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Abstract

Let X be an arbitrary smooth irreducible complex projective curve, E 7→ X a rank two
vector bundle generated by its sections. The author first represents E as a triple {D1, D2, f},
where D1, D2 are two effective divisors with d = deg(D1) + deg(D2), and f ∈ H0(X, [D1] |D2 )
is a collection of polynomials. E is the extension of [D2] by [D1] which is determined by f . By

using f and the Brill-Noether matrix of D1 + D2, the author constructs a 2g × d matrix WE

whose zero space gives Im{H0(X, [D1]) 7→ H0(X, [D1] |D1 )}⊕ Im{H0(X,E) 7→ H0(X, [D2]) 7→
H0(X, [D2] |D2 )}. From this and H0(X,E) = H0(X, [D1]) ⊕ Im{H0(X,E) 7→ H0(X, [D2])},
it is got in particular that dimH0(X,E) = deg(E)− rank(WE) + 2.
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§1. Introduction

Let X be a smooth projective curve of genus g over C, D = n1p1 + · · · + nkpk a given

effective divisor with d = deg(D) = n1+· · ·+nk. For i = 1, · · · , k, let zi be a local coordinate

at pi with zi(pi) = 0. Let µ = {µi =
−1∑

k=−ni

bikz
k
i } be a given collection of Laurent tails (or

principal parts). The Mittag-Leffler problem is to ask which collections of Laurent tails come

from a global meromorphic function on X. Let w be a holomorphic form on X, assume at

pi, w = fi(zi)dzi, then the residue of µ · w at pi is defined to be

Respi(µ · w) = 1

2πi

∫
γ

µi · w,

where γ is any curve homotopic to {| zi |= ϵ} in a small neighborhood of pi.

The residue of µ · w on X is defined to be

Res(µ · w) =
k∑

i=1

Respi(µ · w).
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It is well known that µ comes from a global meromorhpic function if and only if Re s(µ ·
w) = 0 for all holomorphic forms w on X.

Now let {w1, · · · , wg} be a linear basis of the space of all holomorphic forms onX, for each

i assume at pi, wt(zi) = fti(zi)dzi for t = 1, · · · , g, let WD be the matrix of the restrictions

of {w1, · · · , wg} on D, that is,

WD =


w1 |D
w2 |D

...
wg |D



=


f11(p1) · · · 1

(n1−1)!f
(n1−1)
11 (p1) f12(p2) · · · 1

(n2−1)!f
(n2−1)
12 (p2) · · ·

...
. . .

...
...

. . .
...

...
fg1(p1) · · · 1

(nk−1)!f
(n1−1)
g1 (p1) fg2(p2) · · · 1

(n2−1)!f
(n2−1)
g2 (p2) · · ·

 .

For a collection of Laurent tails µ = {µi =
−1∑

k=−ni

bikz
k
i }, we denote it as a d-dimensional

vector

µ = (b1−1, b1−2, · · · , b1−n1 , b2−1, · · · , b2−n2 , · · · ) ∈ Cd.

Then µ comes from a global meromorphic function if and only if WD · µt = 0. From this

one can get Riemann-Roch theorem easily.

The matrix WD is called the Brill-Noether matrix of D. It plays a key role in the study

of Brill-Noether theory for special divisors (or special line bundles).

Now if we let [D] be the line bundle defined by D, let [D] |D be the skyscraper sheaf of

the restriction of [D] on D, H0(X, [D]) be the space of holomorphic sections of [D], then the

Mitteg-Leffler problem could be given equivalently that a vector µ ∈ H0(X, [D] |D) = Cd is

in the image of the restriction map H0(X, [D]) 7→ H0(X, [D] |D) if and only if WD · µt = 0,

or the same, we have

Ker(WD) = {µ | µ ∈ Cd,WD · µt = 0} ∼= Im{H0(X, [D]) 7→ H0(X, [D] |D)} (∗)
and in particular, we get

dimH0(X, [D]) = deg(D)− rank(WD) + 1. (∗∗)

An effective divisor D is called special if H1(X, [D]) ̸= 0, or if dimH0(X, [D]) > deg(D)−
g+1. LetXd be the d-fold symmetric product ofX, Xd is a d-dimensional complex manifold,

and it is the parameter space of all effective divisors of degree d. To study special divisors

for given d and r, one defines

Cr
d = {D ∈ Xd | dimH0(X, [D]) ≥ r + 1}.

