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Abstract

The Nagumo equation

ut = ∆u+ bu(u− a)(1− u), t > 0

is investigated with initial data and zero Neumann boundary conditions on post-critically finite
(p.c.f.) self-similar fractals that have regular harmonic structures and satisfy the separation
condition. Such a nonlinear diffusion equation has no travelling wave solutions because of the

“pathological” property of the fractal. However, it is shown that a global Hölder continuous
solution in spatial variables exists on the fractal considered. The Sobolev-type inequality plays
a crucial role, which holds on such a class of p.c.f self-similar fractals. The heat kernel has an
eigenfunction expansion and is well-defined due to a Weyl’s formula. The large time asymptotic

behavior of the solution is discussed, and the solution tends exponentially to the equilibrium
state of the Nagumo equation as time tends to infinity if b is small.

Keywords Fractal set, Spectral dimension, Sobolev-type inequality, Strong (Weak)
solution
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§1. Introduction

The Nagumo equation in IRN (N ≥ 1) reads

ut = ∆u+ bu(u− a)(1− u), t > 0, (1.1)

where b > 0 and 0 < a < 1. The equation (1.1) is used as a model to describe the spread of
genetic traits or the propagatoin of nerve pulse in a nerve axon[1,15,29]. There has been an
extensive study of (1.1) on the real line IR (see for example [1,5,6,15,17,29]).

Our concern here is different. We work with (1.1) on a certain class of self-similar fractal

sets in IRN , of which the Sierpiński gasket is most typical. The Sierpiński gasket in IR2 is
defined as follows. Let Fi : IR

2 → IR2 be given by

Fi(x) =
1

2
(x− pi) + pi, x ∈ IR2, i = 1, 2, 3,
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where {p1, p2, p3} ≡ V0 is the set of vertices of a triangle in IR2 with each side of length 1.

The Sierpiński gasket in IR2 is the closure of V∗ =
∞∪

m=0
Vm with Vm =

3∪
i=1

Fi(Vm−1),m ≥ 1

(see Fig. 1).

Fig.1
The reader may think of the Sierpiński gasket in IR2 as an example when encountering a

p.c.f. self-similar fractal I mentioned in this paper.
Laplacians have been defined on a certain class of self-similar fractals (see for example

[3,4, 8, 12, 14, 21, 23]). In particular, Kigami[21] defined a standard Laplacian on post-
critically finite (p.c.f.) self-similar fractals that have regular harmonic structures. Note that
the Laplacian defined on a fractal degenerates to the usual second derivative if the fractal
set degenerates to an interval on the real line IR.

A remarkable difference for (1.1) on fractals from on classical domains is that (1.1) has
no travelling wave solutions on fractals, that is, (1.1) has no solutions of the form u(t, x) =
u(x− ct) with wave speed c > 0.

In this paper we show that (1.1) with initial data and zero Neumann boundary conditions
has a unique solution on p.c.f. self-similar fractals if the Sobolev-type inequality (2.8) holds
on fractals (see below); in particular, on p.c.f. self-similar fractals which possess regular
harmonic structures and satisfy the separation condition. We also demonstrate that the
solution decays exponentially to its spatial average over the fractal V , that is, to

ū(t) =

∫
V

u(t, x) dµ(x), t > 0,

if b is small, where µ is a regular Borel measure supported on V so that µ(V ) = 1 and
0 < µ(U) < ∞ for any open subset U of V . Such a measure exists for most basic self-similar
fractals. The key is to employ the Sobolev-type inequality[14,18,23] (see also [24,25]).

The arrangement of this paper is as follows. In Section 2 we give the heat kernel by using
the eigenvalues and eigenfunctions. This is reminiscent of Mercer’s theorem on classical
domains[30]. A Weyl’s formula[22] gives rise to the uniform convergence of eigenfunction
expansion of the heat kernel for t ≥ η > 0. In Section 3 we prove the existence and
uniqueness of global non-negative solution of (1.1) with non-negative initial data and zero
Neumann boundary condition. The equation (1.1) admits an invariant interval [0, 1] on p.c.f.
self-similar fractals as on classical domains, that is, solutions of (1.1) lie in [0, 1] if initial
values lie in [0, 1]. This comes from a maximum principle on self-similar fractals. Finally,
in Section 4 we discuss the large time behavoir of the solution of (1.1), and show that the
solution of (1.1) decays exponentially to that of the associated ordinary differential equation.

