
Chin. Ann. of Math.
23B:4(2002),539-544.

GENERALIZED SIMPLE
NONCOMMUTATIVE TORI**

C. G. PARK*

Abstract

The generalized noncommutative torus Tk
ρ of rank n was defined in [4] by the crossed product

Am
k

×α3 Z×α4 · · · ×αn Z, where the actions αi of Z on the fibre Mk(C) of a rational rotation

algebra Am
k

are trivial, and C∗(kZ × kZ) ×α3 Z ×α4 · · · ×αn Z is a completely irrational

noncommutative torus Aρ of rank n. It is shown in this paper that Tk
ρ is strongly Morita

equivalent to Aρ, and that Tk
ρ ⊗Mp∞ is isomorphic to Aρ ⊗Mk(C)⊗Mp∞ if and only if the

set of prime factors of k is a subset of the set of prime factors of p.
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§0. Introduction

Given a locally compact abelian group G and a multiplier ω on G, one can associate to
them the twisted group C∗-algebra C∗(G,ω). C∗(Zn, ω) is said to be a noncommutative
torus of rank n and denoted by Aω. The multiplier ω determines a subgroup Sω of G, called
its symmetry group, and the multiplier ω is called totally skew if the symmetry group Sω

is trivial. And Aω is called completely irrational if ω is totally skew (see [1]). It was shown
in [1] that if G is a locally compact abelian group and ω is a totally skew multiplier on G,
then C∗(G,ω) is a simple C∗-algebra.

Boca[3] showed that almost all completely irrational noncommutative tori are isomorphic
to inductive limits of circle algebras, where the term “circle algebra” denotes a C∗-algebra
which is a finite direct sum of C∗-algebras of the form C(T1)⊗Mq(C). We will assume that
each completely irrational noncommutative torus appearing in this paper is an inductive
limit of circle algebras.

In [6], the authors showed that two separable C∗-algebras A and B are stably isomorphic if
and only if they are strongly Morita equivalent, i.e., there exists an A-B-equivalence bimod-
ule defined in [15]. In [5], M. Brabanter constructed an Am

k
-C(T2)-equivalence bimodule.

Modifying his construction, we are going to construct a T k
ρ -Aρ-equivalence bimodule.

It was shown in [2, Theorem 1.5] that each completely irrational noncommutative torus
has real rank 0, where the “real rank 0” means that the set of invertible self-adjoint elements
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is dense in the set of self-adjoint elements. Combining Theorem 1.1 in the next section and [7,
Corollary 3.3] yields that the generalized noncommutative torus T k

ρ has real rank 0, since the
completely irrational noncommutative torus Aρ has real rank 0. And the Lin and Rørdam
results [13, Proposition 2 and Proposition 3] say that the generalized noncommutative torus
T k
ρ is an inductive limit of circle algebras, since T k

ρ ⊗ K(H) ∼= Aρ ⊗ K(H) is an inductive

limit of circle algebras. Combining the Elliott classification theorem[11, Theorem 7.1] and the
Ji and Xia result[12, Theorem 1.3] yields that the completely irrational noncommutative tori
Aω of rank n and the generalized noncommutative tori T k

ρ of rank n are classified by the
ranges of the traces, and so one can completely classify them up to isomorphism or up to
strong Morita equivalence. Hence some completely irrational noncommutative tori Aω of
rank n are isomorphic to some generalized noncommutative tori T k

ρ of rank n.

It is moreover shown that T k
ρ ⊗Mp∞ is isomorphic to Aρ ⊗Mk(C)⊗Mp∞ if and only if

the set of prime factors of k is a subset of the set of prime factors of p, that O2u ⊗ T k
ρ is

isomorphic to O2u ⊗Aρ ⊗Mk(C) if and only if k and 2u− 1 are relatively prime, and that
O∞ ⊗ T k

ρ is not isomorphic to O∞ ⊗ Aρ ⊗Mk(C) if k > 1, where Ou and O∞ denote the
Cuntz algebra and the generalized Cuntz algebra, respectively.

