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Abstract

The authors generalize the works in [5] and [6] to prove a Hopf index theorem associated to
a smooth section of a real vector bundle with non-isolated zero points.
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¢1. Introduction

Let X be a closed and oriented manifold of dimension 2n. Let £ — X be an oriented
real vector bundle of rank 2n. Let v be a smooth section of E. We will denote the set of
zero points of v by Y.

When v is a transversal section of F, the set Y consists of isolated points. In [5], we got
a purely analytic proof of a Hopf index theorem associated to v (see [4, Theorem 11.17]) by
constructing a super-twisted signature operator.

In this paper, using Witten’s deformation ideal®! and Bismut-Lebeau’s technique (see [2,
Sections 8, 9]) and also the super-twisted signature operator defined in [5], we will prove a
Hopf index theorem associated to a smooth section v of F with non-isolated zero point set
which is nondegenerate in the sense of Bott!3.

Let p be a zero point of a smooth section v of E. There is a linear map £, (p) from the
tangent space T, X to the fibre E|, of E at p defined by

2n
Lo(p)U) =) (Up)éip), VU € T, X, (L.1)
i=1
2n
where {£1,&2, -+, &2, } is a basis for E around p and v = Y p;&; for some smooth functions
i=1

u; defined near p. Clearly, the definition of £, (p) does not depend on the choice of the basis
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{&1,&2,+ ,&an}. When restricted to the zero point set Y of v, by using (1.1) pointwisely
on Y, we get an intrinsic well-defined bundle homomorphism

EU STX|Y %E|y. (12)

Definition 1.1. A smooth section v of E is said to be nondegenerate in the sense of
BottB! if

(i) the zero point set'Y of v can be expressed as a finite disjoint union
m
Y=|J% (1.3)
k=1

of some oriented and connected submanifolds Yy of X ;

(ii) for each k, the kernel of the restriction Lk of L, on 'Yy is equal to TY},.

For each k, since TX|y, and TY}, are oriented vector bundles over Yj, we can give an
induced orientation on the normal bundle (T'X|y, )/TY} of TY}, such that the orientation on
TY}, and then the induced orientation on (T'X|y, )/TY} together coincides with the orienta-
tion on T'X |y, . From Definition 1.1, the image £, (T X |y, ) is isomorphic to (T'X |y, )/T Y.
So L, k(T Xy, ) inherits an orientation from what on (T'X |y, )/TYs. Thus we can also give
an induced orientation on the quotient bundle (El|y, )/Ly k(T X |y, ) such that the orientation
on (Ely, )/ Lk (T Xy, ) and then the orientation on £, (T Xy, ) together coincides with the
orientation on FEly, .

With above data in hand, we can state the following Hopf index theorem associated to a
smooth section v of F which is nondegenerate in the sense of Bott.

Theorem 1.1.

X(E) =Y x(Ely)/Lop(TXIn), (1.4)
k=1

where x(E) as well as x ((Ely,,)/ Lo k(T Xy, ))’s are the Euler characteristics of correspond-
ing bundles, respectively.

§2. Proof of Theorem 1.1

This section is divided in three parts. In (a), we recall the definition of a super-twisted
signature operator and its deformation by a section v of E defined in [5]. Then we study
the local behavior of the associated deformed operator near the zero point set Y of v when
v is nondegenerate in the sense of Bott. In (b) we define for each Yj a twisted Dirac
operator and compute its index. In (c) we prove Theorem 1.1 by combining the technique
of Bismut-Lebeaul2 Sections 891 and a trick of Zhang!®!.

