BRILL-NOETHER MATRIX FOR RANK TWO VECTOR BUNDLES**

TAN XIAOJIANG*

Abstract

Let X be an arbitrary smooth irreducible complex projective curve, $E \mapsto X$ a rank two vector bundle generated by its sections. The author first represents E as a triple $\{D_1, D_2, f\}$, where D_1, D_2 are two effective divisors with $d = \deg(D_1) + \deg(D_2)$, and $f \in H^0(X, [D_1] \mid_{D_2})$ is a collection of polynomials. E is the extension of $[D_2]$ by $[D_1]$ which is determined by f. By using f and the Brill-Noether matrix of $D_1 + D_2$, the author constructs a $2g \times d$ matrix W_E whose zero space gives $\operatorname{Im}\{H^0(X, [D_1]) \mapsto H^0(X, [D_1] \mid_{D_1})\} \oplus \operatorname{Im}\{H^0(X, E) \mapsto H^0(X, [D_2]) \mapsto H^0(X, [D_2] \mid_{D_2})\}$. From this and $H^0(X, E) = H^0(X, [D_1]) \oplus \operatorname{Im}\{H^0(X, E) \mapsto H^0(X, [D_2])\}$, it is got in particular that $\dim H^0(X, E) = \deg(E) - \operatorname{rank}(W_E) + 2$.

Keywords Brill-Noether matrix, Vector bundle, Effective divisor 2000 MR Subject Classification 14H20 Chinese Library Classification O187 Document Code A Article ID 0252-9599(2002)04-0531-08

§1. Introduction

Let X be a smooth projective curve of genus g over C, $D = n_1 p_1 + \cdots + n_k p_k$ a given effective divisor with $d = \deg(D) = n_1 + \cdots + n_k$. For $i = 1, \cdots, k$, let z_i be a local coordinate at p_i with $z_i(p_i) = 0$. Let $\mu = \{\mu_i = \sum_{k=-n_i}^{-1} b_{ik} z_i^k\}$ be a given collection of Laurent tails (or principal parts). The Mittag-Leffler problem is to ask which collections of Laurent tails come from a global meromorphic function on X. Let w be a holomorphic form on X, assume at $p_i, w = f_i(z_i) dz_i$, then the residue of $\mu \cdot w$ at p_i is defined to be

$$\operatorname{Res}_{p_i}(\mu \cdot w) = \frac{1}{2\pi i} \int_{\gamma} \mu_i \cdot w,$$

where γ is any curve homotopic to $\{|z_i| = \epsilon\}$ in a small neighborhood of p_i .

The residue of $\mu \cdot w$ on X is defined to be

$$\operatorname{Res}(\mu \cdot w) = \sum_{i=1}^{k} \operatorname{Res}_{p_i}(\mu \cdot w).$$

Manuscript received June 7, 2000. Revised November 10, 2000.

^{*}School of Mathematical Sciences, Peking University, Beijing 100871, China.

E-mail: tan@math.pku.edu.cn

^{**}Project supported by the National Natural Science Foundation of China.

It is well known that μ comes from a global meromorphic function if and only if $\operatorname{Re} s(\mu \cdot w) = 0$ for all holomorphic forms w on X.

Now let $\{w_1, \dots, w_g\}$ be a linear basis of the space of all holomorphic forms on X, for each i assume at $p_i, w_t(z_i) = f_{ti}(z_i)dz_i$ for $t = 1, \dots, g$, let W_D be the matrix of the restrictions of $\{w_1, \dots, w_g\}$ on D, that is,

$$W_{D} = \begin{bmatrix} w_{1} \mid _{D} \\ w_{2} \mid _{D} \\ \vdots \\ w_{g} \mid _{D} \end{bmatrix}$$
$$= \begin{bmatrix} f_{11}(p_{1}) & \cdots & \frac{1}{(n_{1}-1)!}f_{11}^{(n_{1}-1)}(p_{1}) & f_{12}(p_{2}) & \cdots & \frac{1}{(n_{2}-1)!}f_{12}^{(n_{2}-1)}(p_{2}) & \cdots \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ f_{g1}(p_{1}) & \cdots & \frac{1}{(n_{k}-1)!}f_{g1}^{(n_{1}-1)}(p_{1}) & f_{g2}(p_{2}) & \cdots & \frac{1}{(n_{2}-1)!}f_{g2}^{(n_{2}-1)}(p_{2}) & \cdots \end{bmatrix}.$$