§2. Preliminaries

Let D ≥ 2 be an integer. An iterated function system (IFS) is a family of contraction
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mappings {F1, F2, · · · , FD} on IRN , that is, Fi : IR
N → IRN (1 ≤ i ≤ D) and

|Fi(x)− Fi(y)| ≤ αi|x− y| for all x, y ∈ IRN , (2.1)

where 0 < αi < 1 and | . | is the Euclidean metric. If (2.1) is replaced by equality then

Fi is a similitude. For an IFS {F1, F2, · · · , FD} on IRN there exists a unique, non-empty

compact set V ⊂ IRN satisfying V =
D∪
i=1

Fi(V ) (see [11,p.30]). Such a set V is called the

attractor of the IFS {F1, F2, · · · , FD}; if the Fi are all similitudes, V is called a self-similar
fractal. An IFS {F1, F2, · · · , FD} satisfies the open set condition if there exists a non-empty

bounded open set U ⊂ IRN such that
D∪
i=1

Fi(U) ⊂ U with this union disjoint. For an IFS

{F1, F2, · · · , FD} of similitudes satisfying the open set condition there is a unique number

df > 0 such that
D∑
i=1

α
df

i = 1. Such a df is the Hausdorff dimension of the self-similar fractal

V of the IFS {F1, F2, · · · , FD} (see [10, pp.118–120]).

A certain class of self-similar fractals, termed post-critically finite (p.c.f.) self-similar
fractals, was introduced in [9,12]. Let

∑
be a shift space based on S = {1, 2, · · · , D},

that is,
∑

= {ω : ω = i1i2 · · · with ik ∈ S for all k ∈ IN}, where IN is the collection of
all positive integers. For the self-similar fractal V of an IFS {F1, F2, · · · , FD} we define a
mapping π :

∑
→ V by

π(ω) =

∞∩
m=1

Fi1i2···im(V ),

for all ω = i1i2 · · · ∈
∑

, where Fi1i2···im = Fi1 ◦ Fi2 ◦ · · · ◦ Fim . It is easy to see that π

is well defined since
∞∩

m=1
Fi1i2···im(V ) is a singleton, due to the contraction property of Fi

(1 ≤ i ≤ D). Let

Λ =
∪

i,j∈S
i ̸=j

Fi(V ) ∩ Fj(V ), Π = π−1(Λ), P =
∞∪
k=1

σk(Π),

where σ is a shift map, that is, σ(i1i2i3 · · · ) = i2i3 · · · . We call V a post-critically finite
self-similar fractal if the post-critical set P is finite. Let V0 = π(P ), termed the boundary

of V . Then V is the closure of V∗ under the Euclidean metric, where V∗ =
∞∪

m=0
Vm and

Vm+1 =
∪
i∈S

Fi(Vm) with Vm ⊂ Vm+1,m ≥ 0 (see [19, Lemma 1.3.10]). Let L2(V ) be the

usual space of square integrable functions on V with respect to µ, with the norm ∥ . ∥2, and
D(W ) a dense subspace of L2(V ). A Dirichlet form W on V is a non-negative, closed,
Markovian and symmetric bilinear form on D(W )×D(W ) (see [16, pp.3–5]). The Dirichlet
form on p.c.f. self-similar fractals may be obtained in the following way. Let V be a p.c.f.
self-similar fractal in IRN , with the boundary V0 = {p1, p2, · · · , pn0} (n0 ≥ 2). Define a
quadratic form W0 on V0 by

W0(u, v) =
1

2

∑
1≤i,j≤n0

cij(u(pi)− u(pj))(v(pi)− v(pj))

for u, v : V0 → IR, where cij = cji ≥ 0. We suppose that W0 is irreducible, that is,

