A HOPF INDEX THEOREM FOR A REAL VECTOR BUNDLE

FENG HUITAO* GUO ENLI**

Abstract

The authors generalize the works in [5] and [6] to prove a Hopf index theorem associated to a smooth section of a real vector bundle with non-isolated zero points.

Keywords Super-twisted signature operator, Nondegenerate section in the sense of Bott, Hopf index theorem, Euler characteristic

2000 MR Subject Classification 58J

Chinese Library Classification O186.12 Document Code A

Article ID 0252-9599(2002)04-0507-12

§1. Introduction

Let X be a closed and oriented manifold of dimension 2n. Let $E \to X$ be an oriented real vector bundle of rank 2n. Let v be a smooth section of E. We will denote the set of zero points of v by Y.

When v is a transversal section of E, the set Y consists of isolated points. In [5], we got a purely analytic proof of a Hopf index theorem associated to v (see [4, Theorem 11.17]) by constructing a super-twisted signature operator.

In this paper, using Witten's deformation idea^[8] and Bismut-Lebeau's technique (see [2, Sections 8, 9]) and also the super-twisted signature operator defined in [5], we will prove a Hopf index theorem associated to a smooth section v of E with non-isolated zero point set which is nondegenerate in the sense of Bott^[3].

Let p be a zero point of a smooth section v of E. There is a linear map $\mathcal{L}_v(p)$ from the tangent space T_pX to the fibre $E|_p$ of E at p defined by

$$\mathcal{L}_{\upsilon}(p)(U) = \sum_{i=1}^{2n} (U\mu_i)\xi_i(p), \quad \forall U \in T_p X,$$
(1.1)

where $\{\xi_1, \xi_2, \dots, \xi_{2n}\}$ is a basis for E around p and $v = \sum_{i=1}^{2n} \mu_i \xi_i$ for some smooth functions μ_i defined near p. Clearly, the definition of $\mathcal{L}_v(p)$ does not depend on the choice of the basis

Manuscript received September 25, 2000.

^{*}College of Mathematical Sciences, Nankai University, Tianjin 300071, China.

E-mail: fht@nankai.edu.cn

^{**}College of Applying Mathematics and Physics, Beijing Polytechnic University, Beijing 100022, China.

 $\{\xi_1, \xi_2, \dots, \xi_{2n}\}$. When restricted to the zero point set Y of v, by using (1.1) pointwisely on Y, we get an intrinsic well-defined bundle homomorphism

$$\mathcal{L}_{v}: TX|_{Y} \to E|_{Y}. \tag{1.2}$$

Definition 1.1. A smooth section v of E is said to be nondegenerate in the sense of $Bott^{[3]}$ if

(i) the zero point set Y of v can be expressed as a finite disjoint union

$$Y = \bigcup_{k=1}^{m} Y_k \tag{1.3}$$

of some oriented and connected submanifolds Y_k of X;

(ii) for each k, the kernel of the restriction $\mathcal{L}_{v,k}$ of \mathcal{L}_v on Y_k is equal to TY_k .

For each k, since $TX|_{Y_k}$ and TY_k are oriented vector bundles over Y_k , we can give an induced orientation on the normal bundle $(TX|_{Y_k})/TY_k$ of TY_k such that the orientation on TY_k and then the induced orientation on $(TX|_{Y_k})/TY_k$ together coincides with the orientation on $TX|_{Y_k}$. From Definition 1.1, the image $\mathcal{L}_{v,k}(TX|_{Y_k})$ is isomorphic to $(TX|_{Y_k})/TY_k$. So $\mathcal{L}_{v,k}(TX|_{Y_k})$ inherits an orientation from what on $(TX|_{Y_k})/TY_k$. Thus we can also give an induced orientation on the quotient bundle $(E|_{Y_k})/\mathcal{L}_{v,k}(TX|_{Y_k})$ such that the orientation on $(E|_{Y_k})/\mathcal{L}_{v,k}(TX|_{Y_k})$ and then the orientation on $\mathcal{L}_{v,k}(TX|_{Y_k})$ together coincides with the orientation on $E|_{Y_k}$.

With above data in hand, we can state the following Hopf index theorem associated to a smooth section v of E which is nondegenerate in the sense of Bott.

Theorem 1.1.

$$\chi(E) = \sum_{k=1}^{m} \chi((E|_{Y_k})/\mathcal{L}_{v,k}(TX|_{Y_k})), \qquad (1.4)$$

where $\chi(E)$ as well as $\chi((E|_{Y_k})/\mathcal{L}_{v,k}(TX|_{Y_k}))$'s are the Euler characteristics of corresponding bundles, respectively.

$\S 2$. Proof of Theorem 1.1

This section is divided in three parts. In (a), we recall the definition of a super-twisted signature operator and its deformation by a section v of E defined in [5]. Then we study the local behavior of the associated deformed operator near the zero point set Y of v when v is nondegenerate in the sense of Bott. In (b) we define for each Y_k a twisted Dirac operator and compute its index. In (c) we prove Theorem 1.1 by combining the technique of Bismut-Lebeau^[2], Sections 8,9] and a trick of Zhang^[9].

(a) A Deformed Super-Twisted Signature Operator and Its Local Behavior

Given a Riemannian metric g^{TX} on X, let ∇^{TX} denote the associated Levi-Civita connection. Given also an Euclidean inner product g^E on E, let ∇^E denote an Euclidean connection on E. Then g^{TX} and ∇^{TX} (resp. g^E and ∇^E) lift naturally to a Hermitian inner product and a Hermitian connection on the complex-valued exterior algebra bundle $\Lambda(T^*X)$ (resp. $\Lambda(E^*)$) which we will denote by $g^{\Lambda(T^*X)}$ and $\nabla^{\Lambda(T^*X)}$ (resp. $g^{\Lambda(E^*)}$ and $\nabla^{\Lambda(E^*)}$), respectively. For any $U \in TX$ and $\xi \in E$, set

$$c(U) = \varepsilon(U^*) - \iota(U), \qquad \widetilde{c}(\xi) = \varepsilon(\xi^*) - \iota(\xi),$$
 (2.1)

where U^* and ξ^* correspond to U and ξ via g^{TX} and g^E respectively, and ε and ι are the standard notations of exterior and interior multiplications. Then for any $U, V \in TX$ and any $\xi, \eta \in E$, one has

$$c(U)c(V) + c(V)c(U) = -2g^{TX}(U, V),$$

$$\widetilde{c}(\xi)\widetilde{c}(\eta) + \widetilde{c}(\eta)\widetilde{c}(\xi) = -2g^{E}(\xi, \eta).$$
(2.2)