It is called Brill-Noether variety. By (**), locally it can be given by

Cr
d = {D ∈ Xd | rank(WD) ≤ d− r}.

This means Cr
d is a determinantal variety. From it, one gets the expected dimension of Cr

d

is ρ(g, d, r) + r = g− (r+1)(g− d+ r) + r. It was conjectured by Brill-Noether and proved

by Griffiths-Harris that for generic X, Cr
d do have the expected dimension.

We refer to [1] for details of the Brill-Noether matrix and its applications in the study of

Brill-Noether theory for special line bundles.
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A vector bundle E on X is called special if both H0(X,E) and H1(X,E) are non-zero.

To study the Brill-Noether theory for special vector bundles, it is nature to ask in what

sense we can construct a Brill-Noether matrix WE for E. In this paper, for rank two vector

bundles E generated by its sections (E is then called effective vector bundle), we define a

matrix WE for which WE shares the same properties (∗) and (∗∗) for E as WD for line

bundle [D].

Before giving our main theorem, we will first introduce some basic notations. Let E be a

rank two vector bundle on X with H0(X,E) ̸= 0, let s ∈ H0(X,E) be a non-zero section,

L1 be the line subbundle of E generated by s, let L2 = E/L1. we then have a splitting of E,

0 7→ L1 7→ E 7→ L2 7→ 0.

If Im{H0(X,E) 7→ H0(X,L2)} = 0, then H0(X,E) = H0(X,L1), and the study of

dimH0(X,E) is reduced to the study of line bundles. So to study the Brill-Noether for rank

two vector bundles, we need only to consider those vector bundles E that Im{H0(X,E)

7→ H0(X,L2)} ̸= 0.

Definition 1.1.[2] A rank two vector bundle E is said to be generated by its sections if

there exists a splitting of E,

0 7→ L1 7→ E 7→ L2 7→ 0,

such that L1 and L2 are line bundles and both H0(X,L1) ̸= 0 and

Im{H0(X,E) 7→ H0(X,L2)} ≠ 0.

Now let E be a rank two vector bundle generated by its sections, let

0 7→ L1 7→ E 7→ L2 7→ 0

be a given splitting of E. E is then an extension of L2 by L1, it is determined by an element

e ∈ H1(X,L1 ⊗ L∗
2). Now let s1 ∈ H0(X,L1), s2 ∈ Im{H0(X,E) 7→ H0(X,L2)} with both

s1 ̸= 0 and s2 ̸= 0. Assume D1 = div(s1) = m1p1 + · · ·+mtpt + · · ·+msps, D2 = div(s2) =

ntpt+· · ·+nsps+· · ·+nkpk, d1 = deg(D1), d2 = deg(D2) and let D = D1+D2, d = d1+d2 =

deg(E). Choose a local coordinate cover U = {Ui, zi}ni=1 such that Ui = {| zi |< 1}ni=1, and

for i = 1, · · · , k, we have pi ∈ Ui, with zi(pi) = 0. Since s2 can be lifted to a section of E,

we have s2 · e = 0, that is, e ∈ Im{H0(X,L1 |D2) 7→ H1(X,L1 ⊗ L∗
2)}, where L1 |D2 is the

skyscraper sheaf of the restriction of L1 on D2, and the map is induced from sequence

0 7→ L1 ⊗ L∗
2 7→·s2 L1 7→ L1 |D2 7→ 0.