For a collection of Laurent tails $\mu = \{\mu_i = \sum_{k=-n_i}^{-1} b_{ik} z_i^k\}$, we denote it as a *d*-dimensional vector

$$\mu = (b_{1-1}, b_{1-2}, \cdots, b_{1-n_1}, b_{2-1}, \cdots, b_{2-n_2}, \cdots) \in C^d.$$

Then μ comes from a global meromorphic function if and only if $W_D \cdot \mu^t = 0$. From this one can get Riemann-Roch theorem easily.

The matrix W_D is called the Brill-Noether matrix of D. It plays a key role in the study of Brill-Noether theory for special divisors (or special line bundles).

Now if we let [D] be the line bundle defined by D, let $[D] |_D$ be the skyscraper sheaf of the restriction of [D] on D, $H^0(X, [D])$ be the space of holomorphic sections of [D], then the Mitteg-Leffler problem could be given equivalently that a vector $\mu \in H^0(X, [D] |_D) = C^d$ is in the image of the restriction map $H^0(X, [D]) \mapsto H^0(X, [D] |_D)$ if and only if $W_D \cdot \mu^t = 0$, or the same, we have

$$\operatorname{Ker}(W_D) = \{ \mu \mid \mu \in C^d, W_D \cdot \mu^t = 0 \} \cong \operatorname{Im}\{H^0(X, [D]) \mapsto H^0(X, [D] \mid_D) \}$$
(*)

and in particular, we get

$$\dim H^0(X, [D]) = \deg(D) - \operatorname{rank}(W_D) + 1.$$
 (**)

An effective divisor D is called special if $H^1(X, [D]) \neq 0$, or if dim $H^0(X, [D]) > \deg(D) - g+1$. Let X^d be the d-fold symmetric product of X, X^d is a d-dimensional complex manifold, and it is the parameter space of all effective divisors of degree d. To study special divisors for given d and r, one defines

$$C_d^r = \{ D \in X^d \mid \dim H^0(X, [D]) \ge r+1 \}.$$

It is called Brill-Noether variety. By (**), locally it can be given by

$$C_d^r = \{ D \in X^d \mid \operatorname{rank}(W_D) \le d - r \}.$$

This means C_d^r is a determinantal variety. From it, one gets the expected dimension of C_d^r is $\rho(g, d, r) + r = g - (r+1)(g - d + r) + r$. It was conjectured by Brill-Noether and proved by Griffiths-Harris that for generic X, C_d^r do have the expected dimension.

We refer to [1] for details of the Brill-Noether matrix and its applications in the study of Brill-Noether theory for special line bundles. A vector bundle E on X is called special if both $H^0(X, E)$ and $H^1(X, E)$ are non-zero. To study the Brill-Noether theory for special vector bundles, it is nature to ask in what sense we can construct a Brill-Noether matrix W_E for E. In this paper, for rank two vector bundles E generated by its sections (E is then called effective vector bundle), we define a matrix W_E for which W_E shares the same properties (*) and (**) for E as W_D for line bundle [D].

Before giving our main theorem, we will first introduce some basic notations. Let E be a rank two vector bundle on X with $H^0(X, E) \neq 0$, let $s \in H^0(X, E)$ be a non-zero section, L_1 be the line subbundle of E generated by s, let $L_2 = E/L_1$. we then have a splitting of E,

$$0 \mapsto L_1 \mapsto E \mapsto L_2 \mapsto 0.$$

If $\operatorname{Im} \{H^0(X, E) \mapsto H^0(X, L_2)\} = 0$, then $H^0(X, E) = H^0(X, L_1)$, and the study of dim $H^0(X, E)$ is reduced to the study of line bundles. So to study the Brill-Noether for rank two vector bundles, we need only to consider those vector bundles E that $\operatorname{Im} \{H^0(X, E) \mapsto H^0(X, L_2)\} \neq 0$.

