GENERALIZED SIMPLE NONCOMMUTATIVE TORI**

C. G. PARK*

Abstract

The generalized noncommutative torus T_{ρ}^k of rank n was defined in [4] by the crossed product $A_{\frac{m}{k} \times \alpha_3} \mathbb{Z} \times \alpha_4 \cdots \times \alpha_n \mathbb{Z}$, where the actions α_i of \mathbb{Z} on the fibre $M_k(\mathbb{C})$ of a rational rotation algebra $A_{\frac{m}{k}}$ are trivial, and $C^*(k\mathbb{Z} \times k\mathbb{Z}) \times \alpha_3 \mathbb{Z} \times \alpha_4 \cdots \times \alpha_n \mathbb{Z}$ is a completely irrational noncommutative torus A_{ρ} of rank n. It is shown in this paper that T_{ρ}^k is strongly Morita equivalent to A_{ρ} , and that $T_{\rho}^k \otimes M_p \infty$ is isomorphic to $A_{\rho} \otimes M_k(\mathbb{C}) \otimes M_p \infty$ if and only if the set of prime factors of k is a subset of the set of prime factors of p.

Keywords Noncommutative torus, Equivalence bimodule, UHF-algebra, Cuntz algebra, Crossed product

2000 MR Subject Classification 46L05, 46L87

Chinese Library Classification O177.5 Document Code A Article ID 0252-9599(2002)04-0539-06

§0. Introduction

Given a locally compact abelian group G and a multiplier ω on G, one can associate to them the twisted group C^* -algebra $C^*(G, \omega)$. $C^*(\mathbb{Z}^n, \omega)$ is said to be a noncommutative torus of rank n and denoted by A_{ω} . The multiplier ω determines a subgroup S_{ω} of G, called its symmetry group, and the multiplier ω is called totally skew if the symmetry group S_{ω} is trivial. And A_{ω} is called completely irrational if ω is totally skew (see [1]). It was shown in [1] that if G is a locally compact abelian group and ω is a totally skew multiplier on G, then $C^*(G, \omega)$ is a simple C^* -algebra.

Boca^[3] showed that almost all completely irrational noncommutative tori are isomorphic to inductive limits of circle algebras, where the term "circle algebra" denotes a C^* -algebra which is a finite direct sum of C^* -algebras of the form $C(\mathbb{T}^1) \otimes M_q(\mathbb{C})$. We will assume that each completely irrational noncommutative torus appearing in this paper is an inductive limit of circle algebras.

In [6], the authors showed that two separable C^* -algebras A and B are stably isomorphic if and only if they are strongly Morita equivalent, i.e., there exists an A-B-equivalence bimodule defined in [15]. In [5], M. Brabanter constructed an $A_{\frac{m}{k}}$ - $C(\mathbb{T}^2)$ -equivalence bimodule. Modifying his construction, we are going to construct a T^k_{ρ} - A_{ρ} -equivalence bimodule.

It was shown in [2, Theorem 1.5] that each completely irrational noncommutative torus has real rank 0, where the "real rank 0" means that the set of invertible self-adjoint elements

E-mail: cgpark@math.chungnam.ac.kr

Manuscript received April 17, 2000. Revised August 9, 2001.

^{*}Department of Mathematics, Chungnam National University, Taejon 305-764, South Korea.

^{**}Project supported by Grant No.1999-2-102-001-3 from the Interdisciplinary Research Program Year of the KOSEF.

is dense in the set of self-adjoint elements. Combining Theorem 1.1 in the next section and [7, Corollary 3.3] yields that the generalized noncommutative torus T_{ρ}^{k} has real rank 0, since the completely irrational noncommutative torus A_{ρ} has real rank 0. And the Lin and Rørdam results [13, Proposition 2 and Proposition 3] say that the generalized noncommutative torus T^k_{ρ} is an inductive limit of circle algebras, since $T^k_{\rho} \otimes \mathcal{K}(\mathcal{H}) \cong A_{\rho} \otimes \mathcal{K}(\mathcal{H})$ is an inductive limit of circle algebras. Combining the Elliott classification theorem $^{[11, \text{ Theorem 7.1}]}$ and the Ji and Xia result^[12, Theorem 1.3] yields that the completely irrational noncommutative tori A_{ω} of rank n and the generalized noncommutative tori T_{ρ}^{k} of rank n are classified by the ranges of the traces, and so one can completely classify them up to isomorphism or up to strong Morita equivalence. Hence some completely irrational noncommutative tori A_{ω} of rank n are isomorphic to some generalized noncommutative tori T^k_{ρ} of rank n.