Let e be the image of some f ∈ H0(X,L1 |D2). f is then determined uniquely up to

Im{H0(X,L1) 7→ H0(X,L1 |D2)}. It can be represented as a collection of polynomials

f = {fi(zi)}ki=t, where fi(zi) is a polynomial of zi and deg(fi(zi)) < ni. So from E we

get a triple {D1, D2, f}. Conversely, for a given triple {D1, D2, f}, where D1 and D2 are

two effective divisors and f ∈ H0(X, [D1] |D2), let e ∈ H1(X, [D1 − D2]) be the image of

f , and E be the extension of [D2] by [D1] which is determined by e. E is then a rank

two vector bundle generated by its sections (by sD1 and sD2 , where sD1 and sD2 are the

canonical sections of [D1] and [D2]). So to give a rank two vector bundle E generated by

its sections will be the same as to give a triple {D1, D2, f}. From now on we will write E

as E = {D1, D2, f}.
Now let D1 = m1p1 + · · ·+mtpt + · · ·+msps, D2 = ntpt + · · ·+ nsps + · · ·+ nkpk, d1 =

deg(D1), d2 = deg(D2) and let D = D1 + D2, d = d1 + d2 = deg(E). Choose a local
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coordinate cover U = {Ui, zi}ni=1 such that Ui = {| zi |< 1}, and for i = 1, · · · , k we have

pi ∈ Ui, with zi(pi) = 0. Assume L1 and L2 are two given line bundles, L1 |D1 and L2 |D2

are the skyscraper sheaves of the restrictions of L1 on D1 and L2 on D2.

Definition 1.2. If g = {gi(zi)}si=1 ∈ H0(X,L1 |D1), and f = {fi(zi)}ki=t ∈ H0(X,

L2 |D2), we define g + f = h ∈ H0(X, (L1 ⊗ L2) |D1+D2) to be an element g + f = h =

{hi(zi)}ki=1 such that

hi(zi) = gi(zi)

if 1 ≤ i ≤ t− 1 ;

hi(zi) = gi(zi) + zmi
i · fi(zi)

if t ≤ i ≤ s ; and

hi(zi) = fi(zi)

if s+ 1 ≤ i ≤ k. (Note here g + f may not equal f + g).

From this definition, we get

H0(X, (L1 ⊗ L2) |D1+D2
) = H0(X,L1 |D1

)⊕H0(X,L2 |D2
).

That means for any v ∈ H0(X, (L1 ⊗L2) |D1+D2), we can find uniquely v1 ∈ H0(X,L1 |D1)

and v2 ∈ H0(X,L2 |D2) such that v = v1 + v2.

Definition 1.3. From above direct sum decomposition, we define two projection maps

P1 : H0(X, (L1 ⊗ L2) |D1+D2) 7→ H0(X,L1 |D1),

P2 : H0(X, (L1 ⊗ L2) |D1+D2) 7→ H0(X,L2 |D2)

to be

P1(v) = v1, P2(v) = v2.

Main theorem of this paper is

Theorem 1.1. Let E = {D1, D2, f} be a rank two vector bundle generated by its sections.

By using the Brill-Noether matrix WD of D = D1 + D2 and the polynomials of f , we can

construct a matrix WE such that

Ker(WE) ∼= P1(Ker{P2 : Ker(WE) 7→ H0(X, [D2] |D2)})
⊕ Im{P2 : Ker(WE) 7→ H0(X, [D2] |D2)} ∼= Im{H0(X, [D1])

7→ H0(X, [D1] |D1)} ⊕ Im{H0(X,E) 7→ H0(X, [D2]) 7→ H0(X, [D2] |D2)},
and since H0(X,E) = H0(X, [D1]) ⊕ Im{H0(X,E) 7→ H0(X, [D2])}, we get in particular

that

dimH0(X,E) = deg(E)− rank(WE) + 2.

Here Ker(WE) = {µ ∈ Cd = H0(X, ([D1 +D2]) |D1+D2) | WE · µt = 0} and d = deg(D).