(a) A Deformed Super-Twisted Signature Operator and Its Local Behavior

Given a Riemannian metric ¢g7X on X, let VIX denote the associated Levi-Civita con-
nection. Given also an Euclidean inner product ¢¥ on E, let V¥ denote an Euclidean
connection on E. Then g% and VX (resp. g¥ and VF) lift naturally to a Hermitian
inner product and a Hermitian connection on the complex-valued exterior algebra bundle
A(T*X) (vesp. A(E*)) which we will denote by g*(™ %) and VAT X) (resp. ¢MF") and
VA(E*)), respectively. For any U € TX and € € F, set

c(U) =e(U") —uU),  &§) =e(§") —u(8), (2.1)
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where U* and &* correspond to U and ¢ via ¢7X and ¢ respectively, and ¢ and ¢ are the
standard notations of exterior and interior multiplications. Then for any U,V € TX and
any ¢,n € E, one has

c(U)e(V) +e(V)e(U) = —2g" (U, V),

aA&)e(n) +cm)e(e) = 29" (€,m). (2.2)

Recall that in [5] the Zs-grading A(T*X) = AL (T*X) & A_(T*X) (resp. A(E*) =

Ay (E*) @ A_(E*)) is given by the involution 7a(7-x) (resp. Tp(g+)) where with respect to
any oriented orthonormal basis {eq,ea, -+ ,ea,} (vesp. {&1,&2, - ,&an}) for TX (resp. E),
we have (see [5])

Tarex) = (V=1)"c(er)c(ez) - - - cean)
(resp. TA(E*) = (\/jl)n5<§1 )E(fg) s E({Qn)) (23)

From the data above, A(T*X)®A(E*) is a Zs-graded Hermitian vector bundle with the
Hermitian inner product g™ X) @ g*(¥") and the Hermitian connection

VAT X)OME") — AT X) g1 4 16VAED) (2.4)
and also the Zs-grading
AT X)@A(E") = (MT*X)@A(EY)) | & (MT*X)@A(EY)) _ (2.5)
given by the involution
TA(T*X)QA(E*) = TA(TX)OTA(E*) (2.6)
where
(A(T*X)@A(E*))i =AM (T"X)@AL(E")) @ (A(T"X) @ A (E")) . (2.7)

Note that ¢(U) and ¢(£) act on A(T*X)®A(E*) obviously by ¢(U) ® 1 and 1 ® ¢(£) for any

U e TX and £ € E, respectively. Moreover, ¢(U) and ¢(§) anticommute with the involution
TA(T x)&A(E~) and satisfy

c(U)e(§) +¢(€)c(U) = 0. (2.8)

In [5] we have defined a super-twisted signature operator D¥ acting on the set I'(A(T*X)

®A(E*)) of smooth sections of A(T*X)®A(E*). With respect to an orthonormal basis
{e1,ea, -+ ,ea,} for TX, we have

Z VA(T X)OA(E") (2.9)
k=

Denote the restrictions of DX on I' ((A(T*X)@A(E*))i) by D¥. By Theorem 1.1 in [5],
we have

ind DY = (—1)"2*"x(E). (2.10)

Following Witten’s deformation idea (see [8]), we define the following deformation of DX
by a smooth section v € I'(E):

D = DX + TV—1e(v) : T (A(T*X)RA(E")) = T (AMT*X)RA(E™)) . (2.11)
Note that this deformation is a little different from what in [5].
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When restricting D% to I' ((A(T*X)®A(E*));), we have
DZ)“(,+ :T ((A(T*X)@A(E*)).Q - T ((A(T*X)@A(E*))_) , (2.12)
ind D, = ind DY = (—1)"2*"x(E). (2.13)

By proceeding as the proof of Lemma 1.2 and Lemma 1.3 in [5], one verifies easily that the
localization principle Lemma 1.3 in [5] also holds for the deformed super-twisted operator
D here. Thus we can localize our problem and need only to concentrate on the analysis
near the zero point set Y of the section v.

In the following we assume that v is a nondegenerate section of E in the sense of Bott.
Set I, = dimY} in (1.3). For simplicity, we will write Y (resp. [) instead of Y}, (resp. i)
when no confusion appears.

Let m : N — Y be the orthogonal bundle to TY in TX|y. Denote £,(N) by Eyx and
denote the orthogonal bundle to Ey in E|y by Ey, where E|y is the restriction of E on Y.
The following isomorphisms of vector bundles are clear:

N 2= (TX|y)/TY = Ex = Lo(TX|y), Ey = (Ely)/Lo(TX|y). (2.14)

According to the choices of the orientations in Section 1, the vector bundles TY, N, Ey and
En are all oriented and L, is an orientation-preserving isomorphism between N and Ey.