§1. Generalized Noncommutative Tori

Let T k
ρ be a generalized noncommutative torus given in the abstract.

Theorem 1.1. T k
ρ is stably isomorphic to Aρ ⊗Mk(C).

Proof. By [5, Theorem 3], Am
k

is strongly Morita equivalent to C∗(kZ× kZ)⊗Mk(C),
where ̂kZ× kZ is the primitive ideal space of Am

k
. So Am

k
⊗K(H) is isomorphic to C∗(kZ×

kZ) ⊗ Mk(C) ⊗ K(H). The generalized noncommutative torus T k
ρ of rank n is realized as

the crossed product Am
k
×α3 Z ×α4 · · · ×αn Z, where αi act trivially on the fibre Mk(C) of

Am
k
. So

T k
ρ ⊗K(H) ∼= (Am

k
×α3 Z×α4 · · · ×αn Z)⊗K(H)

∼= (Am
k
⊗K(H))×α̃3

Z×α̃4
· · · ×α̃n

Z,
where α̃i are the canonical extensions of αi such that α̃i act trivially on Mk(C)⊗K(H).

Thus

T k
ρ ⊗K(H) ∼= (C∗(kZ× kZ)⊗Mk(C)⊗K(H))×α̃3

Z×α̃4
· · · ×α̃n

Z
∼= (C∗(kZ× kZ)×α3 Z×α4 · · · ×αn Z)⊗Mk(C)⊗K(H).

Hence T k
ρ is stably isomorphic to (C∗(kZ×kZ)×α3Z×α4 · · ·×αnZ)⊗Mk(C) ∼= Aρ⊗Mk(C),

as desired.
So T k

ρ is stably isomorphic to Aρ, which implies that T k
ρ is strongly Morita equivalent to

Aρ. We are going to construct a T k
ρ -Aρ-equivalence bimodule.

It was shown in [5, Proposition 1] that Am
k

is the C∗-algebra of matrices (fij)
k
i,j=1 of

functions fij with

fij ∈ C∗(kZ× kZ) if i, j ∈ {1, 2, · · · , k − 1} or (i, j) = (k, k),

fik ∈ Ω & fki ∈ Ω∗ if i ∈ {1, 2, · · · , k − 1},
where Ω and Ω∗ are the C∗(kZ× kZ)-modules defined as

Ω = {f ∈ C(k̂Z× [0, 1]) | f(z, 1) = zsf(z, 0), ∀z ∈ k̂Z},

Ω∗ = {f ∈ C(k̂Z× [0, 1]) | f∗ ∈ Ω}
for an integer s such that sm = 1 (mod k).
But the generalized noncommutative torus T k

ρ has a matrix representation induced from
the matrix representation of the rational rotation subalgebra Am

k
.
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Proposition 1.1. The generalized noncommutative torus T k
ρ is isomorphic to the C∗-

algebra of matrices (gij)
k
i,j=1 of gij with

gij ∈ Aρ if i, j ∈ {1, 2, · · · , k − 1} or (i, j) = (k, k),

gik ∈ Ω̃ and gki ∈ Ω̃∗ if i ∈ {1, 2, · · · , k − 1},
where Ω̃ and Ω̃∗ are the Aρ-modules defined as Ω̃ = Aρ ·Ω and Ω̃∗ = Aρ ·Ω∗. Here

Ω and Ω∗ are the C∗(kZ× kZ)-modules defined above.
Proof. One obtains from the definition of T k

ρ that the isomorphism between Am
k

and

the C∗-algebra of matrices (fij)
k
i,j=1 of fij satisfying the condition given above gives an

isomorphism between T k
ρ and the C∗-algebra of matrices (gij)

k
i,j=1 of gij satisfying the

condition given in the statement. Note that Ω̃ and Ω̃∗ are the Aρ-modules defined by
canonically replacing C∗(kZ × kZ) in Ω = C∗(kZ × kZ) · Ω with Aρ

∼= C∗(kZ × kZ) ×α3

Z×α4 · · · ×αn Z, since the entries in the matrix representation of Am
k

have a C∗(kZ× kZ)-
module structure, and T k

ρ may be obtained by canonically replacing C∗(kZ × kZ) with
Aρ

∼= C∗(kZ× kZ)×α3 Z×α4 · · · ×αn Z.
Theorem 1.2. T k

ρ is strongly Morita equivalent to Aρ.