§2. Proof of Theorem 1.1

Let D = n1p1 + · · ·+ nkpk be a given effective divisor, d = deg(D) = n1 + · · ·+ nk. For

each i, assume zi is a local coordinate at pi with zi(pi) = 0. If w is a holomorphic form on

X, supposing at pi, w = fi(zi)dzi, we then use

w |D=
(
f1(p1), · · · ,

1

(n1 − 1)!
f
(n1−1)
1 (p1), f2(p2), · · · ,

1

(n2 − 1)!
f
(n2−1)
2 (p2), · · ·

)
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to denote the restriction of w on D. But for a line bundle L, if s ∈ H0(X,L) and at pi,

s = fi(zi) for i = 1, · · · , k, then the restriction of s on D will be given by

s |D=
( 1

(n1 − 1)!
f
(n1−1)
1 (p1), · · · , f1(p1),

1

(n2 − 1)!
f
(n2−1)
2 (p2), · · · , f2(p2), · · ·

)
.

Also if L1 and L2 are two line bundles, f = {fi(zi)}ki=1 ∈ H0(X,L1 |D), g = {gi(zi)}ki=1 ∈
H0(X,L2 |D), we define f · g ∈ H0(X,L1 ⊗ L2 |D) by

f · g = {fi(zi)gi(zi) (mod(zni
i ))}ki=1.

For a polynomial p(z) of degree n with p(z) = a0 + a1z + · · · + anz
n, we define an

(n+ 1)× (n+ 1) matrix Np to be

Np =


a0 a1 · · · an
0 a0 · · · an−1

...
...

. . .
...

0 0 · · · a0

 ;

for a collection of polynomials h = {hi(zi)}ki=1 ∈ H0(X,L |D), we define a d× d matrix Nh

to be

Nh =


Nh1 0 · · · 0
0 Nh2 · · · 0
...

...
. . .

...
0 0 · · · Nhk

 .

Now let E = {D1, D2, f} be a given rank two vector bundle generated by its sections,

and assume D1 = m1p1 + · · ·+mtpt + · · ·+msps, D2 = ntpt + · · ·+ nsps + · · ·+ nkpk with

pi ̸= pj if i ̸= j. For i = 1, · · · , k, let zi be a local coordinate at pi with zi(pi) = 0. Let

f = {fi(zi)}ki=t ∈ H0(X, [D1] |D2). Now corresponding to each i, for i = 1, · · · , k, we define,
from mi, ni and fi(zi), two matrixes Mi, Ni to be

Mi = [0]mi×mi , Ni = [I]mi×mi ,

if 1 ≤ i ≤ t− 1;

Mi =

[
0mi×mi 0mi×ni

0ni×mi Ini×ni

]
, Ni =

[
Imi×mi 0mi×ni

0ni×mi Nfi

]
,

if t ≤ i ≤ s;

Mi = [I]ni×ni , Ni = Nfi ,

if s+ 1 ≤ i ≤ k.

From Mi and Ni we define two d× d matrixes ME , NE to be

ME =


M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mk

 , NE =


N1 0 · · · 0
0 N2 · · · 0
...

...
. . .

...
0 0 · · · Nk

 .

Now let WD be the Brill-Noether matrix for D = D1 +D2. We define WE by

WE =

[
WD ·ME

WD ·NE

]
.

WE is a 2g × d matrix, we claim WE is the Brill-Noether matrix for E, that is, it satisfies

our main Theorem.
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A special and interesting case is D1 = 0; in this case ME = Id×d, NE = Nf , and our

theorem can be given as

Theorem 2.1. Let E = {D1, D2, f} be a given rank two vector bundle generated by its

sections, assume D1 = 0, and let WD be the Brill-Noether matrix for divisor D2. Then

a vector µ ∈ H0(X, [D2] |D2)
∼= Cd is in the image of map H0(X,E) 7→ H0(X, [D2]) 7→

H0(X, [D2] |D2) if and only if [
WD

WD ·Nf

]
µt = 0,

that is,

Im{H0(X,E) 7→ H0(X, [D2]) 7→ H0(X, [D2] |D2
)} ∼= Ker

([
WD

WD ·Nf

])
,

and we get in particular that

dimH0(X,E) = deg(E)− rank

[
WD

WD ·Nf

]
+ 2.

We start our proof from some very basic lemmas.

First let E = {D1, D2, f} be a given rank two vector bundle generated by its sections,

and let e ∈ H1(X, [D1 −D2]) be the image of f .

Lemma 2.1.[3] A section s ∈ H0(X, [D2]) can be lifted to a section of E if and only if

s · e = 0.