W0(u, u) = 0 if and only if u is constant on V0. (2.2)
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We inductively define a quadratic form Wm+1 on Vm+1 by

Wm+1(u, v) =

D∑
i=1

r−1
i Wm(u ◦ Fi, v ◦ Fi) (2.3)

for m ≥ 0 and u, v : Vm+1 → IR, where ri > 0 for all i ∈ S. For u : V0 → IR, we define

W1(u, u) = min{W1(v, v)| v : V1 → IR and v|V0 = u}. (2.4)

A p.c.f. self-similar fractal V is said to possess a harmonic structure, denoted by (J, r), if
there exist an n0 × n0 matrix J = −(cij) and a vector r = (r1, r2, · · · , rD) such that

W1(u, u) = W0(u, u), (2.5)

for all u : V0 → IR. The harmonic structure (J, r) is said to be regular if ri < 1 for all
i ∈ S (see [21,22]). It is an open question whether or not a general p.c.f. self-similar fractal
possesses a regular harmonic structure although a positive answer was obtained for nested
fractals in [26, 28]. For a p.c.f. self-similar fractal V with a harmonic structure, we see that
Wm is increasing in m. Thus we may define

W (u, u) = lim
m→∞

Wm(u, u), (2.6)

for all u : V∗ → IR (possibly W (u, u) = ∞). The W in (2.6) is only defined on V∗. By a
continuous extension such a W may be viewed as the Dirichlet form on V with the domain
D(W ) dense in C(V ), the space of all continuous functions on V . Note that this construction
of Dirichlet form does not depend on the measure µ on V .

Let V be a p.c.f. self-similar fractal in IRN which possesses a regular harmonic structure.
The V satisfies the separation condition if for all m ≥ 1 and ω1, ω2 ∈ Sm, there exist some
δ0 > 0 and some d ∈ (0, 1) such that

dist (Fω1(V ), Fω2(V )) ≡ min
x∈Fω1 (V )

y∈Fω2 (V )

{|x− y|} ≥ δ0 dm (2.7)

whenever Fω1(V )∩Fω2(V ) =Ø. If V is a p.c.f. self-similar fractal having a regular harmonic
structure and satisfying the separation condition (2.7), then the Sobolev-type inequality

|u(x)− u(y)| ≤ c|x− y|βW (u, u)
1
2 (2.8)

holds for all x, y ∈ V and all u ∈ C(V ), where c, β > 0 and W (u, u) is the Dirichlet form on

V given by (2.6) (see [18]). For the Sierpiński gasket in IRN−1(N ≥ 3), we have (2.8) with
c = 2N + 3 and β = log((N + 2)/N)/ log 4, and

W (u, u) = lim
m→∞

(
N + 2

N

)m ∑
x,y∈Vm

|x−y|=2−m

|u(x)− u(y)|2,

(see [14,23]). Define

H(V ) = {u ∈ C(V )| W (u, u) < ∞} . (2.9)

Then H(V ) is a Hilbert space with the norm ∥u∥ =
√
W (u, u) + ∥u∥22, where ∥u∥2 is the

L2-norm given by ∥u∥2 =
(∫

V
u(x)2 dµ(x)

) 1
2 .

By the Arzela-Ascoli Theorem, we see from (2.8) that

H(V ) ↪→ C(V ) compactly. (2.10)

Let V0 be the boundary of V . The Neumann derivative (du) : V0 → IR of u was defined in
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[19,21]. For the Sierpiński gasket in IRN−1(N ≥ 3), we have

(du)(p) = − lim
m→∞

(
N + 2

N

)m ∑
x∈Vm

|x−p|=2−m

(u(x)− u(p)), p ∈ V0

(see [20,21]).
Let H1(V ) = {u ∈ H(V )| (du) exists on V0 and (du)|V0 = 0}. We say u ∈ H1(V ) admits

a weak Laplacian ∆u if there exists ∆u ∈ L2(V ) such that

W (u, v) = −
∫
V

∆u(x)v(x) dµ(x) for all v ∈ H(V ), (2.11)

where W (u, v) = 1
4 [W (u+ v, u+ v)−W (u− v, u− v)] is the inner product of u, v ∈ H(V ).