Proof. Let X be the complex vector space
( k−1⊕

1
Ω̃
)
⊕Aρ. We will consider the elements

of X as (k, 1) matrices where the first (k − 1) entries are in Ω̃ and the last entry is in Aρ.
If x ∈ X, denote by x∗ the (1, k) matrix resulting from x by transposition and involution

so that x∗ ∈
( k−1⊕

1
Ω̃∗

)
⊕ Aρ. The space X is a left T k

ρ -module if module multiplication is

defined by matrix multiplication F · x, where F = (gij)
k
i,j=1 ∈ T k

ρ and x ∈ X. If g ∈ Aρ and

x ∈ X, then x · [g] defines a right Aρ-module structure on X. Now we define a T k
ρ -valued

and an Aρ-valued inner products ⟨ ·, · ⟩Tk
ρ
and ⟨ ·, · ⟩Aρ

on X by

⟨x, y⟩Tk
ρ
= x · y∗ and ⟨x, y⟩Aρ = x∗ · y

if x, y ∈ X and we have matrix multiplication on the right. By the same reasoning as the
proof given in [5, Theorem 3], equipped with this structure, X becomes a T k

ρ -Aρ-equivalence
bimodule, as desired.

D. Poguntke[14] proved that the noncommutative torus Aω of rank n is stably isomorphic
to a noncommutative torus Aρ of rank n which has a trivial bundle structure. One can
construct an Aω-Aρ-equivalence bimodule by the same trick as the proof given in Theorem
1.2.

The noncommutative torus Aω of rank n is the universal object for unitary ω-representa-
tions of Zn, so Aω is realized as C∗(u1, · · · , un | uiuj = e2πiθjiujui), where ui are unitaries
and θji are real numbers for 1 ≤ i, j ≤ n.

We are going to show that [1Tk
ρ
] ∈ K0(T

k
ρ ) is primitive.

Theorem 1.3. Let T k
ρ be a generalized noncommutative torus of rank n. Then K0(T

k
ρ )

∼=
K1(T

k
ρ )

∼= Z2n−1

, and [1Tk
ρ
] ∈ K0(T

k
ρ ) is primitive.

Proof. By Theorem 1.1, T k
ρ is stably isomorphic to Aρ ⊗ Mk(C). By the Elliott

theorem[10, Theorem 2.2],

K0(T
k
ρ )

∼= K0(Aρ) ∼= Z2n−1

, K1(T
k
ρ )

∼= K1(Aρ) ∼= Z2n−1

.

So it is enough to show that [1Tk
ρ
] ∈ K0(T

k
ρ ) is primitive. The proof is by induction on m.

Assume that m = 2. The result was obtained in [10, Theorem 2.2].
So assume that the result is true for all generalized noncommutative tori of rankm = i−1.

Write Si = C∗(Si−1, ui), where Si = C∗(Am
k
, u3, . . . , ui). Then the inductive hypothesis
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applies to Si−1. Also, we can think of Si as the crossed product by an action αi of Z on
Si−1, where the generator of Z corresponds to ui, which acts on C∗(uk

1 , u
k
2 , · · · , ui−1) by

conjugation (sending uj to uiuju
−1
i = e2πiθjiuj , j ̸= 1, 2, and sending uk

j to uiu
k
ju

−1
i =

e2πikθjiuk
j , j = 1, 2), and which acts trivially on Mk(C). Here C∗(uk

1 , u
k
2)

∼= C∗(kZ × kZ).
Note that this action is homotopic to the trivial action, since we can homotope θji to 0.
Hence Z acts trivially on the K-theory of Si−1. The Pimsner-Voiculescu exact sequence for
a crossed product gives an exact sequence