It is moreover shown that $T^k_\rho \otimes M_{p^\infty}$ is isomorphic to $A_\rho \otimes M_k(\mathbb{C}) \otimes M_{p^\infty}$ if and only if the set of prime factors of k is a subset of the set of prime factors of p, that $\mathcal{O}_{2u} \otimes T_{\rho}^{k}$ is isomorphic to $\mathcal{O}_{2u} \otimes A_{\rho} \otimes M_k(\mathbb{C})$ if and only if k and 2u-1 are relatively prime, and that $\mathcal{O}_{\infty} \otimes T_{\rho}^{k}$ is not isomorphic to $\mathcal{O}_{\infty} \otimes A_{\rho} \otimes M_{k}(\mathbb{C})$ if k > 1, where \mathcal{O}_{u} and \mathcal{O}_{∞} denote the Cuntz algebra and the generalized Cuntz algebra, respectively.

§1. Generalized Noncommutative Tori

Let T^k_{ρ} be a generalized noncommutative torus given in the abstract.

 T_o^k

Theorem 1.1. T_{ρ}^{k} is stably isomorphic to $A_{\rho} \otimes M_{k}(\mathbb{C})$. **Proof.** By [5, Theorem 3], $A_{\frac{m}{k}}$ is strongly Morita equivalent to $C^{*}(k\mathbb{Z} \times k\mathbb{Z}) \otimes M_{k}(\mathbb{C})$, where $k\mathbb{Z} \times k\mathbb{Z}$ is the primitive ideal space of $A_{\frac{m}{k}}$. So $A_{\frac{m}{k}} \otimes \mathcal{K}(\mathcal{H})$ is isomorphic to $C^*(k\mathbb{Z} \times \mathbb{Z})$ $k\mathbb{Z})\otimes M_k(\mathbb{C})\otimes \mathcal{K}(\mathcal{H})$. The generalized noncommutative torus T^k_ρ of rank n is realized as the crossed product $A_{\frac{m}{k}} \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \cdots \times_{\alpha_n} \mathbb{Z}$, where α_i act trivially on the fibre $M_k(\mathbb{C})$ of $A_{\frac{m}{h}}$. So

$$T^{k}_{\rho} \otimes \mathcal{K}(\mathcal{H}) \cong (A_{\frac{m}{k}} \times_{\alpha_{3}} \mathbb{Z} \times_{\alpha_{4}} \cdots \times_{\alpha_{n}} \mathbb{Z}) \otimes \mathcal{K}(\mathcal{H})$$
$$\cong (A_{m} \otimes \mathcal{K}(\mathcal{H})) \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$$

where $\widetilde{\alpha}_i$ are the canonical extensions of α_i such that $\widetilde{\alpha}_i$ act trivially on $M_k(\mathbb{C}) \otimes \mathcal{K}(\mathcal{H})$. Thus

$$\widetilde{\mathcal{L}} \otimes \mathcal{K}(\mathcal{H}) \cong (C^*(k\mathbb{Z} \times k\mathbb{Z}) \otimes M_k(\mathbb{C}) \otimes \mathcal{K}(\mathcal{H})) \times_{\widetilde{\alpha_3}} \mathbb{Z} \times_{\widetilde{\alpha_4}} \cdots \times_{\widetilde{\alpha_n}} \mathbb{Z}$$

 $\cong (C^*(k\mathbb{Z} \times k\mathbb{Z}) \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \cdots \times_{\alpha_n} \mathbb{Z}) \otimes M_k(\mathbb{C}) \otimes \mathcal{K}(\mathcal{H}).$ Hence T^k_{ρ} is stably isomorphic to $(C^*(k\mathbb{Z} \times k\mathbb{Z}) \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \cdots \times_{\alpha_n} \mathbb{Z}) \otimes M_k(\mathbb{C}) \cong A_{\rho} \otimes M_k(\mathbb{C}),$ as desired.

So T^k_{ρ} is stably isomorphic to A_{ρ} , which implies that T^k_{ρ} is strongly Morita equivalent to A_{ρ} . We are going to construct a T_{ρ}^k - A_{ρ} -equivalence bimodule.

It was shown in [5, Proposition 1] that $A_{\frac{m}{k}}$ is the C*-algebra of matrices $(f_{ij})_{i,j=1}^k$ of functions f_{ij} with

$$f_{ij} \in C^*(k\mathbb{Z} \times k\mathbb{Z}) \text{ if } i, j \in \{1, 2, \cdots, k-1\} \text{ or } (i, j) = (k, k),$$

$$f_{ik} \in \Omega \quad \& \quad f_{ki} \in \Omega^* \text{ if } i \in \{1, 2, \cdots, k-1\},$$

where Ω and Ω^* are the $C^*(k\mathbb{Z} \times k\mathbb{Z})$ -modules defined as

$$\Omega = \{ f \in C(\hat{k}\mathbb{Z} \times [0,1]) \mid f(z,1) = z^s f(z,0), \quad \forall z \in \hat{k}\mathbb{Z} \}$$

 $\Omega^* = \{ f \in C(\widehat{k\mathbb{Z}} \times [0,1]) \mid f^* \in \Omega \}$

for an integer s such that $sm = 1 \pmod{k}$.