If ∆u is continuous on V \V0, then ∆u is actually the standard Laplacian given by Kigami[21]

(see the argument in [14]).
Given the Laplacian ∆ as in (2.11), we solve the eigenvalue problem

−∆u = λu, (du)|V0 = 0. (2.12)

Using the standard technique[27,30] and (2.10), we obtain that (2.12) has a sequence of eigen-
functions {φn}n≥0 in H1(V ) which forms an orthonormal basis of L2(V ) and corresponds
to non-negative eigenvalues {λn}n≥0, that is, φ0 = 1, ∥φn∥2 = 1 for n ≥ 1 and

W (φi, φj) =

∫
V

φi(x)φj(x) dµ(x) = 0, i ̸= j, (2.13)

W (φn, v) = λn

∫
V

φn(x)v(x) dµ(x) for all v ∈ H(V ), n ≥ 0, (2.14)

with 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · , λn → ∞ as n → ∞. From (2.14) we see that

W (φn, φn) = λn, n ≥ 0. (2.15)

For n ≥ 1, there exists a point x0 ∈ V such that |φn(x0)| ≤ 1 since ∥φn∥2 = 1. It follows
from (2.8) and (2.15) that

sup
x∈V

|φn(x)| ≤ |φn(x0)|+ c sup
x∈V

|x− x0|βW (φn, φn)
1
2 ≤ Mλ

1
2
n for all n ≥ 1, (2.16)

for some M > 0.
Motivated by [9] on classical domains, we define the heat kernel K : (0,∞)×V ×V → IR

by

K(t, x, y) =
∞∑

n=0

e−λnt φn(x)φn(y)

= 1 +
∞∑

n=1

e−λnt φn(x)φn(y), t > 0 and x, y ∈ V

(2.17)

(see also [2,8,19]). Note that a Weyl’s formula c1λ
ds/2 ≤ ρ(λ) ≤ c2λ

ds/2 holds for all large
λ (see [22]), where c1, c2 > 0 and ds ∈ [1, 2) is the spectral dimension of V and ρ(λ) is the
number of eigenvalues not greater than λ. Thus

b1n
2/ds ≤ λn ≤ b2n

2/ds for all n ≥ 1 (2.18)

for some b1, b2 > 0. From (2.16) and (2.18), we see that the series on the right-hand side of
(2.17) is uniformly convergent for all x, y ∈ V and all t ≥ η > 0. Thus K is well-defined on
(0,∞)× V × V . Moreover, K is uniformly Hölder continuous in x, y ∈ V for all t ≥ η > 0,
that is,

|K(t, x2, y2)−K(t, x1, y1)| ≤ c3(|x2 − x1|β + |y2 − y1|β) (2.19)
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for all x1, x2, y1, y2 ∈ V and all t ≥ η > 0, by virtue of (2.8) and (2.16).
The weak Laplacian ∆ in (2.11) is equivalent to the infinitesimal generator of the semi-

group {Pt, t > 0}, that is,
∥(Ptu− u)/t−∆u∥2 → 0 as t → 0 (2.20)

if and only if ∆u ∈ L2(V ) exists, where

Ptu(x) =

∫
V

K(t, x, y)u(y) dµ(y), u ∈ L2(V ). (2.21)

Proposition 2.1. Let K be defined in (2.17). Then

K(t, x, y) ≥ 0 for t > 0 and x, y ∈ V, and (2.22)∫
V

K(t, x, y) dµ(y) = 1 for t > 0 and x ∈ V. (2.23)

Proof. Let t > 0 be fixed. We show that for u ∈ L2(V ) with u ≥ 0,

Ptu(x) ≥ 0, x ∈ V. (2.24)

To see this, let u(x) =
∞∑

n=0
anφn(x) ∈ L2(V ), where an =

∫
V
φn(x)u(x) dµ(x). It follows

from (2.17) and (2.21) that

Ptu(x) =
∞∑

n=0

an e−λntφn(x). (2.25)

