Bϵ = {Z ∈ N | |Z| < ϵ} can be identified

with a tubular neighborhood Uϵ of Y in X by the exponential map (y, Z) → exp X
y (Z) ∈ X,

where y ∈ Y and Z ∈ Ny ∩ Bϵ. Let W (resp. W) be the set of smooth sections of

π∗ ((Λ∗(T ∗X)⊗̂Λ(E∗))|Y
)
(resp. Λ∗(T ∗X)⊗̂Λ(E∗)). For any s1, s2 in W with compact

support in Bϵ, define

⟨s1, s2⟩ =
∫
Y

(∫
Ny

⟨s1, s2⟩(y, Z)dσNy (Z)
)
dσY (y), (2.15)

where dσY and dσNy denote the volume elements of Y and fiber Ny at y ∈ Y , respectively.

Denote the volume element of X by dσX . Let k(y, Z) be such that

dσX(y, Z) = k(y, Z)dσY (y)dσNy (Z). (2.16)

Then k(y, Z) is a positive smooth function on Uϵ and k(y, 0) = 1.

Let Wϵ (resp. Wϵ) be the set of elements in W (resp. W) with compact support in

Uϵ0 (resp. Bϵ). By the trivialization of Λ∗(T ∗X) and Λ(E∗) on Uϵ along the geodesic in X

perpendicular to Y , an element s ∈ W can be considered as an element in W. One verifies
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easily that k
1
2DX

T k−
1
2 acts as a formal self-adjoint operator on Wϵ with respect to the L2

inner product (2.15).

For any U ∈ TY , let UH denote the horizontal lifting of U with respect to the connection

∇N . Then for any orthonormal basis {e1, · · · , el, fl+1, · · · , f2n} for TX|Y with {e1, · · · , el}
(resp. {fl+1, · · · , f2n}) an orthonormal basis for TY (resp. N), set

DH =
l∑

i=1

c(ei)π
∗∇Λ(T∗X)⊗̂Λ(E∗)|Y

eHi
: W → W, (2.17)

DN =

2n∑
α=l+1

c(fα)π
∗∇Λ(T∗X)⊗̂Λ(E∗)|Y

fα
: W → W. (2.18)

Clearly, the definitions of DH and DN do not depend on the choice of the basis {e1, · · · , el,
fl+1, · · · , f2n}. Thus DH and DN are two well-defined operators acting on W.

Consider the splitting

E|Uϵ = Eτ
Y ⊕ Eτ

N , (2.19)

where Eτ
Y and Eτ

N are the parallel transports of EY and EN along the geodesic in X

perpendicular to Y . With respect to (2.19), υ has a decomposition

υ = υEY
+ υEN

(2.20)

on Uϵ with υEY
∈ Γ(Eτ

Y ) and υEN
∈ Γ(Eτ

N ).

Note that we can always deform υ near Y so that υEY
= 0, leaving Y and thus N , E|Y ,

EN and EY in the text unchanged. For the simplicity, we assume below that

υ ∈ Γ(Eτ
N ) on Uϵ. (2.21)

For any y ∈ Y and any orthonormal basis {fl+1, · · · , f2n} of Ny, set

ηα = Lυ(fα) for l + 1 ≤ α ≤ 2n. (2.22)

Then {ηl+1, · · · , η2n} is an orthonormal basis of ENy . Let (zl+1, zl+2, · · · , z2n) denote the

Euclidean coordinate system on Ny corresponding to {fl+1, · · · , f2n}. For any U ∈ TX|Y
(resp. ξ ∈ E|Y ), denote by Ũ (resp. ξ̃) the parallel transport of U (resp. ξ) along the

geodesic in X perpendicular to Y . For any Z = (zl+1, zl+2, · · · , z2n) ∈ Ny with |Z| < ϵ, let

υ(y, Z) =
2n∑

α=l+1

µα(y, Z)η̃α(y, Z). (2.23)

Set

υ1(y, Z) =
2n∑

α=l+1

2n∑
β=l+1

∂µα

∂zβ
(y)zβ η̃α(y, Z), (2.24)

υ2(y, Z) =
1

2

2n∑
α=l+1

2n∑
β,γ=l+1

∂2µα

∂zβ∂zγ
(y)zβzγ η̃α(y, Z). (2.25)

The definitions (2.24) and (2.25) are obviously independent of the choice of the basis

{fl+1, · · · , f2n}. Clearly,

υ(y, Z) = υ1(y, Z) + υ2(y, Z) +O(|Z|3). (2.26)
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Moreover, from (2.22) and the definition of Lυ, one verifies easily that

υ1(y, Z) =

2n∑
α=l+1

zαη̃α(y, Z). (2.27)

Similar to Theorem 8.18 in [2], one verifies easily the following proposition which describes

the local behavior of DX
T as T → ∞.