Since Theorem 1.1 is purely topological and does not depend on the metrics and connec-
tions on the bundles involved, we can and will choose g7 such that Y is a totally geodesic
submanifold of X. Thus the restriction VZXI¥ of VX on T X|y preserves I'(TY) and T'(N)
respectively. When restricting VZXI¥ to TY (resp. N), we get a connection V7Y (resp.
VM) on TY (resp. N). Clearly, VIV is the Levi-Civita connection on Y associated to
the restricted metric g7¥ = g?X|y. Denote the connections on A(T*Y) and A(N*) lifted
from V7Y and VY by VAT™Y) and VAW | respectively. On the other hand, since £, is
an isomorphism between N and Ey, we can and will choose a Euclidean inner product g¥
on E such that when restricted to Y, £, is an isometry from N onto Eyn. We can also
choose a Euclidean connection V¥ such that its restriction VEI¥ on E|y preserves I'(Ey )
and I'(Ey), respectively. Similarly, we can define the connections VZv, VE~ VAEY) and
VAEN) on the bundles Ey, Ey, A(E%) and A(E3), respectively.

Let €9 > 0 be such that for any € € (0, €p), the set B. = {Z € N | |Z] < €} can be identified
with a tubular neighborhood U, of Y in X by the exponential map (y, Z) — exp ?(Z) € X,
where y € Y and Z € Ny N B.. Let W (resp. W) be the set of smooth sections of
™ (A(T* X)RA(E*))|y) (resp. A*(T*X)®A(E*)). For any si,sy in W with compact
support in B, define

<51,52>:/Y(/N (sl,52>(y,Z)d0Ny(Z)>doy(y), (2.15)

where doy and doy, denote the volume elements of Y and fiber N, at y € Y, respectively.
Denote the volume element of X by dox. Let k(y, Z) be such that
dox(y, Z) = k(y, Z)doy (y)don, (Z). (2.16)
Then k(y, Z) is a positive smooth function on U, and k(y,0) = 1.
Let W, (resp. W) be the set of elements in W (resp. W) with compact support in
U, (resp. B¢). By the trivialization of A*(T*X) and A(E*) on U, along the geodesic in X
perpendicular to Y, an element s € W can be considered as an element in W. One verifies
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easily that kzéD¥ k=2 acts as a formal self-adjoint operator on W, with respect to the L?
inner product (2.15).

For any U € TY, let U denote the horizontal lifting of U with respect to the connection
VY. Then for any orthonormal basis {e1, - ,ej, fix1, -+, fan} for TX|y with {e;, -+ ,e;}
(vesp. {fit1, -, fan}) an orthonormal basis for TY (resp. N), set

l

D =3 c(en)mr VATV W, (2.17)
i=1 '
2n . N .
DY = 3N e(fa)r VT OSAEN W W (2.18)
a=Il+1
Clearly, the definitions of D and D™ do not depend on the choice of the basis {ey,- - ,e;,
fis1, -+, fany. Thus D and DV are two well-defined operators acting on W.

Consider the splitting
Elu, = Ey @ EY, (2.19)

where EY, and EJ, are the parallel transports of Ey and Ey along the geodesic in X
perpendicular to Y. With respect to (2.19), v has a decomposition

v =vUg, +VEy (2.20)

on U, with vg, € T'(E}) and vg, € T(EY).
Note that we can always deform v near Y so that vy, =0, leaving Y and thus N, Fly,
En and Ey in the text unchanged. For the simplicity, we assume below that

vel(Ey) on U. (2.21)
For any y € Y and any orthonormal basis {fi11,--- , fon} of N, set
No = Lo(fo) for I+1<a<2n. (2.22)
Then {n11,---,m2,} is an orthonormal basis of Ey,. Let (2111, 2142, -, 22,) denote the
Euclidean coordinate system on N, corresponding to {fi+1, -, fan}. For any U € TX|y
(resp. € € El|y), denote by U (resp. &) the parallel transport of U (resp. &) along the
geodesic in X perpendicular to Y. For any Z = (2141, 2142, - , 22n) € Ny with |Z] <¢, let
2n
vy, 2) =Y paly, 2)iiay, 2). (2.23)
a=Il+1
Set
2n 2n a/J/
Ul(y7 Z) = Z Z T;(y)zﬂﬁa(y7z)u (224)
a=lt1p=1+1 P
2n 2n
1 e _
Z) == (Y, Z). 2.2