Definition 1.1.^[2] A rank two vector bundle E is said to be generated by its sections if there exists a splitting of E,

$$0 \mapsto L_1 \mapsto E \mapsto L_2 \mapsto 0,$$

such that L_1 and L_2 are line bundles and both $H^0(X, L_1) \neq 0$ and

 $\text{Im}\{H^0(X, E) \mapsto H^0(X, L_2)\} \neq 0.$

Now let E be a rank two vector bundle generated by its sections, let

$$0 \mapsto L_1 \mapsto E \mapsto L_2 \mapsto 0$$

be a given splitting of E. E is then an extension of L_2 by L_1 , it is determined by an element $e \in H^1(X, L_1 \otimes L_2^*)$. Now let $s_1 \in H^0(X, L_1), s_2 \in \operatorname{Im}\{H^0(X, E) \mapsto H^0(X, L_2)\}$ with both $s_1 \neq 0$ and $s_2 \neq 0$. Assume $D_1 = \operatorname{div}(s_1) = m_1 p_1 + \cdots + m_t p_t + \cdots + m_s p_s, D_2 = \operatorname{div}(s_2) = n_t p_t + \cdots + n_s p_s + \cdots + n_k p_k, d_1 = \operatorname{deg}(D_1), d_2 = \operatorname{deg}(D_2)$ and let $D = D_1 + D_2, d = d_1 + d_2 = \operatorname{deg}(E)$. Choose a local coordinate cover $\mathcal{U} = \{U_i, z_i\}_{i=1}^n$ such that $U_i = \{|z_i| < 1\}_{i=1}^n$, and for $i = 1, \cdots, k$, we have $p_i \in U_i$, with $z_i(p_i) = 0$. Since s_2 can be lifted to a section of E, we have $s_2 \cdot e = 0$, that is, $e \in \operatorname{Im}\{H^0(X, L_1 \mid D_2) \mapsto H^1(X, L_1 \otimes L_2^*)\}$, where $L_1 \mid D_2$ is the skyscraper sheaf of the restriction of L_1 on D_2 , and the map is induced from sequence

$$0 \mapsto L_1 \otimes L_2^* \mapsto L_2^* \mapsto L_1 \mapsto L_1 \mid_{D_2} \to 0$$

Let e be the image of some $f \in H^0(X, L_1 \mid_{D_2})$. f is then determined uniquely up to $\operatorname{Im}\{H^0(X, L_1) \mapsto H^0(X, L_1 \mid_{D_2})\}$. It can be represented as a collection of polynomials $f = \{f_i(z_i)\}_{i=t}^k$, where $f_i(z_i)$ is a polynomial of z_i and $\deg(f_i(z_i)) < n_i$. So from E we get a triple $\{D_1, D_2, f\}$. Conversely, for a given triple $\{D_1, D_2, f\}$, where D_1 and D_2 are two effective divisors and $f \in H^0(X, [D_1] \mid_{D_2})$, let $e \in H^1(X, [D_1 - D_2])$ be the image of f, and E be the extension of $[D_2]$ by $[D_1]$ which is determined by e. E is then a rank two vector bundle generated by its sections (by s_{D_1} and s_{D_2} , where s_{D_1} and s_{D_2} are the canonical sections of $[D_1]$ and $[D_2]$). So to give a rank two vector bundle E generated by its sections will be the same as to give a triple $\{D_1, D_2, f\}$. From now on we will write E as $E = \{D_1, D_2, f\}$.

Now let $D_1 = m_1 p_1 + \dots + m_t p_t + \dots + m_s p_s$, $D_2 = n_t p_t + \dots + n_s p_s + \dots + n_k p_k$, $d_1 = \deg(D_1), d_2 = \deg(D_2)$ and let $D = D_1 + D_2, d = d_1 + d_2 = \deg(E)$. Choose a local

coordinate cover $\mathcal{U} = \{U_i, z_i\}_{i=1}^n$ such that $U_i = \{|z_i| < 1\}$, and for $i = 1, \dots, k$ we have $p_i \in U_i$, with $z_i(p_i) = 0$. Assume L_1 and L_2 are two given line bundles, $L_1 \mid_{D_1}$ and $L_2 \mid_{D_2}$ are the skyscraper sheaves of the restrictions of L_1 on D_1 and L_2 on D_2 .