Recall that in [5] the **Z**₂-grading $\Lambda(T^*X) = \Lambda_+(T^*X) \oplus \Lambda_-(T^*X)$ (resp. $\Lambda(E^*) = \Lambda_+(E^*) \oplus \Lambda_-(E^*)$) is given by the involution $\tau_{\Lambda(T^*X)}$ (resp. $\tau_{\Lambda(E^*)}$) where with respect to any oriented orthonormal basis $\{e_1, e_2, \cdots, e_{2n}\}$ (resp. $\{\xi_1, \xi_2, \cdots, \xi_{2n}\}$) for TX (resp. E), we have (see [5])

$$\tau_{\Lambda(T^*X)} = (\sqrt{-1})^n c(e_1) c(e_2) \cdots c(e_{2n})$$
(resp.
$$\tau_{\Lambda(E^*)} = (\sqrt{-1})^n \widetilde{c}(\xi_1) \widetilde{c}(\xi_2) \cdots \widetilde{c}(\xi_{2n}).$$
(2.3)

From the data above, $\Lambda(T^*X)\hat{\otimes}\Lambda(E^*)$ is a \mathbb{Z}_2 -graded Hermitian vector bundle with the Hermitian inner product $g^{\Lambda(T^*X)}\otimes g^{\Lambda(E^*)}$ and the Hermitian connection

$$\nabla^{\Lambda(T^*X)\hat{\otimes}\Lambda(E^*)} = \nabla^{\Lambda(T^*X)}\hat{\otimes}1 + 1\hat{\otimes}\nabla^{\Lambda(E^*)}$$
(2.4)

and also the \mathbb{Z}_2 -grading

$$\Lambda(T^*X)\hat{\otimes}\Lambda(E^*) = \left(\Lambda(T^*X)\hat{\otimes}\Lambda(E^*)\right)_{+} \oplus \left(\Lambda(T^*X)\hat{\otimes}\Lambda(E^*)\right)_{-} \tag{2.5}$$

given by the involution

$$\tau_{\Lambda(T^*X)\hat{\otimes}\Lambda(E^*)} = \tau_{\Lambda(T^*X)}\hat{\otimes}\tau_{\Lambda(E^*)},\tag{2.6}$$

where

$$\left(\Lambda(T^*X)\hat{\otimes}\Lambda(E^*)\right)_+ = \left(\Lambda_+(T^*X)\otimes\Lambda_\pm(E^*)\right) \oplus \left(\Lambda_-(T^*X)\otimes\Lambda_\mp(E^*)\right). \tag{2.7}$$

Note that c(U) and $\widetilde{c}(\xi)$ act on $\Lambda(T^*X)\hat{\otimes}\Lambda(E^*)$ obviously by $c(U)\otimes 1$ and $1\otimes \widetilde{c}(\xi)$ for any $U\in TX$ and $\xi\in E$, respectively. Moreover, c(U) and $\widetilde{c}(\xi)$ anticommute with the involution $\tau_{\Lambda(T^*X)\hat{\otimes}\Lambda(E^*)}$ and satisfy

$$c(U)\widetilde{c}(\xi) + \widetilde{c}(\xi)c(U) = 0. \tag{2.8}$$

In [5] we have defined a super-twisted signature operator D^X acting on the set $\Gamma(\Lambda(T^*X) \hat{\otimes} \Lambda(E^*))$ of smooth sections of $\Lambda(T^*X) \hat{\otimes} \Lambda(E^*)$. With respect to an orthonormal basis $\{e_1, e_2, \dots, e_{2n}\}$ for TX, we have

$$D^X = \sum_{k=1}^{2n} c(e_i) \nabla_{e_i}^{\Lambda(T^*X) \hat{\otimes} \Lambda(E^*)}.$$
 (2.9)

Denote the restrictions of D^X on $\Gamma\left((\Lambda(T^*X)\hat{\otimes}\Lambda(E^*))_{\pm}\right)$ by D_{\pm}^X . By Theorem 1.1 in [5], we have

ind
$$D_{+}^{X} = (-1)^{n} 2^{2n} \chi(E)$$
. (2.10)

Following Witten's deformation idea (see [8]), we define the following deformation of D^X by a smooth section $v \in \Gamma(E)$:

$$D_T^X = D^X + T\sqrt{-1}\widetilde{c}(v) : \Gamma\left(\Lambda(T^*X)\widehat{\otimes}\Lambda(E^*)\right) \to \Gamma\left(\Lambda(T^*X)\widehat{\otimes}\Lambda(E^*)\right). \tag{2.11}$$

Note that this deformation is a little different from what in [5].

When restricting D_T^X to $\Gamma((\Lambda(T^*X)\hat{\otimes}\Lambda(E^*))_+)$, we have

$$D_{T,+}^X: \Gamma\left((\Lambda(T^*X)\hat{\otimes}\Lambda(E^*))_+\right) \to \Gamma\left((\Lambda(T^*X)\hat{\otimes}\Lambda(E^*))_-\right),\tag{2.12}$$

ind
$$D_{T,+}^X = \text{ind } D_+^X = (-1)^n 2^{2n} \chi(E).$$
 (2.13)

By proceeding as the proof of Lemma 1.2 and Lemma 1.3 in [5], one verifies easily that the localization principle Lemma 1.3 in [5] also holds for the deformed super-twisted operator D_T^X here. Thus we can localize our problem and need only to concentrate on the analysis near the zero point set Y of the section v.

In the following we assume that v is a nondegenerate section of E in the sense of Bott. Set $l_k = \dim Y_k$ in (1.3). For simplicity, we will write Y (resp. l) instead of Y_k (resp. l_k) when no confusion appears.

Let $\pi: N \to Y$ be the orthogonal bundle to TY in $TX|_Y$. Denote $\mathcal{L}_v(N)$ by E_N and denote the orthogonal bundle to E_N in $E|_Y$ by E_Y , where $E|_Y$ is the restriction of E on Y. The following isomorphisms of vector bundles are clear:

$$N \cong (TX|_Y)/TY \cong E_N = \mathcal{L}_v(TX|_Y), \quad E_Y \cong (E|_Y)/\mathcal{L}_v(TX|_Y). \tag{2.14}$$

According to the choices of the orientations in Section 1, the vector bundles TY, N, E_Y and E_N are all oriented and \mathcal{L}_v is an orientation-preserving isomorphism between N and E_N .