a=I+1By=1+1
The definitions (2.24) and (2.25) are obviously independent of the choice of the basis
{fi+1, ", fan}. Clearly,

v(y, Z) = vy, Z) +va(y. Z) + O(|1Z]). (2.26)
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Moreover, from (2.22) and the definition of £, one verifies easily that
2n

vy, Z) = Y zallaly, 2). (2.27)
a=Il+1

Similar to Theorem 8.18 in [2], one verifies easily the following proposition which describes
the local behavior of DX as T — oo.
Proposition 2.1. As T — 400, we have the following formula on W :
K2DX k=12 = DH 4 DN 4+ TV=1&(v1) + Tv/—1¢(vs) + Ry, (2.28)
where
Ry = 0(1Z|0% +|Z?0N + 12| + T|Z)%), (2.29)

and O, ON represent horizontal and vertical differential operators, respectively.
Set

DY = DY 4+ Tv/—1¢(vy). (2.30)
Note that DY is a self-adjoint elliptic operator acting fibrewisely on I'(7*(A*(N*)® A(E%))).
Given an orthonormal frame {f;41, -+, fon} for N, let {m41, - ,72n} be determined by
(2.22). Then from (2.18), (2.27), one verifies easily that
2n N . 2n
DY = N7 e(fa)mr v T ISAENY LT N L), (2.31)
a=Il+1 a=l+1
2n 62 2n
(DY)? = Z <2 + 71222 — T) +T Z (1+V=1c(fa)e(na)) -
0z
a=Il+1 @ a=Il+1 (232)
Set
Lo= Y (14+V=1c(fa)e(na)) : AN)GA(ER) = AN*)OA(EY). (2.33)
a=Il+1

Clearly, the definition of EU does not depend on the choice of {fi11,-+, fon} and thus EU

is a well-defined bundle map on A(N*)@A(E%).
Similar to (2.3), the involution

TAN-)OA(EL) = (V=1)""e(fiyr) - c(fon)elmsr) - - €n2n) (2.34)
gives a Zo-grading in A(N* @ Ey) = AN*)QA(Ey),
AN*)RA(EY) = (A(N*)@A(Ej’k\,))+ & (AMN"SAEY))_ . (2.35)
Set
oy (v) = ker L,,. (2.36)

Lemma 2.1. (i) tk oy (v) = 2271,
(i)
ANOAEY))+, if nt LD

oy (v) C 7
(AMNHQAEL))—, if ne =D o
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Proof. One can prove the lemma by applying Theorem 2.1 and Theorem 2.2 in [5], which
are related close to [7]. Since the case here is much simpler, we will give the lemma a direct
proof. Clearly, the linear map v/—1¢(f)c(n) acting on the complex vector space

A" }) = C{L, f* 0", fF A"} (2.37)
is an involution. A direct computation shows that the —1 eigenspace of v/—1c(f)¢(n) is
C{f* Vv _177*7 I—v _lf* A 7]*}7 (238)

which is also the kernel of the map 1++/—1c(f)é(n). From (2.33), (2.38) and A(N*)®A(E%)
2n
= N (A{S3:m5}), we get

a=Il+1
2n
ov(v) = Q) (C{fa —V=Tni1 = V=1fi Ani}). (2:39)
a=Il+1
Thus dim oy (v) = 221,
On the other hand, from (2.34) one verifies easily the following two equalities:

2n
LD _
TA(N*)®A(EY) — G H (V—=1e(fa))c(na)), (2.40)
a=Il+1
1(1—1)
TAW@AE) loy () = (1) 7. (2.41)

From (2.41) we complete the proof of Lemma 2.1.

From (2.32), Lemma 2.1 and the spectral theory of harmonic ocillators (see [7, Lemma
2.1]), one verifies the following lemma easily.