Definition 1.2. If $g = \{g_i(z_i)\}_{i=1}^s \in H^0(X, L_1 \mid D_1)$, and $f = \{f_i(z_i)\}_{i=t}^k \in H^0(X, L_2 \mid D_2)$, we define $g + f = h \in H^0(X, (L_1 \otimes L_2) \mid D_1 + D_2)$ to be an element $g + f = h = \{h_i(z_i)\}_{i=1}^k$ such that

$$h_i(z_i) = g_i(z_i)$$

if $1 \le i \le t - 1$;

$$h_i(z_i) = g_i(z_i) + z_i^{m_i} \cdot f_i(z_i)$$

if $t \leq i \leq s$; and

$$h_i(z_i) = f_i(z_i)$$

if $s + 1 \le i \le k$. (Note here g + f may not equal f + g). From this definition, we get

$$H^0(X, (L_1 \otimes L_2) \mid_{D_1 + D_2}) = H^0(X, L_1 \mid_{D_1}) \oplus H^0(X, L_2 \mid_{D_2}).$$

That means for any $v \in H^0(X, (L_1 \otimes L_2) \mid_{D_1+D_2})$, we can find uniquely $v_1 \in H^0(X, L_1 \mid_{D_1})$ and $v_2 \in H^0(X, L_2 \mid_{D_2})$ such that $v = v_1 + v_2$.

Definition 1.3. From above direct sum decomposition, we define two projection maps

$$P_{1}: H^{0}(X, (L_{1} \otimes L_{2}) \mid_{D_{1}+D_{2}}) \mapsto H^{0}(X, L_{1} \mid_{D_{1}}),$$

$$P_{2}: H^{0}(X, (L_{1} \otimes L_{2}) \mid_{D_{1}+D_{2}}) \mapsto H^{0}(X, L_{2} \mid_{D_{2}})$$

 $to \ be$

$$P_1(v) = v_1, P_2(v) = v_2$$

Main theorem of this paper is

Theorem 1.1. Let $E = \{D_1, D_2, f\}$ be a rank two vector bundle generated by its sections. By using the Brill-Noether matrix W_D of $D = D_1 + D_2$ and the polynomials of f, we can construct a matrix W_E such that

$$\begin{aligned} \operatorname{Ker}(W_E) &\cong P_1(\operatorname{Ker}\{P_2 : \operatorname{Ker}(W_E) \mapsto H^0(X, [D_2] \mid_{D_2})\}) \\ &\oplus \operatorname{Im}\{P_2 : \operatorname{Ker}(W_E) \mapsto H^0(X, [D_2] \mid_{D_2})\} \cong \operatorname{Im}\{H^0(X, [D_1]) \\ &\mapsto H^0(X, [D_1] \mid_{D_1})\} \oplus \operatorname{Im}\{H^0(X, E) \mapsto H^0(X, [D_2]) \mapsto H^0(X, [D_2] \mid_{D_2})\}, \end{aligned}$$

and since $H^0(X, E) = H^0(X, [D_1]) \oplus \operatorname{Im} \{ H^0(X, E) \mapsto H^0(X, [D_2]) \}$, we get in particular that

$$\dim H^0(X, E) = \deg(E) - \operatorname{rank}(W_E) + 2$$

Here $\operatorname{Ker}(W_E) = \{\mu \in C^d = H^0(X, ([D_1 + D_2]) | D_1 + D_2) | W_E \cdot \mu^t = 0\}$ and $d = \operatorname{deg}(D)$.

$\S 2.$ Proof of Theorem 1.1

Let $D = n_1 p_1 + \cdots + n_k p_k$ be a given effective divisor, $d = \deg(D) = n_1 + \cdots + n_k$. For each *i*, assume z_i is a local coordinate at p_i with $z_i(p_i) = 0$. If *w* is a holomorphic form on *X*, supposing at p_i , $w = f_i(z_i)dz_i$, we then use

$$w \mid_{D} = \left(f_{1}(p_{1}), \cdots, \frac{1}{(n_{1}-1)!}f_{1}^{(n_{1}-1)}(p_{1}), f_{2}(p_{2}), \cdots, \frac{1}{(n_{2}-1)!}f_{2}^{(n_{2}-1)}(p_{2}), \cdots\right)$$

to denote the restriction of w on D. But for a line bundle L, if $s \in H^0(X, L)$ and at p_i , $s = f_i(z_i)$ for $i = 1, \dots, k$, then the restriction of s on D will be given by

$$s\mid_{D} = \left(\frac{1}{(n_{1}-1)!}f_{1}^{(n_{1}-1)}(p_{1}), \cdots, f_{1}(p_{1}), \frac{1}{(n_{2}-1)!}f_{2}^{(n_{2}-1)}(p_{2}), \cdots, f_{2}(p_{2}), \cdots\right).$$