Since Theorem 1.1 is purely topological and does not depend on the metrics and connections on the bundles involved, we can and will choose g^{TX} such that Y is a totally geodesic submanifold of X. Thus the restriction $\nabla^{TX|_Y}$ of ∇^{TX} on $TX|_Y$ preserves $\Gamma(TY)$ and $\Gamma(N)$ respectively. When restricting $\nabla^{TX|_Y}$ to TY (resp. N), we get a connection ∇^{TY} (resp. ∇^N) on TY (resp. N). Clearly, ∇^{TY} is the Levi-Civita connection on Y associated to the restricted metric $g^{TY} = g^{TX}|_Y$. Denote the connections on $\Lambda(T^*Y)$ and $\Lambda(N^*)$ lifted from ∇^{TY} and ∇^N by $\nabla^{\Lambda(T^*Y)}$ and $\nabla^{\Lambda(N^*)}$, respectively. On the other hand, since \mathcal{L}_v is an isomorphism between N and E_N , we can and will choose a Euclidean inner product g^E on E such that when restricted to Y, \mathcal{L}_v is an isometry from N onto E_N . We can also choose a Euclidean connection ∇^E such that its restriction $\nabla^{E|_Y}$ on $E|_Y$ preserves $\Gamma(E_Y)$ and $\Gamma(E_N)$, respectively. Similarly, we can define the connections ∇^{E_Y} , ∇^{E_N} , $\nabla^{\Lambda(E_Y^*)}$ and $\nabla^{\Lambda(E_N^*)}$ on the bundles E_Y , E_N , E_N and E_N , respectively.

Let $\epsilon_0 > 0$ be such that for any $\epsilon \in (0, \epsilon_0)$, the set $B_{\epsilon} = \{Z \in N \mid |Z| < \epsilon\}$ can be identified with a tubular neighborhood \mathcal{U}_{ϵ} of Y in X by the exponential map $(y, Z) \to \exp_y^X(Z) \in X$, where $y \in Y$ and $Z \in N_y \cap B_{\epsilon}$. Let \mathbf{W} (resp. \mathbf{W}) be the set of smooth sections of $\pi^* \left((\Lambda^*(T^*X) \hat{\otimes} \Lambda(E^*))|_Y \right)$ (resp. $\Lambda^*(T^*X) \hat{\otimes} \Lambda(E^*)$). For any s_1, s_2 in \mathbf{W} with compact support in B_{ϵ} , define

$$\langle s_1, s_2 \rangle = \int_Y \left(\int_{N_y} \langle s_1, s_2 \rangle(y, Z) d\sigma_{N_y}(Z) \right) d\sigma_Y(y), \tag{2.15}$$

where $d\sigma_Y$ and $d\sigma_{N_y}$ denote the volume elements of Y and fiber N_y at $y \in Y$, respectively. Denote the volume element of X by $d\sigma_X$. Let k(y, Z) be such that

$$d\sigma_X(y,Z) = k(y,Z)d\sigma_Y(y)d\sigma_{N_y}(Z). \tag{2.16}$$

Then k(y, Z) is a positive smooth function on \mathcal{U}_{ϵ} and k(y, 0) = 1.

Let W_{ϵ} (resp. \mathbf{W}_{ϵ}) be the set of elements in W (resp. \mathbf{W}) with compact support in \mathcal{U}_{ϵ_0} (resp. B_{ϵ}). By the trivialization of $\Lambda^*(T^*X)$ and $\Lambda(E^*)$ on \mathcal{U}_{ϵ} along the geodesic in X perpendicular to Y, an element $s \in \mathbf{W}$ can be considered as an element in W. One verifies

easily that $k^{\frac{1}{2}}D_T^X k^{-\frac{1}{2}}$ acts as a formal self-adjoint operator on \mathbf{W}_{ϵ} with respect to the L^2 inner product (2.15).

For any $U \in TY$, let U^H denote the horizontal lifting of U with respect to the connection ∇^N . Then for any orthonormal basis $\{e_1, \dots, e_l, f_{l+1}, \dots, f_{2n}\}$ for $TX|_Y$ with $\{e_1, \dots, e_l\}$ (resp. $\{f_{l+1}, \dots, f_{2n}\}$) an orthonormal basis for TY (resp. N), set

$$D^{H} = \sum_{i=1}^{l} c(e_{i}) \pi^{*} \nabla_{e_{i}^{H}}^{\Lambda(T^{*}X) \hat{\otimes} \Lambda(E^{*})|_{Y}} : \mathbf{W} \to \mathbf{W},$$
 (2.17)

$$D^{N} = \sum_{\alpha=l+1}^{2n} c(f_{\alpha}) \pi^* \nabla_{f_{\alpha}}^{\Lambda(T^*X) \hat{\otimes} \Lambda(E^*)|_{Y}} : \mathbf{W} \to \mathbf{W}.$$
 (2.18)

Clearly, the definitions of D^H and D^N do not depend on the choice of the basis $\{e_1, \dots, e_l, f_{l+1}, \dots, f_{2n}\}$. Thus D^H and D^N are two well-defined operators acting on **W**.

Consider the splitting

$$E|_{\mathcal{U}_{\epsilon}} = E_Y^{\tau} \oplus E_N^{\tau}, \tag{2.19}$$

where E_Y^{τ} and E_N^{τ} are the parallel transports of E_Y and E_N along the geodesic in X perpendicular to Y. With respect to (2.19), v has a decomposition

$$v = v_{E_Y} + v_{E_N} \tag{2.20}$$

on \mathcal{U}_{ϵ} with $\upsilon_{E_Y} \in \Gamma(E_Y^{\tau})$ and $\upsilon_{E_N} \in \Gamma(E_N^{\tau})$.