Lemma 2.2. Take T > 0. Then for anyy € Y, the operator (D} )? acting on T'(A*(N;)))
over N, is nonnegative with the 22"~' dimensional kernel:

exp (_ T\QZIQ) ® oy ()],- (2.42)

Furthermore, the nonzero eigenvalues of (D¥)? are all > 2(2n — )T .

(b) A Twisted Dirac Operator on Y and Its Index

Note that A(T*Y)®A(E}) is a Zo-graded Hermitian vector bundle over Y with the
Hermitian connection

VATTYOAMEY) — AT Y) Q1 4 16VAEY) (2.43)
and the Zs-grading
AMT*Y)QA(EY) = (MT*Y)QA(EY))+ @ (AMT*Y)RA(Es)) - (2.44)
given by the involution
TAT*Y)QA(EL) = (v —1)lC(€1) ecler)e(€n) - e(&)s (2.45)
where {e1,ea, -+ ,e;} (resp. {&1,&2, -+ ,&}) is an oriented orthonormal basis for TY (resp.
Ey). On the other hand, let
POy A(N)RA(Ey) — oy (v) (2.46)

denote the orthogonal projection of A(N*)®A(E%) to oy (v). Then oy (v) is a Hermitian
vector bundle over Y with the Hermitian connection
vov (v) — poy () AN )OAEY) poy (v). (2.47)
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Set
VAMTY)OAES) — gAWNIBOMER) 1 4 1 g Vor®), (2.48)
For any orthonormal basis {ej,eq, - ,¢;} for TY, set
l S *
DY = Z c(ei)ﬁé\i@*y)@A(EY). (2.49)
i=1
Clearly, (2.49) defines a twisted Dirac operator
DY T (AMT*Y)@A(EY)) @ oy (v)) — T (AT*Y)@A(ES)) @ oy (v)) . (2.50)

Denote the restriction of DY on T (MT*Y)®A(EY))+ @ oy (v)) by EI
Theorem 2.1. The following equalities hold:
Loon ; )
e 51, _ (=1)22*"x(By), if 1= even;
0, if 1= odd.

Proof. The case for odd [ is trivial. When [ is even, the involution
Taey) = (V=D)"2c(er)clez) - - cler)
(resp. Ta(my) = (V=D)"?E(&)e&) -+ a(&)) (2.51)
gives the signature Zy-grading in A(T*Y") (resp. A(EY)). Moreover, we have

TAT*Y)QA(EL) = TA(T*Y)®TA(E;), (2.52)
(AT*Y)BAED) < = (AL (T*Y) © A+ () & (A_(T°Y) @ A+ (E3))

(2.53)

Compared with the definition of the super-twisted signature operator in [5], DY can be

viewed as a twisted super-twisted signature operator on Y. From the proof of Theorem 1.1
in [5], we have

ch (A4 (Ey) = A_(Ey)) ® oy (v)) = (ch(A4 (Ey)) — ch(A_(Ey))) ch(oy (v))
— 2l/2(\/—71)7l/2Pf(—REy) . 22n7l
— 2271—[/2(\/?1)—[/2Pf(_REy)7
where RFY is the curvature of VY. From the local index theorem for twisted Dirac operator
(see [1, Theorem 4.3]) and Theorem 1.1 in [5] we get
ind DY = (=1)1/222"x(Ey). (2.54)

(c) Proof of Theorem 1.2.

For any p > 0, let W# (resp. F*) be the set of sections of A*(T*X) on X (resp. of
A*(T*Y) ® oy (v) on Y) which lie in the p-th Sobolev space. Let || ||ww (resp. || ||gx) be
the Sobolev norm on W# (resp. F#).