Thus ∫
V

Ptu(x)u(x) dµ(x) =

∞∑
n=0

a2n e−λnt ≥ 0

for all u ∈ L2(V ), giving (2.24). Therefore, (2.22) follows immediately from (2.24), (2.21)
and the continuity of K on (0,∞)× V × V . Noting that∫

V

φ0(x) dµ(x) = 1 and

∫
V

φn(x) dµ(x) = 0, n ≥ 1,

we see that for t > 0 and x ∈ V ,∫
V

K(t, x, y) dµ(y) =
∞∑

n=0

e−λntφn(x)

∫
V

φn(x) dµ(x) = 1,

giving (2.23).
Proposition 2.2. Let ∆u exist and be continuous on V \V0. If u reaches its maximum

(minimum) at x0 ∈ V \V0, then

∆u(x0) ≤ 0(≥ 0). (2.26)

Proof. See [19, Lemma 5.2.4].

§3. Existence and Uniqueness

Let V be a p.c.f. self-similar fractal which has a regular harmonic structure and satisfies
the separation condition (2.7). Let V0 be the boundary of V . Consider

ut = ∆u+ bu(u− a)(1− u), t > 0, x ∈ V \V0, (3.1)

with initial and zero Neumann conditions

u|t=0 = u0(x), x ∈ V,

(du)|V0 = 0, t > 0, (3.2)
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where b > 0, a ∈ (0, 1), and (du) denotes the Neumann derivative. We assume that u0

satisfies (du0)|V0 = 0.
A function u : (0, T ) × V → IR is said to be a (local) weak solution of (3.1), (3.2) for

T > 0 if u satisfies

u(t, x) = Ptu0(x) + b

∫ t

0

dτ

∫
V

K(t− τ, x, y)f(u(τ, y)) dµ(y), (3.3)

for t ∈ (0, T ) and x ∈ V , where f(u) = u(u− a)(1− u) and

Ptu0(x) =

∫
V

K(t, x, y)u0(y) dµ(y), t > 0 and x ∈ V. (3.4)

A function u : (0, T ) × V → IR with (du)|V0 = 0 is said to be a (local) strong solution of
(3.1), (3.2) for T > 0 if ∆u exists on V \V0 and u satisfies (3.1) pointwise on (0, T )× (V \V0),
and the initial condition

lim
t→0

∫
V

|u(t, x)− u0(x)|2 dµ(x) = 0. (3.5)

Lemma 3.1 (Local Existence). Let u0 ∈ C(V ). Then (3.1), (3.2) has a local weak
solution on (0, t1)× V for some t1 > 0 that is continuous up to {0} × V .

Proof. Local existence of weak solution of (3.1), (3.2) follows from the standard approx-
imation procedure. We sketch the proof for completeness.

Let u0(t, x) = Ptu0(x). Define

um+1(t, x) = Ptu0(x) + b

∫ t

0

dτ

∫
V

K(t− τ, x, y)f(um(τ, y)) dµ(y), m ≥ 0. (3.6)

It is not hard to check that

|um(t, x)| ≤ 2M0 on (0, t1)× V (3.7)

for all m ≥ 0, where M0 = sup
x∈V

|u0(x)| and t1 = 1/b(1 +M0)(a+M0), and that

∥um+1(t)− um(t)∥∞ ≡ sup
x∈V

|um+1(t, x)− um(t, x)|

≤ (Lt)m

m!
sup

t∈(0,t1)

∥u1(t)− u0(t)∥∞, t ∈ (0, t1),

where L = b max
|s|≤2M0

|f ′(s)|. Therefore {um} converges to some function u on (0, t1)×V , and

u is the weak solution of (3.1), (3.2) on letting m → ∞ in (3.6) and using the dominated
convergence theorem.

It remains to show that such a u is continuous on [0, t1)× V . Let

z(t, x) ≡
∫ t

0

dτ

∫
V

K(t− τ, x, y)f(u(τ, y)) dµ(y)

=

∫ t−h

0

dτ

∫
V

K(t− τ, x, y)f(u(τ, y)) dµ(y)

+

∫ t

t−h

dτ

∫
V

K(t− τ, x, y)f(u(τ, y)) dµ(y)

≡ zh1 (t, x) + zh2 (t, x), 0 < h < t.