Note that we can always deform v near Y so that $v_{E_Y} = 0$, leaving Y and thus N, $E|_Y$, E_N and E_Y in the text unchanged. For the simplicity, we assume below that

$$v \in \Gamma(E_N^{\tau})$$
 on \mathcal{U}_{ϵ} . (2.21)

For any $y \in Y$ and any orthonormal basis $\{f_{l+1}, \dots, f_{2n}\}$ of N_y , set

$$\eta_{\alpha} = \mathcal{L}_{\nu}(f_{\alpha}) \quad \text{for} \quad l+1 \le \alpha \le 2n.$$
(2.22)

Then $\{\eta_{l+1}, \dots, \eta_{2n}\}$ is an orthonormal basis of E_{N_y} . Let $(z_{l+1}, z_{l+2}, \dots, z_{2n})$ denote the Euclidean coordinate system on N_y corresponding to $\{f_{l+1}, \dots, f_{2n}\}$. For any $U \in TX|_Y$ (resp. $\xi \in E|_Y$), denote by \widetilde{U} (resp. $\widetilde{\xi}$) the parallel transport of U (resp. ξ) along the geodesic in X perpendicular to Y. For any $Z = (z_{l+1}, z_{l+2}, \dots, z_{2n}) \in N_y$ with $|Z| < \epsilon$, let

$$v(y,Z) = \sum_{\alpha=1}^{2n} \mu_{\alpha}(y,Z)\widetilde{\eta}_{\alpha}(y,Z). \tag{2.23}$$

Set

$$v_1(y,Z) = \sum_{\alpha=l+1}^{2n} \sum_{\beta=l+1}^{2n} \frac{\partial \mu_{\alpha}}{\partial z_{\beta}}(y) z_{\beta} \widetilde{\eta}_{\alpha}(y,Z), \tag{2.24}$$

$$\upsilon_2(y, Z) = \frac{1}{2} \sum_{\alpha=l+1}^{2n} \sum_{\beta, \gamma=l+1}^{2n} \frac{\partial^2 \mu_{\alpha}}{\partial z_{\beta} \partial z_{\gamma}} (y) z_{\beta} z_{\gamma} \widetilde{\eta}_{\alpha}(y, Z). \tag{2.25}$$

The definitions (2.24) and (2.25) are obviously independent of the choice of the basis $\{f_{l+1}, \dots, f_{2n}\}$. Clearly,

$$v(y,Z) = v_1(y,Z) + v_2(y,Z) + O(|Z|^3). \tag{2.26}$$

Moreover, from (2.22) and the definition of \mathcal{L}_{v} , one verifies easily that

$$v_1(y,Z) = \sum_{\alpha=l+1}^{2n} z_\alpha \widetilde{\eta}_\alpha(y,Z). \tag{2.27}$$

Similar to Theorem 8.18 in [2], one verifies easily the following proposition which describes the local behavior of D_T^X as $T \to \infty$.

Proposition 2.1. As $T \to +\infty$, we have the following formula on \mathbf{W}_{ϵ} :

$$k^{1/2}D_T^X k^{-1/2} = D^H + D^N + T\sqrt{-1}\widetilde{c}(v_1) + T\sqrt{-1}\widetilde{c}(v_2) + R_T, \tag{2.28}$$

where

$$R_T = O(|Z|\partial^H + |Z|^2 \partial^N + |Z| + T|Z|^3), \tag{2.29}$$

and ∂^H , ∂^N represent horizontal and vertical differential operators, respectively.

$$D_T^N = D^N + T\sqrt{-1}\tilde{c}(v_1). {(2.30)}$$

Note that D_T^N is a self-adjoint elliptic operator acting fibrewisely on $\Gamma(\pi^*(\Lambda^*(N^*)\otimes \Lambda(E_N^*)))$. Given an orthonormal frame $\{f_{l+1},\dots,f_{2n}\}$ for N, let $\{\eta_{l+1},\dots,\eta_{2n}\}$ be determined by (2.22). Then from (2.18), (2.27), one verifies easily that

$$D_T^N = \sum_{\alpha=l+1}^{2n} c(f_\alpha) \pi^* \nabla_{f_\alpha}^{\Lambda(T^*X) \hat{\otimes} \Lambda(E^*)|_Y} + T \sqrt{-1} \sum_{\alpha=l+1}^{2n} z_\alpha \tilde{c}(\eta_\alpha), \tag{2.31}$$

$$(D_T^N)^2 = \sum_{\alpha=l+1}^{2n} \left(-\frac{\partial^2}{\partial z_{\alpha}^2} + T^2 z_{\alpha}^2 - T \right) + T \sum_{\alpha=l+1}^{2n} \left(1 + \sqrt{-1}c(f_{\alpha})\widetilde{c}(\eta_{\alpha}) \right). \tag{2.32}$$

Set

$$\widehat{\mathcal{L}}_{\upsilon} = \sum_{\alpha=l+1}^{n} \left(1 + \sqrt{-1}c(f_{\alpha})\widetilde{c}(\eta_{\alpha}) \right) : \Lambda(N^{*}) \hat{\otimes} \Lambda(E_{N}^{*}) \to \Lambda(N^{*}) \hat{\otimes} \Lambda(E_{N}^{*}). \tag{2.33}$$

Clearly, the definition of $\widehat{\mathcal{L}}_v$ does not depend on the choice of $\{f_{l+1}, \dots, f_{2n}\}$ and thus $\widehat{\mathcal{L}}_v$ is a well-defined bundle map on $\Lambda(N^*) \hat{\otimes} \Lambda(E_N^*)$.

Similar to (2.3), the involution

$$\tau_{\Lambda(N^*)\hat{\otimes}\Lambda(E_N^*)} = (\sqrt{-1})^{2n-l}c(f_{l+1})\cdots c(f_{2n})\widetilde{c}(\eta_{l+1})\cdots \widetilde{c}(\eta_{2n})$$
(2.34)

gives a \mathbb{Z}_2 -grading in $\Lambda(N^* \oplus E_N^*) = \Lambda(N^*) \hat{\otimes} \Lambda(E_N^*)$,

$$\Lambda(N^*) \hat{\otimes} \Lambda(E_N^*) = \left(\Lambda(N^*) \hat{\otimes} \Lambda(E_N^*)\right)_+ \oplus \left(\Lambda(N^*) \hat{\otimes} \Lambda(E_N^*)\right)_-. \tag{2.35}$$

Set

$$o_Y(v) = \ker \widehat{\mathcal{L}}_v.$$
 (2.36)