K0(Si−1)
1−(αi)∗−−−−−→ K0(Si−1)

Φ−→ K0(Si) −→ K1(Si−1)
1−(αi)∗−−−−−→ K1(Si−1)

and similarly for K1, where the map Φ is induced by inclusion. Since (αi)∗ = 1 and since
the K-groups of Si−1 are free abelian, this reduces a split short exact sequence

{0} −→ K0(Si−1)
Φ−→ K0(Si) −→ K1(Si−1) −→ {0}

and similarly for K1. So K0(Si) and K1(Si) are free abelian of rank 2 · 2i−2 = 2i−1.
Furthermore, since the inclusion Si−1 → Si sends 1Si−1 to 1Si , [1Si ] is the image of [1Si−1 ],
which is primitive in K0(Si−1) by inductive hypothesis. Hence the image is primitive, since
the Pimsner-Voiculescu exact sequence is a split short exact sequence of torsion-free groups.

Therefore, K0(T
k
ρ )

∼= K1(T
k
ρ )

∼= Z2n−1

, and [1Tk
ρ
] ∈ K0(T

k
ρ ) is primitive.

It was shown in [4, Lemma 4.1] that tr(K0(T
k
ρ )) =

1
k · tr(K0(Aρ)). By [11, Theorem 7.1]

and [12, Theorem 1.3], T k
ρ is stably isomorphic to Aρ, which was shown in Theorem 1.1.

And it was also shown in [4, Theorem 4.2] that if Aω is a completely irrational noncom-
mutative torus of rank n with tr(K0(Aω)) =

1
k · tr(K0(Aρ)) for Aρ a completely irrational

noncommutative torus of rank n then Aω is isomorphic to a generalized noncommutative
torus T k

ρ of rank n.

Corollary 1.1. Let p be a positive integer. Then T k
ρ ⊗ Mp(C) is not isomorphic to

A⊗Msp(C) for A a C∗-algebra if s is greater than 1.
Proof. Assume that T k

ρ ⊗Mp(C) is isomorphic to A⊗Msp(C). Then the unit 1Tk
ρ
⊗ Ip

maps to the unit 1A⊗ Isp. So [1Tk
ρ
⊗ Ip] = [1A⊗ Isp]. Thus there is a projection e ∈ T k

ρ such

that p[1Tk
ρ
] = (sp)[e]. But K0(T

k
ρ )

∼= Z2n−1

is torsion-free, so [1Tk
ρ
] = s[e]. This contradicts

Theorem 1.3.
Therefore, T k

ρ ⊗Mp(C) is not isomorphic to A⊗Msp(C) if s > 1.

We have obtained that [1Tk
ρ
] ∈ K0(T

k
ρ ) is primitive. This result is very useful to investigate

the structure of the tensor products of generalized noncommutative tori with UHF -algebras
and Cuntz algebras.

§2. Tensor Products of Generalized Noncommutative
Tori with UHF-Algebras and Cuntz Algebras

Using the fact that [1Tk
ρ
] ∈ K0(T

k
ρ ) is primitive, we investigate the structure of T k

ρ ⊗Mp∞

for Mp∞ a UHF-algebra of type p∞.
Theorem 2.1. T k

ρ ⊗Mp∞ is isomorphic to Aρ ⊗Mk(C)⊗Mp∞ if and only if the set of
prime factors of k is a subset of the set of prime factors of p.