But the generalized noncommutative torus T_{ρ}^{k} has a matrix representation induced from the matrix representation of the rational rotation subalgebra $A_{\frac{m}{h}}$.

Proposition 1.1. The generalized noncommutative torus T_{ρ}^{k} is isomorphic to the C^{*}algebra of matrices $(g_{ij})_{i,j=1}^k$ of g_{ij} with

$$g_{ij} \in A_{\rho} \text{ if } i, j \in \{1, 2, \cdots, k-1\} \text{ or } (i, j) = (k, k),$$

$$q_{ik} \in \widetilde{\Omega}$$
 and $q_{ki} \in \widetilde{\Omega}^*$ if $i \in \{1, 2, \cdots, k-1\}$,

 $g_{ik} \in \Omega$ and $g_{ki} \in \Omega^*$ if $i \in \{1, 2, \cdots, k-1\}$, where $\widetilde{\Omega}$ and $\widetilde{\Omega}^*$ are the A_{ρ} -modules defined as $\widetilde{\Omega} = A_{\rho} \cdot \Omega$ and $\widetilde{\Omega}^* = A_{\rho} \cdot \Omega^*$. Here Ω and Ω^* are the $C^*(k\mathbb{Z} \times k\mathbb{Z})$ -modules defined above.

Proof. One obtains from the definition of T_{ρ}^k that the isomorphism between $A_{\frac{m}{k}}$ and the C^* -algebra of matrices $(f_{ij})_{i,j=1}^k$ of f_{ij} satisfying the condition given above gives an isomorphism between T_{ρ}^k and the C^* -algebra of matrices $(g_{ij})_{i,j=1}^k$ of g_{ij} satisfying the condition given in the statement. Note that Ω and Ω^* are the A_{ρ} -modules defined by canonically replacing $C^*(k\mathbb{Z} \times k\mathbb{Z})$ in $\Omega = C^*(k\mathbb{Z} \times k\mathbb{Z}) \cdot \Omega$ with $A_{\rho} \cong C^*(k\mathbb{Z} \times k\mathbb{Z}) \times_{\alpha_3}$ $\mathbb{Z} \times_{\alpha_4} \cdots \times_{\alpha_n} \mathbb{Z}$, since the entries in the matrix representation of $A_{\frac{m}{k}}$ have a $C^*(k\mathbb{Z} \times k\mathbb{Z})$ module structure, and T^k_{ρ} may be obtained by canonically replacing $C^*(k\mathbb{Z} \times k\mathbb{Z})$ with $A_{\rho} \cong C^*(k\mathbb{Z} \times k\mathbb{Z}) \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \cdots \times_{\alpha_n} \mathbb{Z}.$ **Theorem 1.2.** T_{ρ}^k is strongly Morita equivalent to A_{ρ} .

Proof. Let X be the complex vector space $\left(\bigoplus_{i=1}^{k-1} \widetilde{\Omega} \right) \oplus A_{\rho}$. We will consider the elements of X as (k,1) matrices where the first (k-1) entries are in $\tilde{\Omega}$ and the last entry is in A_{ρ} . If $x \in X$, denote by x^* the (1,k) matrix resulting from x by transposition and involution so that $x^* \in \left(\bigoplus_{\rho}^{k-1} \widetilde{\Omega}^* \right) \oplus A_{\rho}$. The space X is a left T^k_{ρ} -module if module multiplication is defined by matrix multiplication $F \cdot x$, where $F = (g_{ij})_{i,j=1}^k \in T_{\rho}^k$ and $x \in X$. If $g \in A_{\rho}$ and $x \in X$, then $x \cdot [g]$ defines a right A_{ρ} -module structure on X. Now we define a T_{ρ}^k -valued and an A_{ρ} -valued inner products $\langle \cdot, \cdot \rangle_{T^k_{\rho}}$ and $\langle \cdot, \cdot \rangle_{A_{\rho}}$ on X by

$$\langle x, y \rangle_{T^k_{\rho}} = x \cdot y^*$$
 and $\langle x, y \rangle_{A_{\rho}} = x^* \cdot y$

if $x, y \in X$ and we have matrix multiplication on the right. By the same reasoning as the proof given in [5, Theorem 3], equipped with this structure, X becomes a T_{ρ}^{k} - A_{ρ} -equivalence bimodule, as desired.