Lemma 2.1. (i) rk $o_Y(v) = 2^{2n-l}$. (ii)

$$o_Y(v) \subset \begin{cases} (\Lambda(N^*) \hat{\otimes} \Lambda(E_N^*))_+, & \text{if} \quad n + \frac{l(l-1)}{2} \quad \text{is even,} \\ (\Lambda(N^*) \hat{\otimes} \Lambda(E_N^*))_-, & \text{if} \quad n + \frac{l(l-1)}{2} \quad \text{is odd.} \end{cases}$$

Proof. One can prove the lemma by applying Theorem 2.1 and Theorem 2.2 in [5], which are related close to [7]. Since the case here is much simpler, we will give the lemma a direct proof. Clearly, the linear map $\sqrt{-1}c(f)\widetilde{c}(\eta)$ acting on the complex vector space

$$\Lambda(\{f^*, \eta^*\}) = \mathbf{C}\{1, f^*, \eta^*, f^* \wedge \eta^*\}$$
(2.37)

is an involution. A direct computation shows that the -1 eigenspace of $\sqrt{-1}c(f)\widetilde{c}(\eta)$ is

$$\mathbf{C}\{f^* - \sqrt{-1}\eta^*, 1 - \sqrt{-1}f^* \wedge \eta^*\},$$
 (2.38)

which is also the kernel of the map $1+\sqrt{-1}c(f)\widetilde{c}(\eta)$. From (2.33), (2.38) and $\Lambda(N^*)\widehat{\otimes}\Lambda(E_N^*)$

$$= \bigwedge_{\alpha=l+1}^{2n} (\Lambda(\{f_{\alpha}^*, \eta_{\alpha}^*\})), \text{ we get}$$

$$o_Y(v) = \bigotimes_{\alpha = l+1}^{2n} \left(\mathbf{C} \{ f_{\alpha}^* - \sqrt{-1} \eta_{\alpha}^*, 1 - \sqrt{-1} f_{\alpha}^* \wedge \eta_{\alpha}^* \} \right).$$
 (2.39)

Thus dim $o_Y(v) = 2^{2n-l}$.

On the other hand, from (2.34) one verifies easily the following two equalities:

$$\tau_{\Lambda(N^*)\hat{\otimes}\Lambda(E_N^*)} = (-1)^{n + \frac{l(l+1)}{2}} \prod_{\alpha=l+1}^{2n} (\sqrt{-1}c(f_\alpha))\widetilde{c}(\eta_\alpha)), \tag{2.40}$$

$$\tau_{\Lambda(N^*)\hat{\otimes}\Lambda(E_N^*)}|_{o_Y(v)} = (-1)^{n + \frac{l(l-1)}{2}}. \tag{2.41}$$

$$\tau_{\Lambda(N^*)\hat{\otimes}\Lambda(E_N^*)}|_{o_Y(v)} = (-1)^{n + \frac{l(l-1)}{2}}.$$
(2.41)

From (2.41) we complete the proof of Lemma 2.1.

From (2.32), Lemma 2.1 and the spectral theory of harmonic ocillators (see [7, Lemma 2.1]), one verifies the following lemma easily.

Lemma 2.2. Take T > 0. Then for any $y \in Y$, the operator $(D_T^N)^2$ acting on $\Gamma(\Lambda^*(N_y^*))$ over N_y is nonnegative with the 2^{2n-l} dimensional kernel:

$$\exp\left(-\frac{T|Z|^2}{2}\right) \otimes o_Y(v)|_y. \tag{2.42}$$

Furthermore, the nonzero eigenvalues of $(D_T^N)^2$ are all $\geq 2(2n-l)T$.

(b) A Twisted Dirac Operator on Y and Its Index

Note that $\Lambda(T^*Y) \hat{\otimes} \Lambda(E_Y^*)$ is a \mathbb{Z}_2 -graded Hermitian vector bundle over Y with the Hermitian connection

$$\nabla^{\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*)} = \nabla^{\Lambda(T^*Y)}\hat{\otimes}1 + 1\hat{\otimes}\nabla^{\Lambda(E_Y^*)}$$
(2.43)

and the \mathbf{Z}_2 -grading

$$\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*) = (\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*))_+ \oplus (\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*))_- \tag{2.44}$$

given by the involution

$$\tau_{\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*)} = (\sqrt{-1})^l c(e_1) \cdots c(e_l) \widetilde{c}(\xi_1) \cdots \widetilde{c}(\xi_l), \tag{2.45}$$

where $\{e_1, e_2, \dots, e_l\}$ (resp. $\{\xi_1, \xi_2, \dots, \xi_l\}$) is an oriented orthonormal basis for TY (resp. E_Y). On the other hand, let

$$P^{o_Y(v)}: \Lambda(N^*) \hat{\otimes} \Lambda(E_N^*) \to o_Y(v)$$
(2.46)

denote the orthogonal projection of $\Lambda(N^*)\hat{\otimes}\Lambda(E_N^*)$ to $o_Y(v)$. Then $o_Y(v)$ is a Hermitian vector bundle over Y with the Hermitian connection

$$\nabla^{o_Y(v)} = P^{o_Y(v)} \nabla^{\Lambda(N^*) \hat{\otimes} \Lambda(E_N^*)} P^{o_Y(v)}. \tag{2.47}$$

Set

$$\widetilde{\nabla}^{\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*)} = \nabla^{\Lambda(N^*)\hat{\otimes}\Lambda(E_N^*)} \otimes 1 + 1 \otimes \nabla^{o_Y(v)}. \tag{2.48}$$

For any orthonormal basis $\{e_1, e_2, \cdots, e_l\}$ for TY, set

$$\widetilde{D}^Y = \sum_{i=1}^l c(e_i) \widetilde{\nabla}_{e_i}^{\Lambda(T^*Y) \hat{\otimes} \Lambda(E_Y^*)}.$$
(2.49)

Clearly, (2.49) defines a twisted Dirac operator

$$\widetilde{D}^{Y}: \Gamma\left(\left(\Lambda(T^{*}Y) \hat{\otimes} \Lambda(E_{Y}^{*})\right) \otimes o_{Y}(v)\right) \to \Gamma\left(\left(\Lambda(T^{*}Y) \hat{\otimes} \Lambda(E_{Y}^{*})\right) \otimes o_{Y}(v)\right). \tag{2.50}$$

Denote the restriction of \widetilde{D}^Y on $\Gamma\left((\Lambda(T^*Y)\hat{\otimes}\Lambda(E_V^*))_+\otimes o_Y(v)\right)$ by \widetilde{D}_+^Y .