Proof. Assume that the set of prime factors of k is a subset of the set of prime factors of
p. To show that T k

ρ ⊗Mp∞ is isomorphic to Aρ ⊗Mk(C)⊗Mp∞ , it is enough to show that

T k
ρ ⊗Mk∞ ∼= Aρ⊗Mk(C)⊗Mk∞ . But there exist the C∗-algebra homomorphisms which are

the canonical inclusions T k
ρ ⊗Mkg (C) ↪→ Aρ ⊗Mk(C) ⊗Mkg (C) and the Aρ-module maps

Aρ ⊗Mkg (C) ↪→ T k
ρ ⊗Mkg (C):

T k
ρ ↪→ Aρ ⊗Mk(C) ↪→ T k

ρ ⊗Mk(C) ↪→ Aρ ⊗Mk2(C) ↪→ · · · .
The inductive limit of the odd terms
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· · · → T k
ρ ⊗Mkg (C) → T k

ρ ⊗Mkg+1(C) → · · ·
is T k

ρ ⊗Mk∞ , and the inductive limit of the even terms

· · · → Aρ ⊗Mkg (C) → Aρ ⊗Mkg+1(C) → · · ·
is Aρ ⊗ Mk∞ . Thus by the Elliott theorem[11, Theorem 2.1], T k

ρ ⊗ Mk∞ is isomorphic to
Aρ ⊗Mk∞ .

Conversely, assume that T k
ρ ⊗Mp∞ ∼= Aρ ⊗Mk(C) ⊗Mp∞ . Then the unit 1Tk

ρ
⊗ 1Mp∞

maps to the unit 1Aρ ⊗ 1Mp∞ ⊗ Ik. So

[1Tk
ρ
⊗ 1Mp∞ ] = [1Aρ ⊗ 1Mp∞ ⊗ Ik],

[1Tk
ρ
⊗ 1Mp∞ ] = [1Tk

ρ
]⊗ [1Mp∞ ],

[1Aρ ⊗ 1Mp∞ ⊗ Ik] = k([1Aρ ]⊗ [1Mp∞ ]).
Under the assumption that the unit 1Tk

ρ
⊗ 1Mp∞ maps to the unit 1Aρ ⊗ 1Mp∞ ⊗ Ik, if

there is a prime factor q of k such that q - p, then [1Mp∞ ] ̸= q[e∞] for e∞ a projection in

Mp∞ . So there is a projection e ∈ T k
ρ such that [1Tk

ρ
] = q[e]. This contradicts Theorem 1.4.

Thus the set of prime factors of k is a subset of the set of prime factors of p.
Therefore, T k

ρ ⊗Mp∞ is isomorphic to Aρ ⊗Mk(C)⊗Mp∞ if and only if the set of prime
factors of k is a subset of the set of prime factors of p.

Let us study the structure of the tensor products of generalized noncommutative tori with
(even) Cuntz algebras.

The Cuntz algebra Ou, 2 ≤ u < ∞, is the universal C∗-algebra generated by u isometries
s1, . . . , su, i.e., s

∗
jsj = 1 for all j, with the relation s1s

∗
1 + · · ·+ sus

∗
u = 1. Cuntz[8,9] proved

that Ou is simple and the K-theory of Ou is K0(Ou) = Z/(u − 1)Z and K1(Ou) = 0. He
proved that K0(Ou) is generated by the class of the unit.

Proposition 2.1. Let u be a positive integer such that k and u − 1 are not relatively
prime. Then Ou ⊗ T k

ρ is not isomorphic to Ou ⊗Aρ ⊗Mk(C).
Proof. Let p be a prime such that p | k and p | u − 1. Suppose that Ou ⊗ T k

ρ is
isomorphic to Ou ⊗ Aρ ⊗ Mk(C). Then the unit 1Ou⊗Tk

ρ
maps to the unit 1Ou⊗Aρ ⊗ Ik.

So [1Ou⊗Tk
ρ
] = [1Ou⊗Aρ ⊗ Ik] = k[1Ou⊗Aρ ]. Hence there is a projection e in Ou ⊗ T k

ρ

such that [1Ou⊗Tk
ρ
] = k[e]. But [1Ou⊗Tk

ρ
] = [1Ou ] ⊗ [1Tk

ρ
] and [1Ou ] is a generator of

K0(Ou) ∼= Z/(u − 1)Z (see [9]). But p | u − 1. [1Ou ] ̸= p[e∗] for e∗ a projection in Ou. So
[1Tk

ρ
] = p[e′] for e′ a projection in T k

ρ . This contradicts Theorem 1.3. Hence k and u− 1 are

relatively prime.
Therefore, Ou⊗T k

ρ is not isomorphic to Ou⊗Aρ⊗Mk(C) if k and u−1 are not relatively
prime.