Proposition 2.1. As T → +∞, we have the following formula on Wϵ :

k1/2DX
T k−1/2 = DH +DN + T

√
−1c̃(υ1) + T

√
−1c̃(υ2) +RT , (2.28)

where

RT = O(|Z|∂H + |Z|2∂N + |Z|+ T |Z|3), (2.29)

and ∂H , ∂N represent horizontal and vertical differential operators, respectively.

Set

DN
T = DN + T

√
−1c̃(υ1). (2.30)

Note thatDN
T is a self-adjoint elliptic operator acting fibrewisely on Γ(π∗(Λ∗(N∗)⊗ Λ(E∗

N ))).

Given an orthonormal frame {fl+1, · · · , f2n} for N , let {ηl+1, · · · , η2n} be determined by

(2.22). Then from (2.18), (2.27), one verifies easily that

DN
T =

2n∑
α=l+1

c(fα)π
∗∇Λ(T∗X)⊗̂Λ(E∗)|Y

fα
+ T

√
−1

2n∑
α=l+1

zαc̃(ηα), (2.31)

(DN
T )2 =

2n∑
α=l+1

(
− ∂2

∂z2α
+ T 2z2α − T

)
+ T

2n∑
α=l+1

(
1 +

√
−1c(fα)c̃(ηα)

)
.

(2.32)

Set

L̂υ =
n∑

α=l+1

(
1 +

√
−1c(fα)c̃(ηα)

)
: Λ(N∗)⊗̂Λ(E∗

N ) → Λ(N∗)⊗̂Λ(E∗
N ). (2.33)

Clearly, the definition of L̂υ does not depend on the choice of {fl+1, · · · , f2n} and thus L̂υ

is a well-defined bundle map on Λ(N∗)⊗̂Λ(E∗
N ).

Similar to (2.3), the involution

τΛ(N∗)⊗̂Λ(E∗
N ) = (

√
−1)2n−lc(fl+1) · · · c(f2n)c̃(ηl+1) · · · c̃(η2n) (2.34)

gives a Z2-grading in Λ(N∗ ⊕ E∗
N ) = Λ(N∗)⊗̂Λ(E∗

N ),

Λ(N∗)⊗̂Λ(E∗
N ) =

(
Λ(N∗)⊗̂Λ(E∗

N )
)
+
⊕
(
Λ(N∗)⊗̂Λ(E∗

N )
)
− . (2.35)

Set

oY (υ) = ker L̂υ. (2.36)

Lemma 2.1. (i) rk oY (υ) = 22n−l.

(ii)

oY (υ) ⊂


(Λ(N∗)⊗̂Λ(E∗

N ))+, if n+
l(l − 1)

2
is even,

(Λ(N∗)⊗̂Λ(E∗
N ))−, if n+

l(l − 1)

2
is odd.
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Proof. One can prove the lemma by applying Theorem 2.1 and Theorem 2.2 in [5], which

are related close to [7]. Since the case here is much simpler, we will give the lemma a direct

proof. Clearly, the linear map
√
−1c(f)c̃(η) acting on the complex vector space

Λ({f∗, η∗}) = C{1, f∗, η∗, f∗ ∧ η∗} (2.37)

is an involution. A direct computation shows that the −1 eigenspace of
√
−1c(f)c̃(η) is

C{f∗ −
√
−1η∗, 1−

√
−1f∗ ∧ η∗}, (2.38)

which is also the kernel of the map 1+
√
−1c(f)c̃(η). From (2.33), (2.38) and Λ(N∗)⊗̂Λ(E∗

N )

=
2n∧

α=l+1

(Λ({f∗
α, η

∗
α})), we get

oY (υ) =
2n⊗

α=l+1

(
C{f∗

α −
√
−1η∗α, 1−

√
−1f∗

α ∧ η∗α}
)
. (2.39)

Thus dim oY (υ) = 22n−l.