Also if L_1 and L_2 are two line bundles, $f = \{f_i(z_i)\}_{i=1}^k \in H^0(X, L_1 \mid_D), g = \{g_i(z_i)\}_{i=1}^k \in H^0(X, L_2 \mid_D)$, we define $f \cdot g \in H^0(X, L_1 \otimes L_2 \mid_D)$ by

$$f \cdot g = \{f_i(z_i)g_i(z_i) \,(\text{mod}(z_i^{n_i}))\}_{i=1}^k$$

For a polynomial p(z) of degree n with $p(z) = a_0 + a_1 z + \cdots + a_n z^n$, we define an $(n+1) \times (n+1)$ matrix N_p to be

$$N_p = \begin{bmatrix} a_0 & a_1 & \cdots & a_n \\ 0 & a_0 & \cdots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_0 \end{bmatrix};$$

for a collection of polynomials $h = \{h_i(z_i)\}_{i=1}^k \in H^0(X, L \mid_D)$, we define a $d \times d$ matrix N_h to be

$$N_h = \begin{bmatrix} N_{h_1} & 0 & \cdots & 0 \\ 0 & N_{h_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & N_{h_k} \end{bmatrix}.$$

Now let $E = \{D_1, D_2, f\}$ be a given rank two vector bundle generated by its sections, and assume $D_1 = m_1 p_1 + \dots + m_t p_t + \dots + m_s p_s$, $D_2 = n_t p_t + \dots + n_s p_s + \dots + n_k p_k$ with $p_i \neq p_j$ if $i \neq j$. For $i = 1, \dots, k$, let z_i be a local coordinate at p_i with $z_i(p_i) = 0$. Let $f = \{f_i(z_i)\}_{i=t}^k \in H^0(X, [D_1] \mid D_2)$. Now corresponding to each i, for $i = 1, \dots, k$, we define, from m_i, n_i and $f_i(z_i)$, two matrixes M_i, N_i to be

$$M_i = [0]_{m_i \times m_i}, \quad N_i = [I]_{m_i \times m_i},$$

if $1 \le i \le t - 1$; $M_i = \begin{bmatrix} 0_{m_i \times m_i} & 0_{m_i \times n_i} \\ 0_{n_i \times m_i} & I_{n_i \times n_i} \end{bmatrix}, \quad N_i = \begin{bmatrix} I_{m_i \times m_i} & 0_{m_i \times n_i} \\ 0_{n_i \times m_i} & N_{f_i} \end{bmatrix},$

if $t \leq i \leq s$;

$$M_i = [I]_{n_i \times n_i}, \quad N_i = N_{f_i},$$

if $s+1 \leq i \leq k$.

From M_i and N_i we define two $d \times d$ matrixes M_E, N_E to be

$$M_E = \begin{bmatrix} M_1 & 0 & \cdots & 0 \\ 0 & M_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & M_k \end{bmatrix}, \quad N_E = \begin{bmatrix} N_1 & 0 & \cdots & 0 \\ 0 & N_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & N_k \end{bmatrix}$$

Now let W_D be the Brill-Noether matrix for $D = D_1 + D_2$. We define W_E by

$$W_E = \begin{bmatrix} W_D \cdot M_E \\ W_D \cdot N_E \end{bmatrix}.$$

 W_E is a $2g \times d$ matrix, we claim W_E is the Brill-Noether matrix for E, that is, it satisfies our main Theorem.