D. Poguntke^[14] proved that the noncommutative torus A_{ω} of rank n is stably isomorphic to a noncommutative torus A_{ρ} of rank n which has a trivial bundle structure. One can construct an A_{ω} - A_{ρ} -equivalence bimodule by the same trick as the proof given in Theorem 1.2.

The noncommutative torus A_{ω} of rank n is the universal object for unitary ω -representations of \mathbb{Z}^n , so A_{ω} is realized as $C^*(u_1, \cdots, u_n \mid u_i u_j = e^{2\pi i \theta_{ji}} u_j u_i)$, where u_i are unitaries and θ_{ji} are real numbers for $1 \leq i, j \leq n$.

We are going to show that $[1_{T^k_{\rho}}] \in K_0(T^k_{\rho})$ is primitive.

Theorem 1.3. Let T_{ρ}^k be a generalized noncommutative torus of rank n. Then $K_0(T_{\rho}^k) \cong$ $K_1(T^k_{\rho}) \cong \mathbb{Z}^{2^{n-1}}$, and $[1^k_{T^k_{\rho}}] \in K_0(T^k_{\rho})$ is primitive.

Proof. By Theorem 1.1, T_{ρ}^k is stably isomorphic to $A_{\rho} \otimes M_k(\mathbb{C})$. By the Elliott theorem^[10, Theorem 2.2],</sup>

$$K_0(T_{\rho}^k) \cong K_0(A_{\rho}) \cong \mathbb{Z}^{2^{n-1}}, \quad K_1(T_{\rho}^k) \cong K_1(A_{\rho}) \cong \mathbb{Z}^{2^{n-1}}.$$

So it is enough to show that $[1_{T_{\rho}^{k}}] \in K_{0}(T_{\rho}^{k})$ is primitive. The proof is by induction on m. Assume that m = 2. The result was obtained in [10, Theorem 2.2].

So assume that the result is true for all generalized noncommutative tori of rank m = i - 1. Write $\mathbb{S}_i = C^*(\mathbb{S}_{i-1}, u_i)$, where $\mathbb{S}_i = C^*(A_{\frac{m}{2}}, u_3, \dots, u_i)$. Then the inductive hypothesis

applies to \mathbb{S}_{i-1} . Also, we can think of \mathbb{S}_i as the crossed product by an action α_i of \mathbb{Z} on \mathbb{S}_{i-1} , where the generator of \mathbb{Z} corresponds to u_i , which acts on $C^*(u_1^k, u_2^k, \cdots, u_{i-1})$ by conjugation (sending u_j to $u_i u_j u_i^{-1} = e^{2\pi i \theta_{ji}} u_j, j \neq 1, 2$, and sending u_j^k to $u_i u_j^k u_i^{-1} = e^{2\pi i \theta_{ji}} u_j$, $j \neq 1, 2$, and sending u_j^k to $u_i u_j^k u_i^{-1} = e^{2\pi i \theta_{ji}} u_j$. $e^{2\pi i k \theta_{ji}} u_i^k, j = 1, 2)$, and which acts trivially on $M_k(\mathbb{C})$. Here $C^*(u_1^k, u_2^k) \cong C^*(k\mathbb{Z} \times k\mathbb{Z})$. Note that this action is homotopic to the trivial action, since we can homotope θ_{ji} to 0. Hence \mathbb{Z} acts trivially on the K-theory of \mathbb{S}_{i-1} . The Pimsner-Voiculescu exact sequence for a crossed product gives an exact sequence

 $\begin{array}{c} K_0(\mathbb{S}_{i-1}) \xrightarrow{1-(\alpha_i)_*} K_0(\mathbb{S}_{i-1}) \xrightarrow{\Phi} K_0(\mathbb{S}_i) \to K_1(\mathbb{S}_{i-1}) \xrightarrow{1-(\alpha_i)_*} K_1(\mathbb{S}_{i-1}) \\ \text{and similarly for } K_1, \text{ where the map } \Phi \text{ is induced by inclusion. Since } (\alpha_i)_* = 1 \text{ and since } K_1(\mathbb{S}_{i-1}) \\ \end{array}$ the K-groups of \mathbb{S}_{i-1} are free abelian, this reduces a split short exact sequence