(3.8)

We see that zh1 (t, x) is continuous on (0, t1)× V for fixed h ∈ (0, t) since K is continuous on
(0,∞)× V × V . Note that there is some c3 > 0 such that

|z(t, x)− zh1 (t, x)| = |zh2 (t, x)| ≤ c3 h
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for all h ∈ (0, t) and all (t, x) ∈ (0, t1) × V . Thus z is continuous on (0, t1) × V . Clearly z
is continuous at {0} × V . Thus z is continuous on [0, t1)× V . On the other hand, it is easy
to see that Ptu0(x) is continuous on (0, t1) × V since K is continuous on (0,∞) × V × V
(this does not require the continuity of the initial data u0). In order to prove that Ptu0(x) is
continuous at {0}× V , we shall use the continuity of u0. We first assume that u0 ∈ H1(V ),

and write u0(x) =
∞∑

n=0
anφn(x). We see that

∞∑
n=0

a2nλn < ∞.

It follows from (2.8) that

lim
t→0

sup
x∈V

|Ptu0(x)− u0(x)|2 ≤ c4 lim
t→0

W (Ptu0 − u0, Ptu0 − u0)

≤ c4 lim
t→0

∞∑
n=0

(e−λnt − 1)2a2nλn = 0.
(3.9)

Thus Ptu0(x) is continuous at {0} × V if u0 ∈ H1(V ). Let u0 ∈ C(V ). There exists a
sequence of {un

0} in H1(V ) such that

lim
n→∞

sup
x∈V

|un
0 (x)− u0(x)| = 0 (3.10)

since H(V ) is dense in C(V ). Note that by (2.23),

|Ptu0(x)− Ptu
n
0 (x)| ≤ sup

y∈V
|un

0 (y)− u0(y)| (3.11)

for all t > 0 and x ∈ V . Therefore

lim
t→0

sup
x∈V

|Ptu0(x)− u0(x)|

≤ lim
t→0

sup
x∈V

[|Ptu0(x)− Ptu
n
0 (x)|+ |Ptu

n
0 (x)− un

0 (x)|+ |un
0 (x)− u0(x)|]

≤ 2 sup
x∈V

|un
0 (x)− u0(x)| → 0 as n → ∞,

proving the continuity of Ptu0(x) at {0}×V if u0 ∈ C(V ). Thus u(t, x) = Ptu0(x)+b z(t, x)
is continuous on [0, t1)× V .

The initial data u0 is said to satisfy the regularity condition if

∂

∂t
Ptu0(x) is bounded on (0,∞)× V. (3.12)

An example when (3.12) holds is

u0(x) =

∫
V

K(γ, x, y)w0(y) dµ(y),

where γ > 0 and w0(y) ∈ L1(V ).
Lemma 3.2 (Regularity). Suppose that the initial data u0 satisfies the regularity condi-

tion (3.12) and that u is a weak solution of (3.1), (3.2) in (0, t1) × V for some t1 > 0 and
continuous up to {0} × V . Then ∂u

∂t (t, x) exists on (0, t1)× V . Moreover,

∆u(t, x) =
∂u

∂t
(t, x)− bf(u(t, x)) on (0, t1)× V. (3.13)

Proof. The proof given here is the same in spirit as in [13]. We first show that u is
uniformly Lipschitz continuous in t, that is,

|u(t+ h, x)− u(t, x)| ≤ c5h for all (t, x) ∈ (0, t1 − h)× V, (3.14)
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for h > 0 small. To see this, we have from (3.3) that for (t, x) ∈ (0, t1 − h)× V ,

u(t+ h, x)− u(t, x)

= Pt+hu0(x)− Ptu0(x) + b

∫ t+h

t

dτ

∫
V

K(τ, x, y)f(u(t+ h− τ, y)) dµ(y)

+ b

∫ t

0

dτ

∫
V

K(τ, x, y) [f(u(t+ h− τ, y))− f(u(t− τ, y))] dµ(y).