On the other hand, from (2.34) one verifies easily the following two equalities:

τΛ(N∗)⊗̂Λ(E∗
N ) = (−1)n+

l(l+1)
2

2n∏
α=l+1

(
√
−1c(fα))c̃(ηα)), (2.40)

τΛ(N∗)⊗̂Λ(E∗
N )|oY (υ) = (−1)n+

l(l−1)
2 . (2.41)

From (2.41) we complete the proof of Lemma 2.1.

From (2.32), Lemma 2.1 and the spectral theory of harmonic ocillators (see [7, Lemma

2.1]), one verifies the following lemma easily.

Lemma 2.2. Take T > 0. Then for any y ∈ Y , the operator (DN
T )2 acting on Γ(Λ∗(N∗

y ))

over Ny is nonnegative with the 22n−l dimensional kernel :

exp
(
− T |Z|2

2

)
⊗ oY (υ)|y. (2.42)

Furthermore, the nonzero eigenvalues of (DN
T )2 are all ≥ 2(2n− l)T .

(b) A Twisted Dirac Operator on Y and Its Index

Note that Λ(T ∗Y )⊗̂Λ(E∗
Y ) is a Z2-graded Hermitian vector bundle over Y with the

Hermitian connection

∇Λ(T∗Y )⊗̂Λ(E∗
Y ) = ∇Λ(T∗Y )⊗̂1 + 1⊗̂∇Λ(E∗

Y ) (2.43)

and the Z2-grading

Λ(T ∗Y )⊗̂Λ(E∗
Y ) = (Λ(T ∗Y )⊗̂Λ(E∗

Y ))+ ⊕ (Λ(T ∗Y )⊗̂Λ(E∗
Y ))− (2.44)

given by the involution

τΛ(T∗Y )⊗̂Λ(E∗
Y ) = (

√
−1)lc(e1) · · · c(el)c̃(ξ1) · · · c̃(ξl), (2.45)

where {e1, e2, · · · , el} (resp. {ξ1, ξ2, · · · , ξl}) is an oriented orthonormal basis for TY (resp.

EY ). On the other hand, let

P oY (υ) : Λ(N∗)⊗̂Λ(E∗
N ) → oY (υ) (2.46)

denote the orthogonal projection of Λ(N∗)⊗̂Λ(E∗
N ) to oY (υ). Then oY (υ) is a Hermitian

vector bundle over Y with the Hermitian connection

∇oY (υ) = P oY (υ)∇Λ(N∗)⊗̂Λ(E∗
N )P oY (υ). (2.47)
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Set

∇̃Λ(T∗Y )⊗̂Λ(E∗
Y ) = ∇Λ(N∗)⊗̂Λ(E∗

N ) ⊗ 1 + 1⊗∇oY (υ). (2.48)

For any orthonormal basis {e1, e2, · · · , el} for TY , set

D̃Y =
l∑

i=1

c(ei)∇̃
Λ(T∗Y )⊗̂Λ(E∗

Y )
ei . (2.49)

Clearly, (2.49) defines a twisted Dirac operator

D̃Y : Γ
(
(Λ(T ∗Y )⊗̂Λ(E∗

Y ))⊗ oY (υ)
)
→ Γ

(
(Λ(T ∗Y )⊗̂Λ(E∗

Y ))⊗ oY (υ)
)
. (2.50)

Denote the restriction of D̃Y on Γ
(
(Λ(T ∗Y )⊗̂Λ(E∗

Y ))± ⊗ oY (υ)
)
by D̃Y

± .

Theorem 2.1. The following equalities hold :

ind D̃Y
+ =

{
(−1)

l
2 22nχ(EY ), if l = even;

0, if l = odd.