 $\{0\} \to K_0(\mathbb{S}_{i-1}) \xrightarrow{\Phi} K_0(\mathbb{S}_i) \to K_1(\mathbb{S}_{i-1}) \to \{0\}$ and similarly for K_1 . So $K_0(\mathbb{S}_i)$ and $K_1(\mathbb{S}_i)$ are free abelian of rank $2 \cdot 2^{i-2} = 2^{i-1}$. Furthermore, since the inclusion $\mathbb{S}_{i-1} \to \mathbb{S}_i$ sends $\mathbb{1}_{\mathbb{S}_{i-1}}$ to $\mathbb{1}_{\mathbb{S}_i}$, $[\mathbb{1}_{\mathbb{S}_i}]$ is the image of $[\mathbb{1}_{\mathbb{S}_{i-1}}]$, which is primitive in $K_0(S_{i-1})$ by inductive hypothesis. Hence the image is primitive, since the Pimsner-Voiculescu exact sequence is a split short exact sequence of torsion-free groups. Therefore, $K_0(T_{\rho}^k) \cong K_1(T_{\rho}^k) \cong \mathbb{Z}^{2^{n-1}}$, and $[1_{T_{\rho}^k}] \in K_0(T_{\rho}^k)$ is primitive.

It was shown in [4, Lemma 4.1] that $\operatorname{tr}(K_0(T_{\rho}^{k})) = \frac{1}{k} \cdot \operatorname{tr}(K_0(A_{\rho}))$. By [11, Theorem 7.1] and [12, Theorem 1.3], T_{ρ}^{k} is stably isomorphic to A_{ρ} , which was shown in Theorem 1.1. And it was also shown in [4, Theorem 4.2] that if A_{ω} is a completely irrational noncommutative torus of rank n with $\operatorname{tr}(K_0(A_\omega)) = \frac{1}{k} \cdot \operatorname{tr}(K_0(A_\rho))$ for A_ρ a completely irrational noncommutative torus of rank n then A_{ω} is isomorphic to a generalized noncommutative torus T_{ρ}^k of rank n.

Corollary 1.1. Let p be a positive integer. Then $T^k_{\rho} \otimes M_p(\mathbb{C})$ is not isomorphic to $A \otimes M_{sp}(\mathbb{C})$ for A a C^* -algebra if s is greater than 1.

Proof. Assume that $T^k_{\rho} \otimes M_p(\mathbb{C})$ is isomorphic to $A \otimes M_{sp}(\mathbb{C})$. Then the unit $1_{T^k_{\rho}} \otimes I_p$ maps to the unit $1_A \otimes I_{sp}$. So $[1_{T^k_{\rho}} \otimes I_p] = [1_A \otimes I_{sp}]$. Thus there is a projection $e \in T^k_{\rho}$ such that $p[1_{T^k_{\rho}}] = (sp)[e]$. But $K_0(T^k_{\rho}) \cong \mathbb{Z}^{2^{n-1}}$ is torsion-free, so $[1_{T^k_{\rho}}] = s[e]$. This contradicts Theorem 1.3.

Therefore, $T^k_{\rho} \otimes M_p(\mathbb{C})$ is not isomorphic to $A \otimes M_{sp}(\mathbb{C})$ if s > 1.

We have obtained that $[1_{T_{\rho}^{k}}] \in K_{0}(T_{\rho}^{k})$ is primitive. This result is very useful to investigate the structure of the tensor products of generalized noncommutative tori with UHF-algebras and Cuntz algebras.

§2. Tensor Products of Generalized Noncommutative Tori with UHF-Algebras and Cuntz Algebras

Using the fact that $[1_{T_{\rho}^{k}}] \in K_{0}(T_{\rho}^{k})$ is primitive, we investigate the structure of $T_{\rho}^{k} \otimes M_{p^{\infty}}$ for $M_{p^{\infty}}$ a UHF-algebra of type p^{∞} .

Theorem 2.1. $T^k_{\rho} \otimes M_{p^{\infty}}$ is isomorphic to $A_{\rho} \otimes M_k(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of k is a subset of the set of prime factors of p.

Proof. Assume that the set of prime factors of k is a subset of the set of prime factors of p. To show that $T^k_{\rho} \otimes M_{p^{\infty}}$ is isomorphic to $A_{\rho} \otimes M_k(\mathbb{C}) \otimes M_{p^{\infty}}$, it is enough to show that $T^k_{\rho} \otimes M_{k^{\infty}} \cong A_{\rho} \otimes M_k(\mathbb{C}) \otimes M_{k^{\infty}}$. But there exist the C*-algebra homomorphisms which are the canonical inclusions $T^k_{\rho} \otimes M_{k^g}(\mathbb{C}) \hookrightarrow A_{\rho} \otimes M_k(\mathbb{C}) \otimes M_{k^g}(\mathbb{C})$ and the A_{ρ} -module maps $A_{\rho} \otimes M_{k^g}(\mathbb{C}) \hookrightarrow T^k_{\rho} \otimes M_{k^g}(\mathbb{C}):$