Let v : R — [0,1] be a smooth even function with v(a) = 1 if |a| < 3 and v(a) = 0 if
la| > 1. For any T'> 0 and y € Y, set

o) = [ 1(F) exp (-T12P)don, 2) (2.59)
Gr(v.2) = ozt D)esp (- T2, (2.56)
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where € € (0,¢p) and ¢ is defined in Section 2 (a). Clearly, the values of functions ar(y)
and Gr(y, Z) do not depend on y € Y.
For 4 > 0,7 > 0, let Jp : F¥ — WH* be a linear map defined by

Jru = kY2 Gpr*u,  Yu e FA (2.57)

Let W/ be the image of Jp in W# and let W%J‘ be the orthogonal complement of W9, in
WO, Set

Wht = Wi nwi+. (2.58)
Let pr and p% be the orthogonal projection operators from W onto W9, and W%J‘7 respec-
tively. Set
Dry =prDFpr, Dro=prDyps, Drs=prD3pr, Dra=prDipr.  (2.59)
We have
D3 = Dry+ Dro+ Drs+ Drg. (2.60)

Now by using Proposition 2.1 and proceeding as in [2, Section 9], we can prove the
following lemma.
Lemma 2.3. (i) The following formula holds on T'(A*(T*Y) ® oy (v)) as T — +o0,

- 1
JADpryJr = DY + 0(—), 2.61
7 DraJr Wia (2.61)
where O(%) is a first order differential operator with smooth coefficients dominated by

C/VT.
(ii) There exist C; > 0, Cy > 0 and Ty > 0 such that for any T > Ty, s € VV%,JL and
s' € Wi, we have

S
1Drasliwo < €3 (T8 4l ). (2.62)
S/ 1
1Dras o < €3 (0 4 15 ), (269
1Dz.asllwe > Collslhws + VTl hwo): (2.64)

Proof. One verifies the inequalities in (ii) in the lemma easily by following the proofs of
Theorem 9.10, Theorem 9.11 and Theorem 9.14 in [2, Section 9]. Note that our case is much
simpler than what in [2, Section 9]. So we need only to prove the first part in the lemma.

For any u € T'(A*(T*Y) ® oy (v)), we have

JleTJJTu = JflpTDq)prJTu
= Jp'prk™% (DM + DN 4+ TV=1¢(v1) + TV=1¢(vs) + Rr) Grm*u
= Jo prk™ 2 DHGratu+ J7 prk~ 2 (DY + Tv/=1e(v1))Grr*u
+ TV =1J5 prk~2c(ve)Grr*u + J3 ' prk™* RpGrr*u.

From Lemma 2.2 and (2.56) and the definition of pr, one verifies easily that

J:,TIka:_%(DN + TV —1¢(v1))Grr*u = O(%)u (2.65)
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Since ¢(vq) interchanges (A(T*Y)®A(E%))+ and (A(T*Y)®A(E%))—, from the second part
in Lemma 2.1 and again the definition of py, one gets

prk~2¢(v2)Gpr*u = 0. (2.66)
From (2.29) and Proposition 9.3 in [2, Section 9], we have

L . 1
Jrprk~ % RpGrr*u = O(ﬁ)u.
On the other hand, from (2.17), (2.56) and the choices of connections VI'™ and V¥ in
Section 2a), we have

(2.67)

l S *
J;lka—%DHGTW*u — J,;lka‘_% Zc(ei) (Tr*vz\f(]T X)QA(E )|Y> GTﬂ'*U
i=1

i

€4

-

_ ;1ka.—%GTﬂ.*< c(ei)~A(N*)®A(E1*V)u>

i=1

= J{wlk_%GTﬂ'*Dyu = Eyu.
So the lemma follows.
From (2.34) and (2.45) we have
TAr x)@AEH Y = (—1)ZTA(T*Y)®A(E;)®TA(N*)®A(E;V)- (2.68)
So for even [,
(AT X)BAE))s = (MT*Y)EAED)) 4 @ (AN)EAEL))-)
& (ATY)EAED))- © (AN)EA(EY))7)

(2.69)
and for odd I,
(AT X)OA(E"))x = (MTY)OAEY))+ ® (MNT)OA(EY))+)
@ (AT*Y)BA(E})) - @ (AN*)OA(ER))+) -
(2.70)
Let
WH =W & W (2.71)
be the decomposition with respect to the natural extension of the Zy-grading in T'(A(T*X)
SA(E*)).
Following [9, Section 2(c)], for any t € R, set

D%{Jr(t) = D71+ Dpys+ t(DT’g + DT’4) : W1+ - WO, (2.72)