A special and interesting case is $D_1 = 0$; in this case $M_E = I_{d \times d}, N_E = N_f$, and our theorem can be given as

Theorem 2.1. Let $E = \{D_1, D_2, f\}$ be a given rank two vector bundle generated by its sections, assume $D_1 = 0$, and let W_D be the Brill-Noether matrix for divisor D_2 . Then a vector $\mu \in H^0(X, [D_2] \mid_{D_2}) \cong C^d$ is in the image of map $H^0(X, E) \mapsto H^0(X, [D_2]) \mapsto$ $H^0(X, [D_2] \mid_{D_2})$ if and only if

$$\begin{bmatrix} W_D \\ W_D \cdot N_f \end{bmatrix} \mu^t = 0,$$

that is,

$$\operatorname{Im} \{ H^0(X, E) \mapsto H^0(X, [D_2]) \mapsto H^0(X, [D_2] \mid_{D_2}) \} \cong \operatorname{Ker} \left(\begin{bmatrix} W_D \\ W_D \cdot N_f \end{bmatrix} \right),$$

and we get in particular that

$$\dim H^0(X, E) = \deg(E) - \operatorname{rank} \begin{bmatrix} W_D \\ W_D \cdot N_f \end{bmatrix} + 2.$$

We start our proof from some very basic lemmas.

First let $E = \{D_1, D_2, f\}$ be a given rank two vector bundle generated by its sections, and let $e \in H^1(X, [D_1 - D_2])$ be the image of f.

Lemma 2.1.^[3] A section $s \in H^0(X, [D_2])$ can be lifted to a section of E if and only if $s \cdot e = 0$.

Proof. It is well known.

Lemma 2.2.^[4] A section $s \in H^0(X, [D_2])$ can be lifted to a section of E if and only if

$$s \mid_{D_2} \cdot f \in \operatorname{Im} \{ H^0(X, [D_1 + D_2]) \mapsto H^0(X, [D_1 + D_2] \mid_{D_2}) \}.$$

Proof. From the following commutative diagram

we get the following commutative diagram

 $s \cdot e = 0$ means exactly $s \mid_{D_2} \cdot f \in \text{Im}\{H^0(X, [D_1 + D_2]) \mapsto H^0(X, [D_1 + D_2] \mid_{D_2})\}.$

Proof of Theorem 1.1. Let $C^d = H^0(X, ([D_1 + D_2]) |_{D_1 + D_2})$, and

$$H^{0}(X, ([D_{1} + D_{2}]) |_{D_{1} + D_{2}}) = H^{0}(X, [D_{1}] |_{D_{1}}) \oplus H^{0}(X, [D_{2}] |_{D_{2}})$$

be the direct sum decomposition given in Definition 1.3. For

$$\mu = \{h_i(z_i)\}_{i=1}^k \in H^0(X, ([D_1 + D_2]) \mid D_1 + D_2),\$$

by definition, we have $\deg(h_i(z_i)) = m_i - 1$ if $1 \le i \le t - 1$; $\deg(h_i(z_i)) = m_i + n_i - 1$, if

 $t \leq i \leq s$; and deg $(h_i(z_i)) = n_i - 1$ if $s + 1 \leq i \leq k$. We denote μ as a d-dimensional vector

$$\mu = \left(\frac{1}{(m_1 - 1)!} h_1^{(m_1 - 1)}(p_1), \cdots, h_1(p_1), \cdots, \frac{1}{(m_{s-1} - 1)!} h_{s-1}^{(m_{s-1} - 1)}(p_{s-1}), \cdots, h_{s-1}(p_{s-1}), \frac{1}{(m_s + n_s - 1)!} h_s^{(m_s + n_s - 1)}(p_s), \cdots, h_s(p_s), \cdots, \frac{1}{(m_t + n_t - 1)!} h_t^{(m_t + n_t - 1)}(p_t), \cdots, h_t(p_t), \cdots, \frac{1}{(n_{t+1} - 1)!} h_{t+1}^{(n_{t+1} - 1)}(p_{t+1}), \cdots, h_{t+1}(p_{s-1}), \cdots, \frac{1}{(n_k - 1)!} h_k^{(k_k - 1)}(p_k), \cdots, h_k(p_k) \right).$$