Proof. The case for odd l is trivial. When l is even, the involution

τΛ(T∗Y ) = (
√
−1)l/2c(e1)c(e2) · · · c(el)

(resp. τΛ(E∗
Y ) = (

√
−1)l/2c̃(ξ1)c̃(ξ2) · · · c̃(ξl)) (2.51)

gives the signature Z2-grading in Λ(T ∗Y ) (resp. Λ(E∗
Y )). Moreover, we have

τΛ(T∗Y )⊗̂Λ(E∗
Y ) = τΛ(T∗Y )⊗̂τΛ(E∗

Y ), (2.52)

(Λ(T ∗Y )⊗̂Λ(E∗
Y ))± = (Λ+(T

∗Y )⊗ Λ±(E
∗
Y ))⊕ (Λ−(T

∗Y )⊗ Λ∓(E
∗
Y )) .

(2.53)

Compared with the definition of the super-twisted signature operator in [5], D̃Y can be

viewed as a twisted super-twisted signature operator on Y . From the proof of Theorem 1.1

in [5], we have

ch ((Λ+(E
∗
Y )− Λ−(E

∗
Y ))⊗ oY (υ)) = (ch(Λ+(E

∗
Y ))− ch(Λ−(E

∗
Y ))) ch(oY (υ))

= 2l/2(
√
−1)−l/2Pf(−REY ) · 22n−l

= 22n−l/2(
√
−1)−l/2Pf(−REY ),

where REY is the curvature of∇EY . From the local index theorem for twisted Dirac operator

(see [1, Theorem 4.3]) and Theorem 1.1 in [5] we get

ind D̃Y
+ = (−1)l/222nχ(EY ). (2.54)

(c) Proof of Theorem 1.2.

For any µ ≥ 0, let Wµ (resp. Fµ) be the set of sections of Λ∗(T ∗X) on X (resp. of

Λ∗(T ∗Y )⊗ oY (υ) on Y) which lie in the µ-th Sobolev space. Let || ||Wµ (resp. || ||Fµ) be

the Sobolev norm on Wµ (resp. Fµ).

Let γ : R → [0, 1] be a smooth even function with γ(a) = 1 if |a| ≤ 1
2 and γ(a) = 0 if

|a| ≥ 1. For any T > 0 and y ∈ Y , set

αT (y) =

∫
Ny

γ
( |Z|

2

)2

exp (−T |Z|2)dσNy (Z), (2.55)

GT (y, Z) = α
− 1

2

T (y)γ
( |Z|

2

)
exp

(
− T |Z|2

2

)
, (2.56)
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where ϵ ∈ (0, ϵ0) and ϵ0 is defined in Section 2 (a). Clearly, the values of functions αT (y)

and GT (y, Z) do not depend on y ∈ Y .

For µ ≥ 0, T > 0, let JT : Fµ → Wµ be a linear map defined by

JTu = k−1/2GTπ
∗u, ∀u ∈ Fµ. (2.57)

Let Wµ
T be the image of JT in Wµ and let W0,⊥

T be the orthogonal complement of W0
T in

W0. Set

W1,⊥ = W1 ∩W0,⊥
T . (2.58)

Let pT and p⊥T be the orthogonal projection operators from W0 onto W0
T and W0,⊥

T , respec-

tively. Set

DT,1 = pTD
X
T pT , DT,2 = pTD

X
T p⊥T , DT,3 = p⊥TD

X
T pT , DT,4 = p⊥TD

X
T p⊥T . (2.59)

We have

DX
T = DT,1 +DT,2 +DT,3 +DT,4. (2.60)

Now by using Proposition 2.1 and proceeding as in [2, Section 9], we can prove the

following lemma.

Lemma 2.3. (i) The following formula holds on Γ(Λ∗(T ∗Y )⊗ oY (υ)) as T → +∞,

J−1
T DT,1JT = D̃Y +O

( 1√
T

)
, (2.61)

where O( 1√
T
) is a first order differential operator with smooth coefficients dominated by

C/
√
T .

(ii) There exist C1 > 0, C2 > 0 and T0 > 0 such that for any T ≥ T0, s ∈ W1,⊥
T and

s′ ∈ W1
T , we have

||DT,2s||W0 ≤ C1

( ||s||W1√
T

+ ||s||W0

)
, (2.62)

||DT,3s
′||W0 ≤ C1

( ||s′||W1√
T

+ ||s′||W0

)
, (2.63)

||DT,4s||W0 ≥ C2(||s||W1 +
√
T ||s||W0). (2.64)

Proof. One verifies the inequalities in (ii) in the lemma easily by following the proofs of

Theorem 9.10, Theorem 9.11 and Theorem 9.14 in [2, Section 9]. Note that our case is much

simpler than what in [2, Section 9]. So we need only to prove the first part in the lemma.