The following result is useful to understand the structure of Ou ⊗ T k
ρ .

Proposition 2.2.[16, Theorem 7.2] Let A and B be unital simple inductive limits of even
Cuntz algebras. If α : K0(A) → K0(B) is an isomorphism of abelian groups satisfying
α([1A]) = [1B], then there is an isomorphism ϕ : A → B which induces α.

Corollary 2.1. (1) Let p be an odd integer such that p and 2u− 1 are relatively prime.
Then O2u is isomorphic to O(2u−1)p+1 ⊗Mp∞ . That is, O2u is isomorphic to O2u ⊗Mp∞ .

(2) O2u is isomorphic to O2u ⊗M(2u)∞ .

Theorem 2.2. O2u ⊗T k
ρ is isomorphic to O2u ⊗Aρ ⊗Mk(C) if and only if k and 2u− 1

are relatively prime.
Proof. Assume that k and 2u − 1 are relatively prime. Let k = p2v for some odd

integer p. Then p and 2u− 1 are relatively prime. Then by Corollary 2.4 O2u is isomorphic
to O2u ⊗ Mp∞ , and O2u is isomorphic to O2u ⊗ M(2u)∞

∼= O2u ⊗ M(2u)∞ ⊗ M(2v)∞
∼=
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O2u ⊗ M(2v)∞ . So O2u is isomorphic to O2u ⊗ Mp∞ ⊗ M(2v)∞
∼= O2u ⊗ Mk∞ . Thus by

Theorem 2.1 O2u ⊗ T k
ρ is isomorphic to O2u ⊗ Mk∞ ⊗ T k

ρ , which in turn is isomorphic to

O2u ⊗Mk∞ ⊗Aρ ⊗Mk(C). Hence O2u ⊗ T k
ρ is isomorphic to O2u ⊗Aρ ⊗Mk(C).

The converse was proved in Proposition 2.1.
Therefore, O2u ⊗ T k

ρ is isomorphic to O2u ⊗ Aρ ⊗Mk(C) if and only if k and 2u− 1 are
relatively prime.

However, we do not know whether or not O2u+1 ⊗ T k
ρ is isomorphic to O2u+1 ⊗ Aρ ⊗

Mk(C) when k and 2u are relatively prime, since we do not know whether or not the result
corresponding to Proposition 2.2 does hold for odd Cuntz algebras.

Cuntz[9] computed the K-theory of the generalized Cuntz algebra O∞, generated by a
sequence of isometries with mutually orthogonal ranges, K0(O∞) = Z and K1(O∞) = 0.
He proved that K0(O∞) is generated by the class of the unit.

Proposition 2.3. O∞ ⊗ T k
ρ is not isomorphic to O∞ ⊗Aρ ⊗Mk(C) if k > 1.

Proof. Suppose O∞ ⊗ T k
ρ is isomorphic to O∞ ⊗ Aρ ⊗Mk(C). The unit 1O∞⊗Tk

ρ
maps

to the unit 1O∞⊗Aρ ⊗ Ik. By the same trick as in the proof of Proposition 2.1, one can show

that [1O∞⊗Tk
ρ
] = k[e] for a projection e ∈ O∞ ⊗ T k

ρ . [1O∞⊗Tk
ρ
] = [1O∞ ]⊗ [1Tk

ρ
] and [1O∞ ] is

a primitive element of K0(O∞) ∼= Z (see [9]). So [1Tk
ρ
] = k[e′] for a projection e′ ∈ T k

ρ . This

contradicts Theorem 1.3 if k > 1.
Therefore, O∞ ⊗ T k

ρ is not isomorphic to O∞ ⊗Aρ ⊗Mk(C).
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