(3.15)

Using the boundedness of u and (3.12), it follows from (3.15) that, setting

g(t) = sup
x∈V

|u(t+ h, x)− u(t, x)| for t ∈ (0, t1 − h),

g(t) ≤ M1h+ c6

∫ t

0

g(t− τ) dτ for some M1, c6 > 0.

Applying Gronwall’s inequality, we see that there exists some c5 > 0 such that g(t) ≤
c5 h for all (t, x) ∈ (0, t1 − h) × V, giving (3.14). Therefore, ∂u

∂t (t, x) exists for all x ∈ V
and almost every t ∈ (0, t1). From this, it is easy to see that the function z given in (3.8)
satisfies that ∂z

∂t exists pointwise on (0, t1)× V , and

∂z

∂t
(t, x) =

∫
V

K(t, x, y)f(u0(y)) dµ(y)

+

∫ t

0

dτ

∫
V

K(t− τ, x, y)
∂f

∂u
(u(τ, y))

∂u

∂τ
(τ, y) dτ on (0, t1)× V.

Thus ∂u
∂t (t, x) exists on (0, t1)× V .

It remains to check (3.13). Clearly ∆Ptu0(x) =
∂Ptu0

∂t (t, x) on (0,∞)×V . We claim that

∆z(t, x) =
∂z

∂t
(t, x)− f(u(t, x)) on (0, t1)× V. (3.16)

To see this, note that K satisfies the semigroup property∫
V

K(s1, x, y)K(s2, y, w) dµ(y) = K(s1 + s2, x, w) for s1, s2 > 0 and x,w ∈ V.

Therefore, we have from (2.12) and (3.8) that for h > 0,

Phz(t, x) =

∫
V

K(h, x, y)z(t, y) dµ(y)

=

∫
V

K(h, x, y)

[∫ t

0

dτ

∫
V

K(t− τ, y, w)f(u(τ, w)) dµ(w)

]
dµ(y)

=

∫ t

0

dτ

∫
V

K(t+ h− τ, x, w)f(u(τ, w)) dµ(w) (3,.17)

= z(t+ h, x)−
∫ t+h

t

dτ

∫
V

K(t+ h− τ, x, w)f(u(τ, w)) dµ(w).

Note that for t > 0,

lim
h→0

1

h

∫ t+h

t

dτ

∫
V

K(t+ h− τ, x, w)f(u(τ, w)) dµ(w) = f(u(t, x)).

Thus we have from (3.17) that for t > 0,

∆z(t, x) = lim
h→0

1

h
[Phz(t, x)− z(t, x)] =

∂z

∂t
(t, x)− f(u(t, x)),
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giving (3.13).
Lemma 3.3 (A Priori Estimates). Let u be a strong solution of (3.1), (3.2) in (0, T ]× V

for some T > 0 and continuous at {0} × V . Assume that the initial data u0 ∈ [0, 1] on V .
Then

0 ≤ u(t, x) ≤ 1, (t, x) ∈ [0, T ]× V. (3.18)

Proof. Suppose that there exists a point (t0, x0) ∈ (0, T ] × V such that u(t0, x0) is the
maximum of u over [0, T ]× V . We have that u(t0, x0) ≤ 1; otherwise, it follows from (2.26)
that

0 ≤ ∂u

∂t
(t0, x0) = (∆u+ b u(u− a)(1− u))|(t0,x0) < 0,

giving a contradiction. Therefore, we have that u(t, x) ≤ 1 on (t, x) ∈ [0, T ]×V . In a similar
way, we get that u(t, x) ≥ 0 on (t, x) ∈ [0, T ]× V .

Theorem 3.1 (Global Existence and Uniqueness). Assume that the initial data u0 ∈
C(V ) satisfies (3.12) and u0 ∈ [0, 1] on V . Then (3.1), (3.2) has a unique global strong
solution with 0 ≤ u(t, x) ≤ 1 on (0,∞)× V .