Then the projections

$$P_1: H^0(X, ([D_1 + D_2]) \mid_{D_1 + D_2}) \mapsto H^0(X, [D_1] \mid_{D_1}),$$

$$P_2: H^0(X, ([D_1 + D_2]) \mid_{D_1 + D_2}) \mapsto H^0(X, [D_2] \mid_{D_2}),$$

which are defined in Definition 1.3, could be given by

$$P_{1}(\mu) = \left(\frac{1}{(m_{1}-1)!}h_{1}^{(m_{1}-1)}(p_{1}), \cdots, h_{1}(p_{1}), \cdots, \frac{1}{(m_{s-1}-1)!}h_{s-1}^{(m_{s-1}-1)}(p_{s-1}), \cdots, \right.$$
$$h_{s-1}(p_{s-1}), \frac{1}{(m_{s}-1)!}h_{s}^{(m_{s}-1)}(p_{s}), \cdots, h_{s}(p_{s}), \cdots, \\\left. \frac{1}{(m_{t}-1)!}h_{t}^{(m_{t}-1)}(p_{t}), \cdots, h_{t}(p_{t})\right) \in C^{d_{1}} = H^{0}(X, [D_{1}] \mid_{D_{1}}),$$
$$P_{2}(\mu) = \left(\frac{1}{(m_{s}+n_{s}-1)!}h_{s}^{(m_{s}+n_{s}-1)}(p_{s}), \cdots, \frac{1}{m_{s}!}h_{s}^{(m_{s})}(p_{s}), \cdots, \right. \\\left. \frac{1}{(m_{t}+n_{t}-1)!}h_{t}^{(m_{t}+n_{t}-1)}(p_{t}), \cdots, \frac{1}{m_{t}!}h_{t}^{(m_{t})}(p_{t}), \cdots, \\\left. \cdots, \frac{1}{(n_{t+1}-1)!}h_{t+1}^{(n_{t+1}-1)}(p_{t+1}), \cdots, h_{t+1}(p_{t+1}), \\\left. \cdots, \frac{1}{(n_{k}-1)!}h_{k}^{(n_{k}-1)}(p_{k}), \cdots, h_{k}(p_{k})\right) \in C^{d_{2}} = H^{0}(X, [D_{2}] \mid_{D_{2}}).$$

Now let

$$\ker(W_E) = \{ \mu \in H^0(X, [D_1 + D_2] \mid D_1 + D_2) \mid W_E \cdot \mu^t = 0 \}.$$

For $\mu \in \text{Ker}(W_E)$, from $W_E \cdot \mu^t = 0$, we need to show

$$P_2(\mu) \in \text{Im}\{H^0(X, E) \mapsto H^0(X, [D_2]) \mapsto H^0(X, [D_2] \mid_{D_2})\}$$

But $W_E \cdot \mu^t = 0$ means exactly $W_D \cdot M_E \cdot \mu^t = 0$ and $W_D \cdot N_E \cdot \mu^t = 0$.

First from the definition of M_E , it is easy to see that $M_E \cdot \mu^t = P_2(\mu)$, so $W_E \cdot M_E \cdot \mu^t = 0$ is the same as $W_{D_2} \cdot P_2(\mu)^t = 0$, where W_{D_2} is the Brill-Noether matrix of D_2 . But by the definition of Brill-Noether matrix, $W_{D_2} \cdot P_2(\mu) = 0$ means

$$P_2(\mu) \in \operatorname{Im} \{ H^0(X, [D_2]) \mapsto H^0(X, [D_2] \mid_{D_2}) \}.$$

Let $P_2(\mu)$ be the image of some $s \in H^0(X, [D_2])$, that is, $P_2(\mu) = s \mid_{D_2}$. But $W_D \cdot N_E \cdot \mu^t = 0$ means exactly

$$N_E \mu^t \in \operatorname{Im} \{ H^0(X, [D_1 + D_2]) \mapsto H^0(X, [D_1 + D_2] \mid_{D_1 + D_2}) \}.$$

Let it be the image of $t \in H^0(X, [D_1 + D_2])$. Then by the definition of N_E , we have

$$P_2(N_E \mu^t) = \begin{bmatrix} N_{f_s} & 0 & \cdots & 0\\ 0 & N_{f_{s+1}} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & N_{f_k} \end{bmatrix} \cdot P_2(\mu)^t;$$

this means exactly that we have $\{P_2(\mu) \cdot f\} = \{s \mid D_2 \cdot f\}$. What we get now is that

$$\{s \mid_{D_2} \cdot f\} = P_2(N_E \cdot \mu^t) = P_2(t \mid_{D_2}),$$

that is, $\{s \mid_{D_2} \cdot f\}$ is the restriction of t on D_2 . By Lemma 2.2, this means s can be lifted to a section E. We get

$$P_2(\mu) = s \mid_{D_2} \in \text{Im}\{H^0(X, E) \mapsto H^0(X, [D_2]) \mapsto H^0(X, [D_2] \mid_{D_2})\}$$