 $T^{k}_{\rho} \hookrightarrow A_{\rho} \otimes M_{k}(\mathbb{C}) \hookrightarrow T^{k}_{\rho} \otimes M_{k}(\mathbb{C}) \hookrightarrow A_{\rho} \otimes M_{k^{2}}(\mathbb{C}) \hookrightarrow \cdots$. The inductive limit of the odd terms

 $\cdots \to T^k_{\rho} \otimes M_{k^g}(\mathbb{C}) \to T^k_{\rho} \otimes M_{k^{g+1}}(\mathbb{C}) \to \cdots$ is $T^k_{\rho} \otimes M_{k^{\infty}}$, and the inductive limit of the even terms

$$\cdots \to A_{\rho} \otimes M_{kg}(\mathbb{C}) \to A_{\rho} \otimes M_{kg+1}(\mathbb{C}) \to \cdots$$

is $A_{\rho} \otimes M_{k^{\infty}}$. Thus by the Elliott theorem^[11, Theorem 2.1], $T^{k}_{\rho} \otimes M_{k^{\infty}}$ is isomorphic to $A_{\rho} \otimes M_{k^{\infty}}.$

Conversely, assume that $T^k_{\rho} \otimes M_{p^{\infty}} \cong A_{\rho} \otimes M_k(\mathbb{C}) \otimes M_{p^{\infty}}$. Then the unit $1_{T^k_{\rho}} \otimes 1_{M_{p^{\infty}}}$ maps to the unit $1_{A_{\rho}} \otimes 1_{M_{p^{\infty}}} \otimes I_k$. So

$$[1_{T^k_{\rho}} \otimes 1_{M_{p^{\infty}}}] = [1_{A_{\rho}} \otimes 1_{M_{p^{\infty}}} \otimes I_k]$$

$$[1_{T_{\rho}^{k}}\otimes 1_{M_{p^{\infty}}}]=[1_{T_{\rho}^{k}}]\otimes [1_{M_{p^{\infty}}}],$$

$$I_{A_a} \otimes I_{M_n \infty} \otimes I_k] = k([1_{A_a}] \otimes [1_{M_n \infty}]).$$

 $[1_{A_{\rho}} \otimes 1_{M_{p^{\infty}}} \otimes I_{k}] = k([1_{A_{\rho}}] \otimes [1_{M_{p^{\infty}}}]).$ Under the assumption that the unit $1_{T_{\rho}^{k}} \otimes 1_{M_{p^{\infty}}}$ maps to the unit $1_{A_{\rho}} \otimes 1_{M_{p^{\infty}}} \otimes I_{k}$, if there is a prime factor q of k such that $q \nmid p$, then $[1_{M_{p^{\infty}}}] \neq q[e_{\infty}]$ for e_{∞} a projection in $M_{p^{\infty}}$. So there is a projection $e \in T^k_{\rho}$ such that $[1_{T^k_{\rho}}] = q[e]$. This contradicts Theorem 1.4. Thus the set of prime factors of k is a subset of the set of prime factors of p.

Therefore, $T^k_{\rho} \otimes M_{p^{\infty}}$ is isomorphic to $A_{\rho} \otimes M_k(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of k is a subset of the set of prime factors of p.

Let us study the structure of the tensor products of generalized noncommutative tori with (even) Cuntz algebras.

The Cuntz algebra $\mathcal{O}_u, 2 \leq u < \infty$, is the universal C*-algebra generated by u isometries s_1, \ldots, s_u , i.e., $s_j^* s_j = 1$ for all j, with the relation $s_1 s_1^* + \cdots + s_u s_u^* = 1$. Cuntz^[8,9] proved that \mathcal{O}_u is simple and the K-theory of \mathcal{O}_u is $K_0(\mathcal{O}_u) = \mathbb{Z}/(u-1)\mathbb{Z}$ and $K_1(\mathcal{O}_u) = 0$. He proved that $K_0(\mathcal{O}_u)$ is generated by the class of the unit.

Proposition 2.1. Let u be a positive integer such that k and u - 1 are not relatively prime. Then $\mathcal{O}_u \otimes T^k_\rho$ is not isomorphic to $\mathcal{O}_u \otimes A_\rho \otimes M_k(\mathbb{C})$.