Theorem 2.1. The following equalities hold:

ind
$$\widetilde{D}_{+}^{Y} = \begin{cases} (-1)^{\frac{l}{2}} 2^{2n} \chi(E_{Y}), & if \quad l = even; \\ 0, & if \quad l = odd. \end{cases}$$

Proof. The case for odd l is trivial. When l is even, the involution

$$\tau_{\Lambda(T^*Y)} = (\sqrt{-1})^{l/2} c(e_1) c(e_2) \cdots c(e_l)$$

$$(resp. \quad \tau_{\Lambda(E_{*}^*)} = (\sqrt{-1})^{l/2} \widetilde{c}(\xi_1) \widetilde{c}(\xi_2) \cdots \widetilde{c}(\xi_l))$$
(2.51)

gives the signature \mathbb{Z}_2 -grading in $\Lambda(T^*Y)$ (resp. $\Lambda(E_Y^*)$). Moreover, we have

$$\tau_{\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*)} = \tau_{\Lambda(T^*Y)}\hat{\otimes}\tau_{\Lambda(E_Y^*)},\tag{2.52}$$

$$(\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*))_{\pm} = (\Lambda_+(T^*Y)\otimes\Lambda_{\pm}(E_Y^*)) \oplus (\Lambda_-(T^*Y)\otimes\Lambda_{\mp}(E_Y^*)).$$
(2.53)

Compared with the definition of the super-twisted signature operator in [5], \widetilde{D}^Y can be viewed as a twisted super-twisted signature operator on Y. From the proof of Theorem 1.1 in [5], we have

$$\operatorname{ch}((\Lambda_{+}(E_{Y}^{*}) - \Lambda_{-}(E_{Y}^{*})) \otimes o_{Y}(v)) = (\operatorname{ch}(\Lambda_{+}(E_{Y}^{*})) - \operatorname{ch}(\Lambda_{-}(E_{Y}^{*}))) \operatorname{ch}(o_{Y}(v))$$

$$= 2^{l/2} (\sqrt{-1})^{-l/2} \operatorname{Pf}(-R^{E_{Y}}) \cdot 2^{2n-l}$$

$$= 2^{2n-l/2} (\sqrt{-1})^{-l/2} \operatorname{Pf}(-R^{E_{Y}}).$$

where R^{E_Y} is the curvature of ∇^{E_Y} . From the local index theorem for twisted Dirac operator (see [1, Theorem 4.3]) and Theorem 1.1 in [5] we get

ind
$$\widetilde{D}_{+}^{Y} = (-1)^{l/2} 2^{2n} \chi(E_Y).$$
 (2.54)

(c) Proof of Theorem 1.2.

For any $\mu \geq 0$, let W^{μ} (resp. \mathbf{F}^{μ}) be the set of sections of $\Lambda^*(T^*X)$ on X (resp. of $\Lambda^*(T^*Y) \otimes o_Y(v)$ on Y) which lie in the μ -th Sobolev space. Let $|| \ ||_{W^{\mu}}$ (resp. $|| \ ||_{\mathbf{F}^{\mu}}$) be the Sobolev norm on W^{μ} (resp. \mathbf{F}^{μ}).

Let $\gamma: \mathbf{R} \to [0,1]$ be a smooth even function with $\gamma(a) = 1$ if $|a| \le \frac{1}{2}$ and $\gamma(a) = 0$ if $|a| \ge 1$. For any T > 0 and $y \in Y$, set

$$\alpha_T(y) = \int_{N_y} \gamma \left(\frac{|Z|}{2}\right)^2 \exp\left(-T|Z|^2\right) d\sigma_{N_y}(Z), \tag{2.55}$$

$$G_T(y,Z) = \alpha_T^{-\frac{1}{2}}(y)\gamma\left(\frac{|Z|}{2}\right)\exp\left(-\frac{T|Z|^2}{2}\right),\tag{2.56}$$

where $\epsilon \in (0, \epsilon_0)$ and ϵ_0 is defined in Section 2 (a). Clearly, the values of functions $\alpha_T(y)$ and $G_T(y, Z)$ do not depend on $y \in Y$.

For $\mu \geq 0, T > 0$, let $J_T : \mathbf{F}^{\mu} \to \mathbf{W}^{\mu}$ be a linear map defined by

$$J_T u = k^{-1/2} G_T \pi^* u, \qquad \forall u \in \mathbf{F}^{\mu}. \tag{2.57}$$

Let W_T^{μ} be the image of J_T in W^{μ} and let $W_T^{0,\perp}$ be the orthogonal complement of W_T^0 in W^0 . Set

$$W^{1,\perp} = W^1 \cap W_T^{0,\perp}. \tag{2.58}$$

Let p_T and p_T^{\perp} be the orthogonal projection operators from W⁰ onto W⁰_T and W^{0, \perp}, respectively. Set

$$D_{T,1} = p_T D_T^X p_T, \quad D_{T,2} = p_T D_T^X p_T^{\perp}, \quad D_{T,3} = p_T^{\perp} D_T^X p_T, \quad D_{T,4} = p_T^{\perp} D_T^X p_T^{\perp}.$$
 (2.59)

We have

$$D_T^X = D_{T,1} + D_{T,2} + D_{T,3} + D_{T,4}. (2.60)$$

Now by using Proposition 2.1 and proceeding as in [2, Section 9], we can prove the following lemma.

Lemma 2.3. (i) The following formula holds on $\Gamma(\Lambda^*(T^*Y) \otimes o_Y(v))$ as $T \to +\infty$,

$$J_T^{-1}D_{T,1}J_T = \tilde{D}^Y + O\left(\frac{1}{\sqrt{T}}\right),\tag{2.61}$$

where $O(\frac{1}{\sqrt{T}})$ is a first order differential operator with smooth coefficients dominated by C/\sqrt{T} .