Proof. It is well known.

Lemma 2.2.[4] A section s ∈ H0(X, [D2]) can be lifted to a section of E if and only if

s |D2 ·f ∈ Im{H0(X, [D1 +D2]) 7→ H0(X, [D1 +D2] |D2)}.

Proof. From the following commutative diagram

0 7→ [D1 −D2] →·s2 [D1] 7→ [D1] |D2 7→ 0
↓ ·s ↓ ·s ↓ ·s |D2

0 7→ [D1] →·s2 [D1 +D2] 7→ [D1 +D2] |D2 7→ 0

we get the following commutative diagram

7→ H0(X, [D1]) 7→ H0(X, [D1] |D2) 7→ H1(X, [D1 −D2]) 7→
↓ ·s ↓ ·s |D2 ↓ ·s

7→ H0(X, [D1 +D2]) 7→ H0(X, [D1 +D2] |D2) 7→ H1(X, [D1]) 7→

s · e = 0 means exactly s |D2
·f ∈ Im{H0(X, [D1 +D2]) 7→ H0(X, [D1 +D2] |D2

)}.
Proof of Theorem 1.1. Let Cd = H0(X, ([D1 +D2]) |D1+D2), and

H0(X, ([D1 +D2]) |D1+D2) = H0(X, [D1] |D1)⊕H0(X, [D2] |D2)

be the direct sum decomposition given in Definition 1.3. For

µ = {hi(zi)}ki=1 ∈ H0(X, ([D1 +D2]) |D1+D2),

by definition, we have deg(hi(zi)) = mi − 1 if 1 ≤ i ≤ t − 1; deg(hi(zi)) = mi + ni − 1, if
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t ≤ i ≤ s; and deg(hi(zi)) = ni − 1 if s+ 1 ≤ i ≤ k. We denote µ as a d-dimensional vector

µ =
( 1

(m1 − 1)!
h
(m1−1)
1 (p1), · · · , h1(p1), · · · ,

1

(ms−1 − 1)!
h
(ms−1−1)
s−1 (ps−1), · · · ,

hs−1(ps−1),
1

(ms + ns − 1)!
h(ms+ns−1)
s (ps), · · · ,

hs(ps), · · · ,
1

(mt + nt − 1)!
h
(mt+nt−1)
t (pt), · · · ,

ht(pt), · · · , · · · ,
1

(nt+1 − 1)!
h
(nt+1−1)
t+1 (pt+1), · · · ,

ht+1(ps−1), · · · ,
1

(nk − 1)!
h
(kk−1)
k (pk), · · · , hk(pk)

)
.

Then the projections

P1 : H0(X, ([D1 +D2]) |D1+D2) 7→ H0(X, [D1] |D1),

P2 : H0(X, ([D1 +D2]) |D1+D2) 7→ H0(X, [D2] |D2),

which are defined in Definition 1.3, could be given by

P1(µ) =
( 1

(m1 − 1)!
h
(m1−1)
1 (p1), · · · , h1(p1), · · · ,

1

(ms−1 − 1)!
h
(ms−1−1)
s−1 (ps−1), · · · ,

hs−1(ps−1),
1

(ms − 1)!
h(ms−1)
s (ps), · · · , hs(ps), · · · ,

1

(mt − 1)!
h
(mt−1)
t (pt), · · · , ht(pt)

)
∈ Cd1 = H0(X, [D1] |D1),

P2(µ) =
( 1

(ms + ns − 1)!
h(ms+ns−1)
s (ps), · · · ,

1

ms!
h(ms)
s (ps), · · · ,

1

(mt + nt − 1)!
h
(mt+nt−1)
t (pt), · · · ,

1

mt!
h
(mt)
t (pt), · · · ,

· · · , 1

(nt+1 − 1)!
h
(nt+1−1)
t+1 (pt+1), · · · , ht+1(pt+1),

· · · , 1

(nk − 1)!
h
(nk−1)
k (pk), · · · , hk(pk)

)
∈ Cd2 = H0(X, [D2] |D2).