Conversely, if $v \in \text{Im}\{H^0(X, E) \mapsto H^0(X, [D_2]) \mapsto H^0(X, [D_2] \mid_{D_2})\}$, let it be the image of $s \in H^0(X, [D_2])$, i.e. $v = s \mid_{D_2}$. Then s can be lifted to a section of E, by Lemma 2.2, this means $\{s \mid_{D_2} \cdot f\}$ is the restriction on D_2 of some $t \in H^0(X, [D_1 + D_2])$, i.e. $\{s \mid_{D_2} \cdot f\} = t \mid_{D_2}$. Let $\mu = P_1(t \mid_{D_1 + D_2}) + v$, where the + is defined in Definition 1.3. Then since $v \in \{H^0(X, [D_2]) \mapsto H^0(X, [D_2] \mid_{D_2})\}$, and $W_D \cdot M_E \cdot \mu^t = 0$ is equivalent to $W_{D_2}v^t = 0$, we get $W_D \cdot M_E \cdot \mu^t = 0$. Since $N_E \cdot \mu^t = t \mid_{D_1 + D_2}$, so $W_D \cdot N_E \cdot \mu^t = 0$, we then get $\mu \in \text{Ker}(W_E)$ and $v = P_2(\mu)$. From this, we get

$$P_2(\operatorname{Ker}(W_E)) = \operatorname{Im}\{H^0(X, E) \mapsto H^0(X, [D_2]) \mapsto H^0(X, [D_2] \mid_{D_2})\}.$$

Now assume $\mu \in \operatorname{Ker}(P_2(\operatorname{Ker}(W_E))), v = P_1(\mu)$, and let 0 be the zero element in $H^0(X, [D_2] |_{D_2})$. Then $\mu = v + 0$ as defined in Definition 1.3. In this case, $W_E \cdot \mu^t = 0$ is exactly $W_{D_1} \cdot v^t = 0$, that means $v \in \operatorname{Im}\{H^0(X, [D_1]) \mapsto H^0(X, [D_1] |_{D_1})\}$. We get

$$P_1(\operatorname{Ker}(P_2(\operatorname{Ker}(W_E)))) = \operatorname{Im}\{H^0(X, [D_1]) \mapsto H^0(X, [D_1]|_{D_1})\}.$$

This gives

$$P_1(\operatorname{Ker}(P_2(\operatorname{Ker}(W_E)))) \oplus P_2(\operatorname{Ker}(W_E)) = \operatorname{Im}\{H^0(X, [D_1]) \mapsto H^0(X, [D_1] \mid_{D_1})\} \\ \oplus \operatorname{Im}\{H^0(X, E) \mapsto H^0(X, [D_2]) \mapsto H^0(X, [D_2] \mid_{D_2})\}.$$

Since

$$H^{0}(X, E) = \operatorname{Ker}\{H^{0}(X, E) \mapsto H^{0}(X, [D_{2}])\} \oplus \operatorname{Im}\{H^{0}(X, E) \mapsto H^{0}(X, [D_{2}])\}$$
$$= H^{0}(X, [D_{1}]) \oplus \operatorname{Im}\{H^{0}(X, E) \mapsto H^{0}(X, [D_{2}])\},$$

we get in particular that $\dim H^0(X, E) = d - \operatorname{rank}(W_E) + 2.1$ This completes the proof.

Acknowledgements. The author is grateful to the referee, who carefully read this paper and gave many helpful suggestions.

References

 Arbarello, E., Cornaba, M., Griffiths, P. & Harris, J., Geometry of algebraic curves [M], Vol. I, Springer-Verlag, N. Y. 1984.

[2] Atiyah, M. F., Vector bundles on elliptic curves [J], Proc. London Math. Soc., 7(1957), 414-452.

- [3] Lange, H. & Narasimhan, M. S., Maximal subbundles of rank two bundles on curves [J], Math. Ann., 266(1983), 55–72.
- [4] Tan, X.J., Some results on the existence of rank two special stable vector bundles [J], Manuscripta Math., 75(1992), 365–373.