Proof. Let p be a prime such that $p \mid k$ and $p \mid u-1$. Suppose that $\mathcal{O}_u \otimes T_{\rho}^k$ is isomorphic to $\mathcal{O}_u \otimes A_\rho \otimes M_k(\mathbb{C})$. Then the unit $1_{\mathcal{O}_u \otimes T_\rho^k}$ maps to the unit $1_{\mathcal{O}_u \otimes A_\rho} \otimes I_k$. So $[1_{\mathcal{O}_u \otimes T_\rho^k}] = [1_{\mathcal{O}_u \otimes A_\rho} \otimes I_k] = k[1_{\mathcal{O}_u \otimes A_\rho}]$. Hence there is a projection e in $\mathcal{O}_u \otimes T_\rho^k$ such that $[1_{\mathcal{O}_u \otimes T_\rho^k}] = k[e]$. But $[1_{\mathcal{O}_u \otimes T_\rho^k}] = [1_{\mathcal{O}_u}] \otimes [1_{T_\rho^k}]$ and $[1_{\mathcal{O}_u}]$ is a generator of $K_0(\mathcal{O}_u) \cong \mathbb{Z}/(u-1)\mathbb{Z}$ (see [9]). But $p \mid u-1$. $[1_{\mathcal{O}_u}] \neq p[e_*]$ for e_* a projection in \mathcal{O}_u . So $[1_{T_{\rho}^{k}}] = p[e']$ for e' a projection in T_{ρ}^{k} . This contradicts Theorem 1.3. Hence k and u-1 are relatively prime.

Therefore, $\mathcal{O}_u \otimes T_{\rho}^k$ is not isomorphic to $\mathcal{O}_u \otimes A_{\rho} \otimes M_k(\mathbb{C})$ if k and u-1 are not relatively prime.

The following result is useful to understand the structure of $\mathcal{O}_u \otimes T_a^k$.

Proposition 2.2.^[16, Theorem 7.2] Let A and B be unital simple inductive limits of even Cuntz algebras. If $\alpha : K_0(A) \to K_0(B)$ is an isomorphism of abelian groups satisfying $\alpha([1_A]) = [1_B]$, then there is an isomorphism $\phi : A \to B$ which induces α .

Corollary 2.1. (1) Let p be an odd integer such that p and 2u - 1 are relatively prime. Then \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{(2u-1)p+1} \otimes M_{p^{\infty}}$. That is, \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{p^{\infty}}$. (2) \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{(2u)^{\infty}}$.

Theorem 2.2. $\mathcal{O}_{2u} \otimes T_{\rho}^k$ is isomorphic to $\mathcal{O}_{2u} \otimes A_{\rho} \otimes M_k(\mathbb{C})$ if and only if k and 2u-1are relatively prime.

Proof. Assume that k and 2u - 1 are relatively prime. Let $k = p2^{v}$ for some odd integer p. Then p and 2u-1 are relatively prime. Then by Corollary 2.4 \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{p^{\infty}}$, and \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{(2u)^{\infty}} \cong \mathcal{O}_{2u} \otimes M_{(2u)^{\infty}} \otimes M_{(2v)^{\infty}} \cong$

 $\mathcal{O}_{2u} \otimes M_{(2^v)^{\infty}}$. So \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{p^{\infty}} \otimes M_{(2^v)^{\infty}} \cong \mathcal{O}_{2u} \otimes M_{k^{\infty}}$. Thus by Theorem 2.1 $\mathcal{O}_{2u} \otimes T_{\rho}^k$ is isomorphic to $\mathcal{O}_{2u} \otimes M_{k^{\infty}} \otimes T_{\rho}^k$, which in turn is isomorphic to $\mathcal{O}_{2u} \otimes M_{k^{\infty}} \otimes A_{\rho} \otimes M_{k}(\mathbb{C})$. Hence $\mathcal{O}_{2u} \otimes T_{\rho}^{k}$ is isomorphic to $\mathcal{O}_{2u} \otimes A_{\rho} \otimes M_{k}(\mathbb{C})$. The converse was proved in Proposition 2.1.

Therefore, $\mathcal{O}_{2u} \otimes \overline{T}_{\rho}^k$ is isomorphic to $\mathcal{O}_{2u} \otimes A_{\rho} \otimes M_k(\mathbb{C})$ if and only if k and 2u-1 are relatively prime.

However, we do not know whether or not $\mathcal{O}_{2u+1} \otimes T^k_{\rho}$ is isomorphic to $\mathcal{O}_{2u+1} \otimes A_{\rho} \otimes$ $M_k(\mathbb{C})$ when k and 2u are relatively prime, since we do not know whether or not the result corresponding to Proposition 2.2 does hold for odd Cuntz algebras.

Cuntz^[9] computed the K-theory of the generalized Cuntz algebra \mathcal{O}_{∞} , generated by a sequence of isometries with mutually orthogonal ranges, $K_0(\mathcal{O}_\infty) = \mathbb{Z}$ and $K_1(\mathcal{O}_\infty) = 0$. He proved that $K_0(\mathcal{O}_{\infty})$ is generated by the class of the unit.