From Lemma 2.3 and proceeding similarly as the proof of Lemma 2.2 in [9], we get
Lemma 2.4. There exists Ty > 0 such that for any T > Ti, D (1), t € [0,1], is a
continuous curve of Fredholm operators.
From Lemma 2.4, we have

ind Df , =ind D' (1) = ind DF , (0) = ind D1 + ind D4, (2.73)

where in the last line, Dy (resp. Dr4) is now regarded as a Fredholm operator mapping
from Wi , (resp. W%i) to W _ (resp. W(}f) By the similar reason as (2.13) in [9,
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Section 2(b)], for sufficiently large T' > 0, we have
ind Dy 4 = 0. (2.74)

Thus for sufficiently large T > 0, we have

ind Df , =ind Dy = ind J;' D1 Jr. (2.75)
Now from the first part of Lemma 2.3 and (2.69), (2.70) and (ii) in Lemma 2.1, we get for
sufficiently large T' > 0,

ind D7)5+ — Z (71)n+lk,(lk71)/2ind f){k _ Z (71)n+lk(lk*1)/2ind f)_}:k
7 lp=even lr=o0dd
= Y (=1)"™/%ind DY*.
lp=even
Thus by Theorem 2.1 we have
ind Dq)s+ — Z (71)n+lk/2(71)lk/222nX(EYk)
lp=even

:(_1)n22n Z X(EYk)

lp=even
m

= (=1)"2*" Y x(Bv),

k=1
where the last equality is from the fact that an odd real vector bundle has the vanishing
Euler characteristic. Now from (2.13) we get

X(E) =) x(Ev). (2.76)
k=1

Finally, by the orientation-preserving isomorphisms in (2.14), we get Theorem 1.1.

Remark 2.1. (i) When v is a transversal section of E, Y consists of isolated points
Y: € X. Comparing the definition of ind (v;Y}) in [5, Section 2] with the orientation on
Ey, , one gets easily that

X(By,) = ind (v; Yy), (2.77)

and thus Theorem 11.17 in [4, p.125], which was proved in [5] in a purely analytic way.
(ii) When E = T'X, one compares the definition of ind (v, Y%) in [6, Section. 2] with the
orientation on Evy,, one gets easily that

X(Ey,) = ind (v, Yi)x(Yz), (2.78)

and thus Theorem 4.2 in [6].

As a simple application, we consider a rank 2q oriented real vector bundle with ¢ < n.
Let v be a transversal section of E. Let Y still denote the zero point set of v. In this
case, each connected component Y of Y is a 2n — 2¢ dimensional orientable submanifold
of X. Moreover, the normal bundle (T X |y, )/TY of TY; in TX|y, can be identified with
Ely,. We will choose the orientation on each Y} such that the identification TY; @ Ely,
with T'X |y, preserves the orientations on them.

From Theorem 1.1, we get easily the following corollary.
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Corollary 2.1. For any oriented real vector bundle F' — X of rank 2n—2q, the following
equality holds:

(e(F)e(E), [X]) = > x(Flw), (2.79)
k=1

where e(E) and e(F) denote the integral Euler classes of E and F respectively, and [X]
denotes the homology class determined by X .

Proof. Clearly, the transversal section v of E can be naturally considered as a nonde-
generate section of F' & F in the sense of Bott. Then by Theorem 1.2 we have

m

Y X(Fln) = X(F & E) = (e(F & E), [X]) = (e(F)e(E), [X]).
k=1

Remark 2.2. Let E be an oriented even dimensional subbundle of TX. In [10], by
constructing a sub-signature operator Dg ; associated to E, Zhang computed directly the
local index of Dg y, by which he got the following index formula in [10, (6)]:

ind Dg . = (L(E)e(TX/E),[X)), (2.80)

where £(FE) is the Hirzebruch £-characteristic class. His formula provides an index theorem
interpretation for the Euler class of E. In general, for any rank 2¢ oriented real vector bundle
E over X with ¢ < n, one can get an analogue index theorem interpretation by extending
the definition of the super-twisted signature operator in [5] to this case naturally.
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