For any u ∈ Γ(Λ∗(T ∗Y )⊗ oY (υ)), we have

J−1
T DT,1JTu = J−1

T pTD
X
T pTJTu

= J−1
T pT k

− 1
2

(
DH +DN + T

√
−1c̃(υ1) + T

√
−1c̃(υ2) +RT

)
GTπ

∗u

= J−1
T pT k

− 1
2DHGTπ

∗u+ J−1
T pT k

− 1
2 (DN + T

√
−1c̃(υ1))GTπ

∗u

+ T
√
−1J−1

T pT k
− 1

2 c̃(υ2)GTπ
∗u+ J−1

T pT k
− 1

2RTGTπ
∗u.

From Lemma 2.2 and (2.56) and the definition of pT , one verifies easily that

J−1
T pT k

− 1
2 (DN + T

√
−1c̃(υ1))GTπ

∗u = O
( 1√

T

)
u. (2.65)
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Since c̃(υ2) interchanges (Λ(T
∗Y )⊗̂Λ(E∗

Y ))+ and (Λ(T ∗Y )⊗̂Λ(E∗
Y ))−, from the second part

in Lemma 2.1 and again the definition of pT , one gets

pT k
− 1

2 c̃(υ2)GTπ
∗u = 0. (2.66)

From (2.29) and Proposition 9.3 in [2, Section 9], we have

J−1
T pT k

− 1
2RTGTπ

∗u = O
( 1√

T

)
u. (2.67)

On the other hand, from (2.17), (2.56) and the choices of connections ∇TM and ∇E in

Section 2a), we have

J−1
T pT k

− 1
2DHGTπ

∗u = J−1
T pT k

− 1
2

l∑
i=1

c(ei)
(
π∗∇Λ(T∗X)⊗̂Λ(E∗)|Y

eHi

)
GTπ

∗u

= J−1
T pT k

− 1
2GTπ

∗
( l∑

i=1

c(ei)∇̃
Λ(N∗)⊗̂Λ(E∗

N )
ei u

)
= J−1

T k−
1
2GTπ

∗DY u = D̃Y u.

So the lemma follows.

From (2.34) and (2.45) we have

τΛ(T∗X)⊗̂Λ(E∗)|Y = (−1)lτΛ(T∗Y )⊗̂Λ(E∗
Y )⊗̂τΛ(N∗)⊗̂Λ(E∗

N ). (2.68)

So for even l,

(Λ(T ∗X)⊗̂Λ(E∗))± =
(
(Λ(T ∗Y )⊗̂Λ(E∗

Y ))+ ⊗ (Λ(N∗)⊗̂Λ(E∗
N ))±

)
⊕
(
(Λ(T ∗Y )⊗̂Λ(E∗

Y ))− ⊗ (Λ(N∗)⊗̂Λ(E∗
N ))∓

)
,

(2.69)

and for odd l,

(Λ(T ∗X)⊗̂Λ(E∗))± =
(
(Λ(T ∗Y )⊗̂Λ(E∗

Y ))+ ⊗ (Λ(N∗)⊗̂Λ(E∗
N ))∓

)
⊕
(
(Λ(T ∗Y )⊗̂Λ(E∗

Y ))− ⊗ (Λ(N∗)⊗̂Λ(E∗
N ))±

)
.

(2.70)

Let

Wµ = Wµ
+ ⊕Wµ

− (2.71)

be the decomposition with respect to the natural extension of the Z2-grading in Γ(Λ(T ∗X)

⊗̂Λ(E∗)).

Following [9, Section 2(c)], for any t ∈ R, set

DX
T,+(t) = DT,1 +DT,2 + t(DT,3 +DT,4) : W

1
+ → W0

−. (2.72)

From Lemma 2.3 and proceeding similarly as the proof of Lemma 2.2 in [9], we get

Lemma 2.4. There exists T1 > 0 such that for any T ≥ T1, DX
T,+(t), t ∈ [0, 1], is a

continuous curve of Fredholm operators.