Proposition 2.3. $\mathcal{O}_{\infty} \otimes T_{\rho}^{k}$ is not isomorphic to $\mathcal{O}_{\infty} \otimes A_{\rho} \otimes M_{k}(\mathbb{C})$ if k > 1. **Proof.** Suppose $\mathcal{O}_{\infty} \otimes T_{\rho}^{k}$ is isomorphic to $\mathcal{O}_{\infty} \otimes A_{\rho} \otimes M_{k}(\mathbb{C})$. The unit $1_{\mathcal{O}_{\infty} \otimes T_{\rho}^{k}}$ maps to the unit $1_{\mathcal{O}_{\infty} \otimes A_{\rho}} \otimes I_{k}$. By the same trick as in the proof of Proposition 2.1, one can show that $[1_{\mathcal{O}_{\infty}\otimes T_{\rho}^{k}}] = k[e]$ for a projection $e \in \mathcal{O}_{\infty} \otimes T_{\rho}^{k}$. $[1_{\mathcal{O}_{\infty}\otimes T_{\rho}^{k}}] = [1_{\mathcal{O}_{\infty}}] \otimes [1_{T_{\rho}^{k}}]$ and $[1_{\mathcal{O}_{\infty}}]$ is a primitive element of $K_{0}(\mathcal{O}_{\infty}) \cong \mathbb{Z}$ (see [9]). So $[1_{T_{\rho}^{k}}] = k[e']$ for a projection $e' \in T_{\rho}^{k}$. This contradicts Theorem 1.3 if k > 1.

Therefore, $\mathcal{O}_{\infty} \otimes T^k_{\rho}$ is not isomorphic to $\mathcal{O}_{\infty} \otimes A_{\rho} \otimes M_k(\mathbb{C})$.

Acknowledgements. The author would also like to thank the reference for a number of valuable suggestions to a previous version of this paper.

References

- [1] Baggett, L. & Kleppner, A., Multiplier representations of abelian groups [J], J. Funct. Anal., 14(1973), 299 - 324.
- [2] Blackadar, B., Kumjian, A. & Rørdam, M., Approximately central matrix units and the structure of non-commutative tori [J], K-Theory, 6(1992), 267-284.
- [3] Boca, F., The structure of higher-dimensional noncommutative tori and metric Diophantine approximation [J], J. Reine Angew. Math., 492(1997), 179-219.
- [4] Boo, D. & Park, C., The fundamental group of the automorphism group of a noncommutative torus [J], Chin. Ann. Math., 21B:4(2000), 441-452.
- [5] Brabanter, M., The classification of rational rotation C*-algebras [J], Arch. Math., 43(1984), 79–83.
- [6] Brown, L., Green, P. & Rieffel, M., Stable isomorphism and strong Morita equivalence of C*-algebras [J], Pacific J. Math., 71(1977), 349-363.
- [7] Brown. L. & Pedersen, G., C*-algebras of real rank zero [J], J. Funct. Anal., 99(1991), 131–149.
- [8] Cuntz, J., Simple C*-algebras generated by isometries [J], Comm. Math. Phys., 57(1977), 173–185.
- 9] Cuntz, J., K-theory for certain C*-algebras [J], Ann. Math., 113(1981), 181–197.
- [10] Elliott, G. A., On the K-theory of the C^* -algebra generated by a projective representation of a torsionfree discrete abelian group [A], Operator algebras and group representations [M], (G. Arsene et al., ed.), vol. 1, Pitman, London, 1984, 157-184.
- [11] Elliott, G. A., On the classification of C*-algebras of real rank zero [J], J. Reine Angew. Math., 443 (1993), 179-219.
- Ji, R. & Xia, J., On the classification of commutator ideals [J], J. Funct. Anal., 78(1988), 208–232. [12]
- [13] Lin, H. & Rørdam, M., Extensions of inductive limits of circle algebras [J], J. London Math. Soc., 51 (1995), 603-613.
- [14] Poguntke, D., The structure of twisted convolution C*-algebras on abelian groups [J], J. Operator Theory, 38(1997), 3-18.
- [15] Rieffel, M., Morita equivalence for operator algebras [A], Operator algebras and applications [M], (R.V. Kadison ed.), Proc. Symp. Pure Math., Vol. 38, Amer. Math. Soc., Providence, R.I., 1982, 285–298.
- [16] Rørdam, M., Classification of inductive limits of Cuntz algebras, J. Reine Angew. Math., XL:4(1988), 257 - 338.