(ii) There exist $C_1 > 0$, $C_2 > 0$ and $T_0 > 0$ such that for any $T \geq T_0$, $s \in W_T^{1,\perp}$ and $s' \in W_T^1$, we have

$$||D_{T,2}s||_{W^0} \le C_1 \left(\frac{||s||_{W^1}}{\sqrt{T}} + ||s||_{W^0}\right),$$
 (2.62)

$$||D_{T,3}s'||_{W^0} \le C_1 \left(\frac{||s'||_{W^1}}{\sqrt{T}} + ||s'||_{W^0}\right),$$
 (2.63)

$$||D_{T,4}s||_{W^0} \ge C_2(||s||_{W^1} + \sqrt{T}||s||_{W^0}). \tag{2.64}$$

Proof. One verifies the inequalities in (ii) in the lemma easily by following the proofs of Theorem 9.10, Theorem 9.11 and Theorem 9.14 in [2, Section 9]. Note that our case is much simpler than what in [2, Section 9]. So we need only to prove the first part in the lemma.

For any $u \in \Gamma(\Lambda^*(T^*Y) \otimes o_Y(v))$, we have

$$\begin{split} J_T^{-1}D_{T,1}J_Tu &= J_T^{-1}p_TD_T^Xp_TJ_Tu \\ &= J_T^{-1}p_Tk^{-\frac{1}{2}}\left(D^H + D^N + T\sqrt{-1}\widetilde{c}(v_1) + T\sqrt{-1}\widetilde{c}(v_2) + R_T\right)G_T\pi^*u \\ &= J_T^{-1}p_Tk^{-\frac{1}{2}}D^HG_T\pi^*u + J_T^{-1}p_Tk^{-\frac{1}{2}}(D^N + T\sqrt{-1}\widetilde{c}(v_1))G_T\pi^*u \\ &+ T\sqrt{-1}J_T^{-1}p_Tk^{-\frac{1}{2}}\widetilde{c}(v_2)G_T\pi^*u + J_T^{-1}p_Tk^{-\frac{1}{2}}R_TG_T\pi^*u. \end{split}$$

From Lemma 2.2 and (2.56) and the definition of p_T , one verifies easily that

$$J_T^{-1} p_T k^{-\frac{1}{2}} (D^N + T\sqrt{-1}\widetilde{c}(v_1)) G_T \pi^* u = O\left(\frac{1}{\sqrt{T}}\right) u.$$
 (2.65)

Since $\tilde{c}(v_2)$ interchanges $(\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*))_+$ and $(\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*))_-$, from the second part in Lemma 2.1 and again the definition of p_T , one gets

$$p_T k^{-\frac{1}{2}} \tilde{c}(v_2) G_T \pi^* u = 0. (2.66)$$

From (2.29) and Proposition 9.3 in [2, Section 9], we have

$$J_T^{-1} p_T k^{-\frac{1}{2}} R_T G_T \pi^* u = O\left(\frac{1}{\sqrt{T}}\right) u. \tag{2.67}$$

On the other hand, from (2.17), (2.56) and the choices of connections ∇^{TM} and ∇^{E} in Section 2a), we have

$$J_{T}^{-1}p_{T}k^{-\frac{1}{2}}D^{H}G_{T}\pi^{*}u = J_{T}^{-1}p_{T}k^{-\frac{1}{2}}\sum_{i=1}^{l}c(e_{i})\left(\pi^{*}\nabla_{e_{i}}^{\Lambda(T^{*}X)\hat{\otimes}\Lambda(E^{*})|_{Y}}\right)G_{T}\pi^{*}u$$

$$= J_{T}^{-1}p_{T}k^{-\frac{1}{2}}G_{T}\pi^{*}\left(\sum_{i=1}^{l}c(e_{i})\widetilde{\nabla}_{e_{i}}^{\Lambda(N^{*})\hat{\otimes}\Lambda(E_{N}^{*})}u\right)$$

$$= J_{T}^{-1}k^{-\frac{1}{2}}G_{T}\pi^{*}D_{Y}u = \widetilde{D}_{Y}u.$$

So the lemma follows.

From (2.34) and (2.45) we have

$$\tau_{\Lambda(T^*X)\hat{\otimes}\Lambda(E^*)}|_Y = (-1)^l \tau_{\Lambda(T^*Y)\hat{\otimes}\Lambda(E^*_Y)} \hat{\otimes} \tau_{\Lambda(N^*)\hat{\otimes}\Lambda(E^*_N)}. \tag{2.68}$$

So for even l,

$$(\Lambda(T^*X)\hat{\otimes}\Lambda(E^*))_{\pm} = ((\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*))_{+} \otimes (\Lambda(N^*)\hat{\otimes}\Lambda(E_N^*))_{\pm})$$

$$\oplus ((\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*))_{-} \otimes (\Lambda(N^*)\hat{\otimes}\Lambda(E_N^*))_{\mp}),$$
(2.69)

and for odd l,

$$(\Lambda(T^*X)\hat{\otimes}\Lambda(E^*))_{\pm} = ((\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*))_{+} \otimes (\Lambda(N^*)\hat{\otimes}\Lambda(E_N^*))_{\mp})$$

$$\oplus ((\Lambda(T^*Y)\hat{\otimes}\Lambda(E_Y^*))_{-} \otimes (\Lambda(N^*)\hat{\otimes}\Lambda(E_N^*))_{\pm}).$$
(2.70)

Let

$$W^{\mu} = W^{\mu}_{+} \oplus W^{\mu}_{-} \tag{2.71}$$

be the decomposition with respect to the natural extension of the \mathbb{Z}_2 -grading in $\Gamma(\Lambda(T^*X) \hat{\otimes} \Lambda(E^*))$.

Following [9, Section 2(c)], for any $t \in \mathbf{R}$, set

$$D_{T\perp}^X(t) = D_{T\perp} + D_{T\geq} + t(D_{T\geq} + D_{T\geq}) : W_{\perp}^1 \to W_{\perp}^0.$$
 (2.72)

From Lemma 2.3 and proceeding similarly as the proof of Lemma 2.2 in [9], we get

Lemma 2.4. There exists $T_1 > 0$ such that for any $T \geq T_1$, $D_{T,+}^X(t)$, $t \in [0,1]$, is a continuous curve of Fredholm operators.