From Lemma 2.4, we have

ind DX
T,+ = ind DX

T,+(1) = ind DX
T,+(0) = ind DT,1 + ind DT,4, (2.73)

where in the last line, DT,1 (resp. DT,4) is now regarded as a Fredholm operator mapping

from W1
T,+ (resp. W0,⊥

T,+) to W0
T,− (resp. W0,⊥

T,−). By the similar reason as (2.13) in [9,
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Section 2(b)], for sufficiently large T > 0, we have

ind DT,4 = 0. (2.74)

Thus for sufficiently large T > 0, we have

ind DX
T,+ = ind DT,1 = ind J−1

T DT,1JT . (2.75)

Now from the first part of Lemma 2.3 and (2.69), (2.70) and (ii) in Lemma 2.1, we get for

sufficiently large T > 0,

ind DX
T,+ =

∑
lk=even

(−1)n+lk(lk−1)/2ind D̃Yk
+ −

∑
lk=odd

(−1)n+lk(lk−1)/2ind D̃Yk
+

=
∑

lk=even

(−1)n+lk/2ind D̃Yk
+ .

Thus by Theorem 2.1 we have

ind DX
T,+ =

∑
lk=even

(−1)n+lk/2(−1)lk/222nχ(EYk
)

= (−1)n22n
∑

lk=even

χ(EYk
)

= (−1)n22n
m∑

k=1

χ(EYk
),

where the last equality is from the fact that an odd real vector bundle has the vanishing

Euler characteristic. Now from (2.13) we get

χ(E) =
m∑

k=1

χ(EYk
). (2.76)

Finally, by the orientation-preserving isomorphisms in (2.14), we get Theorem 1.1.

Remark 2.1. (i) When υ is a transversal section of E, Y consists of isolated points

Yk ∈ X. Comparing the definition of ind (υ;Yk) in [5, Section 2] with the orientation on

EYk
, one gets easily that

χ(EYk
) = ind (υ;Yk), (2.77)

and thus Theorem 11.17 in [4, p.125], which was proved in [5] in a purely analytic way.

(ii) When E = TX, one compares the definition of ind (υ, Yk) in [6, Section. 2] with the

orientation on EYk
, one gets easily that

χ(EYk
) = ind (υ, Yk)χ(Yk), (2.78)

and thus Theorem 4.2 in [6].

As a simple application, we consider a rank 2q oriented real vector bundle with q < n.

Let υ be a transversal section of E. Let Y still denote the zero point set of υ. In this

case, each connected component Yk of Y is a 2n − 2q dimensional orientable submanifold

of X. Moreover, the normal bundle (TX|Yk
)/TYk of TYk in TX|Yk

can be identified with

E|Yk
. We will choose the orientation on each Yk such that the identification TYk ⊕ E|Yk

with TX|Yk
preserves the orientations on them.

From Theorem 1.1, we get easily the following corollary.
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Corollary 2.1. For any oriented real vector bundle F → X of rank 2n−2q, the following

equality holds :

⟨e(F )e(E), [X]⟩ =
m∑

k=1

χ(F |Yk
), (2.79)

where e(E) and e(F ) denote the integral Euler classes of E and F respectively, and [X]

denotes the homology class determined by X.

Proof. Clearly, the transversal section υ of E can be naturally considered as a nonde-

generate section of F ⊕ E in the sense of Bott. Then by Theorem 1.2 we have
m∑

k=1

χ(F |Yk
) = χ(F ⊕ E) = ⟨e(F ⊕ E), [X]⟩ = ⟨e(F )e(E), [X]⟩.

Remark 2.2. Let E be an oriented even dimensional subbundle of TX. In [10], by

constructing a sub-signature operator D̃E,+ associated to E, Zhang computed directly the

local index of D̃E,+, by which he got the following index formula in [10, (6)]:

ind D̃E,+ = ⟨L(E)e(TX/E), [X]⟩, (2.80)

where L(E) is the Hirzebruch L-characteristic class. His formula provides an index theorem

interpretation for the Euler class of E. In general, for any rank 2q oriented real vector bundle

E over X with q < n, one can get an analogue index theorem interpretation by extending

the definition of the super-twisted signature operator in [5] to this case naturally.
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