Now let

ker(WE) = {µ ∈ H0(X, [D1 +D2] |D1+D2) | WE · µt = 0}.
For µ ∈ Ker(WE), from WE · µt = 0, we need to show

P2(µ) ∈ Im{H0(X,E) 7→ H0(X, [D2]) 7→ H0(X, [D2] |D2)}.
But WE · µt = 0 means exactly WD ·ME · µt = 0 and WD ·NE · µt = 0.

First from the definition of ME , it is easy to see that ME ·µt = P2(µ), so WE ·ME ·µt = 0

is the same as WD2 · P2(µ)
t = 0, where WD2 is the Brill-Noether matrix of D2. But by the

definition of Brill-Noether matrix, WD2 · P2(µ) = 0 means

P2(µ) ∈ Im{H0(X, [D2]) 7→ H0(X, [D2] |D2)}.
Let P2(µ) be the image of some s ∈ H0(X, [D2]), that is, P2(µ) = s |D2 . But WD ·NE ·µt = 0

means exactly

NEµ
t ∈ Im{H0(X, [D1 +D2]) 7→ H0(X, [D1 +D2] |D1+D2)}.
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Let it be the image of t ∈ H0(X, [D1 +D2]). Then by the definition of NE , we have

P2(NEµ
t) =


Nfs 0 · · · 0
0 Nfs+1 · · · 0
...

...
. . .

...
0 0 · · · Nfk

 · P2(µ)
t;

this means exactly that we have {P2(µ) · f} = {s |D2 ·f}. What we get now is that

{s |D2 ·f} = P2(NE · µt) = P2(t |D2),

that is, {s |D2 ·f} is the restriction of t on D2. By Lemma 2.2, this means s can be lifted to

a section E. We get

P2(µ) = s |D2∈ Im{H0(X,E) 7→ H0(X, [D2]) 7→ H0(X, [D2] |D2)}.
Conversely, if v ∈ Im{H0(X,E) 7→ H0(X, [D2]) 7→ H0(X, [D2] |D2)}, let it be the image

of s ∈ H0(X, [D2]), i.e. v = s |D2 . Then s can be lifted to a section of E, by Lemma

2.2, this means {s |D2 ·f} is the restriction on D2 of some t ∈ H0(X, [D1 + D2]), i,e,

{s |D2 ·f} = t |D2 . Let µ = P1(t |D1+D2) + v, where the + is defined in Definition 1.3.

Then since v ∈ {H0(X, [D2]) 7→ H0(X, [D2] |D2)}, and WD · ME · µt = 0 is equivalent to

WD2v
t = 0, we get WD · ME · µt = 0. Since NE · µt = t |D1+D2 , so WD · NE · µt = 0, we

then get µ ∈ Ker(WE) and v = P2(µ). From this, we get

P2(Ker(WE)) = Im{H0(X,E) 7→ H0(X, [D2]) 7→ H0(X, [D2] |D2)}.
Now assume µ ∈ Ker(P2(Ker(WE))), v = P1(µ), and let 0 be the zero element in

H0(X, [D2] |D2). Then µ = v + 0 as defined in Definition 1.3. In this case, WE · µt = 0 is

exactly WD1 · vt = 0, that means v ∈ Im{H0(X, [D1]) 7→ H0(X, [D1] |D1)}. We get

P1(Ker(P2(Ker(WE)))) = Im{H0(X, [D1]) 7→ H0(X, [D1] |D1)}.
This gives

P1(Ker(P2(Ker(WE))))⊕ P2(Ker(WE)) = Im{H0(X, [D1]) 7→ H0(X, [D1] |D1)}
⊕ Im{H0(X,E) 7→ H0(X, [D2]) 7→ H0(X, [D2] |D2)}.

Since

H0(X,E) = Ker{H0(X,E) 7→ H0(X, [D2])} ⊕ Im{H0(X,E) 7→ H0(X, [D2])}
= H0(X, [D1])⊕ Im{H0(X,E) 7→ H0(X, [D2])},

we get in particular that dimH0(X,E) = d− rank(WE) + 2.1 This completes the proof.
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