From Lemma 2.4, we have

ind
$$D_{T,+}^X = \text{ind } D_{T,+}^X(1) = \text{ind } D_{T,+}^X(0) = \text{ind } D_{T,1} + \text{ind } D_{T,4},$$
 (2.73)

where in the last line, $D_{T,1}$ (resp. $D_{T,4}$) is now regarded as a Fredholm operator mapping from $W_{T,+}^1$ (resp. $W_{T,+}^{0,\perp}$) to $W_{T,-}^0$ (resp. $W_{T,-}^{0,\perp}$). By the similar reason as (2.13) in [9,

Section 2(b)], for sufficiently large T > 0, we have

$$ind D_{T,4} = 0. (2.74)$$

Thus for sufficiently large T > 0, we have

ind
$$D_{T,+}^X = \text{ind } D_{T,1} = \text{ind } J_T^{-1} D_{T,1} J_T.$$
 (2.75)

Now from the first part of Lemma 2.3 and (2.69), (2.70) and (ii) in Lemma 2.1, we get for sufficiently large T > 0,

$$\operatorname{ind} D_{T,+}^{X} = \sum_{l_k = even} (-1)^{n+l_k(l_k-1)/2} \operatorname{ind} \widetilde{D}_{+}^{Y_k} - \sum_{l_k = odd} (-1)^{n+l_k(l_k-1)/2} \operatorname{ind} \widetilde{D}_{+}^{Y_k}$$
$$= \sum_{l_k = even} (-1)^{n+l_k/2} \operatorname{ind} \widetilde{D}_{+}^{Y_k}.$$

Thus by Theorem 2.1 we have

$$\operatorname{ind} D_{T,+}^{X} = \sum_{l_k = even} (-1)^{n+l_k/2} (-1)^{l_k/2} 2^{2n} \chi(E_{Y_k})$$

$$= (-1)^n 2^{2n} \sum_{l_k = even} \chi(E_{Y_k})$$

$$= (-1)^n 2^{2n} \sum_{l_{k-1}}^m \chi(E_{Y_k}),$$

where the last equality is from the fact that an odd real vector bundle has the vanishing Euler characteristic. Now from (2.13) we get

$$\chi(E) = \sum_{k=1}^{m} \chi(E_{Y_k}). \tag{2.76}$$

Finally, by the orientation-preserving isomorphisms in (2.14), we get Theorem 1.1.

Remark 2.1. (i) When v is a transversal section of E, Y consists of isolated points $Y_k \in X$. Comparing the definition of ind $(v; Y_k)$ in [5, Section 2] with the orientation on E_{Y_k} , one gets easily that

$$\chi(E_{Y_k}) = \text{ind } (v; Y_k), \tag{2.77}$$

and thus Theorem 11.17 in [4, p.125], which was proved in [5] in a purely analytic way.

(ii) When E = TX, one compares the definition of ind (v, Y_k) in [6, Section. 2] with the orientation on E_{Y_k} , one gets easily that

$$\chi(E_{Y_k}) = \text{ind } (v, Y_k)\chi(Y_k), \tag{2.78}$$

and thus Theorem 4.2 in [6].

As a simple application, we consider a rank 2q oriented real vector bundle with q < n. Let v be a transversal section of E. Let Y still denote the zero point set of v. In this case, each connected component Y_k of Y is a 2n-2q dimensional orientable submanifold of X. Moreover, the normal bundle $(TX|_{Y_k})/TY_k$ of TY_k in $TX|_{Y_k}$ can be identified with $E|_{Y_k}$. We will choose the orientation on each Y_k such that the identification $TY_k \oplus E|_{Y_k}$ with $TX|_{Y_k}$ preserves the orientations on them.

From Theorem 1.1, we get easily the following corollary.

Corollary 2.1. For any oriented real vector bundle $F \to X$ of rank 2n-2q, the following equality holds:

$$\langle e(F)e(E), [X] \rangle = \sum_{k=1}^{m} \chi(F|_{Y_k}), \qquad (2.79)$$

where e(E) and e(F) denote the integral Euler classes of E and F respectively, and [X] denotes the homology class determined by X.

Proof. Clearly, the transversal section v of E can be naturally considered as a nondegenerate section of $F \oplus E$ in the sense of Bott. Then by Theorem 1.2 we have

$$\sum_{k=1}^{m} \chi(F|_{Y_k}) = \chi(F \oplus E) = \langle e(F \oplus E), [X] \rangle = \langle e(F)e(E), [X] \rangle.$$

Remark 2.2. Let E be an oriented even dimensional subbundle of TX. In [10], by constructing a sub-signature operator $\widetilde{D}_{E,+}$ associated to E, Zhang computed directly the local index of $\widetilde{D}_{E,+}$, by which he got the following index formula in [10, (6)]:

ind
$$\widetilde{D}_{E,+} = \langle \mathcal{L}(E)e(TX/E), [X] \rangle,$$
 (2.80)

where $\mathcal{L}(E)$ is the Hirzebruch \mathcal{L} -characteristic class. His formula provides an index theorem interpretation for the Euler class of E. In general, for any rank 2q oriented real vector bundle E over X with q < n, one can get an analogue index theorem interpretation by extending the definition of the super-twisted signature operator in [5] to this case naturally.

Acknowledgement. The authors would like to thank Professor Zhang Weiping for many helpful suggestions.

References

- [1] Berline, N., Getzler, E. & . Vergne, M., Heat kernels and Dirac operators [M], Berlin, Springer-Verlag,
- [2] Bismut, J. M. & Lebeau, G., Complex immersions and Quillen metrics [J], Publ. Math. IHES., 74(1991).
- [3] Bott, R., Nondegenerate critical manifolds [J], Ann. of Math., 60(1954), 248-261.
- [4] Bott, R. & Tu, L. W., Differential forms in algebraic topology [M], Berlin, Springer-Verlag, 1982.
- [5] Feng, H. & Guo, E., A super-twisted Dirac operator and Novikov inequalities [J], Science in China (series A), 5(2000), 470–480.
- [6] Feng, H. & Guo, E., Novikov-type inequalities for vector fields with non-isolated zero points [J], Pacific J. Math., 201:1(2001), 107–120.
- [7] Shubin, M., Novikov inequalities for vector fields [A], The Gelfand Mathematical Seminar [R], 1993-1995, Birkhäuser, Boston, 1996, 243–274.
- [8] Witten, E., Supersymmetry and Morse theory [J], J. Diff. Geom., 17(1982), 661-692.
- [9] Zhang, W., Symplectic reduction and family quantization [J], Inter. Math. Res. Notices, 19(1999), 1043–1056.
- [10] Zhang, W., Sub-signature operators and a local index theorem for them [J], Chinese Sci. Bull. (in Chinese), 4(1996), 294–295.