Proof. The global existence follows immediately from Lemmas 3.1, 3.2, 3.3. We show
that the solution is unique. Suppose that there are two solutions u1 and u2. Let v = u2−u1

and p(t) = sup
x∈V

|u2(t, x)− u1(t, x)|, t > 0. By (3.3), we have

p(t) ≤ const.

∫ t

0

p(τ) dτ, t > 0,

giving p(t) ≡ 0 on (0,∞).

§4. Asymptotic Behavior as t →∞
In this section we discuss large time behavior of the solution of (3.1), (3.2). It is shown

that the solution of (3.1), (3.2) decays in the L2-norm to the solution of the associated
ordinary differential equation if b is small.

Theorem 4.1. Let u ∈ [0, 1] be a strong solution of (3.1), (3.2) and b be small. Then
there exists constants c7, α > 0 such that∫

V

|u(t, x)− ū(t)|2 dµ(x) ≤ c7e
−αt (4.1)

for all t > 0, where

ū(t) =

∫
V

u(t, x) dµ(x). (4.2)

Proof. Let

I(t) =
1

2

∫
V

|u(t, x)− ū(t)|2 dµ(x), t > 0. (4.3)

We claim that

2λ1I(t) ≤ W (u− ū, u− ū) for all t > 0, (4.4)

where λ1 > 0 is the least positive eigenvalue of (2.12). To see this, let t > 0 be fixed. Since
u ∈ H1(V ), we write

u(t, x) =
∞∑

n=0

an(t) φn(x), x ∈ V,
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where an(t) =
∫
V
u(t, x)φn(x) dµ(x). It follows that

∥u(t, x)− ū(t)∥22 =

∞∑
n=1

an(t)
2.

On the other hand,

W (u− ū, u− ū) = W (u, u) =
∞∑

n=0

an(t)
2 W (φn, φn) =

∞∑
n=0

an(t)
2λn ≥ λ1

∞∑
n=1

an(t)
2

since λ0 = 0. Therefore, we have that for all t > 0,

λ1∥u(t, x)− ū(t)∥22 ≤ W (u− ū, u− ū),

giving (4.4).
From (4.3) and (4.4), we see that, using (4.2),

∗I ′(t) =
∫
V

(u(t, x)− ū(t))

(
∂u

∂t
(t, x)− dū

dt
(t)

)
dµ(x)

=

∫
V

(u(t, x)− ū(t))
∂u

∂t
(t, x) dµ(x)

= −W (u− ū, u− ū) + b

∫
V

(u(t, x)− ū(t))(f(u(t, x))− f(ū(t))) dµ(x)

≤ −2λ1I(t) + 2bL1I(t) = −αI(t), t > 0,

where L1 = max
0≤u≤1

|f ′(u)| and α = 2(λ1 − bL1) > 0 for b small. Therefore, we have

I(t) ≤ c7e
−αt, t > 0,

giving (4.1) for b small.
Remark 4.1. Let ū be given in (4.2). Then ū satisfies

dū

dt
(t) = bf(ū(t)) + q(t), ū(0) =

∫
V

u0(x) dµ(x), (4.5)

where q satisfies |q(t)| ≤ c8e
−αt, t > 0. To see this, note that

dū

dt
(t) =

∫
V

∂u

∂t
(t, x) dµ(x) =

∫
V

[∆u(t, x) + b f(u(t, x))] dµ(x)

= b

∫
V

f(u(t, x)) dµ(x) = bf(ū) + b

∫
V

[f(u(t, x))− f(ū(t))] dµ(x),

and (4.1) implies that

|q(t)| ≤ b

∫
V

|f(u(t, x))− f(ū(t))| dµ(x) ≤ c8e
−αt.

Thus the solution of (3.1), (3.2) decays to the solution of the associated o.d.e. (4.5). Similar
results on classical domains were obtained in [7].

Remark 4.2. From Theorem 4.1, we see that there exists {tj}j≥1 with tj → ∞ as j → ∞
such that u(tj , x) → A as j → ∞ for all x ∈ V , where A is a constant. And (4.5) says
that f(A) = 0, which gives rise to A = 0, a or 1, the only possible equilibrium state of (1.1)
for b small.
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