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Abstract

The authors first give a necessary and sufficient condition for some solvable Lie algebras with

l-step nilpotent radicals to be complete, and then construct a new class of infinite dimensional
complete Lie algebras by using the modules of simple Lie algebras. The quotient algebras of
this new constructed Lie algebras are non-solvable complete Lie algebras with l-step nilpotent

radicals.
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§1. Introduction

A Lie algebra g is called a complete Lie algebra, if g satisfies the two conditions

C(g) = 0, Derg = adg.

It is well-known that semisimple Lie algebras over field of characteristic 0, the Borel subal-

gebras and the parabolic subalgebras of complex semisimple Lie algebras are complete Lie

algebras. In [1,2] some complete Lie algebras with commutative nilpotent radicals and other

complete Lie algebras whose nilpotent radicals are the direct sum of abelian Lie algebras

and Heisenberg algebras were given. In [3] solvable complete Lie algebras were studied.

However, up to now there are a great deal of complete Lie algebras unknown. So looking for

complete Lie algebras is still an important task. In this paper we first give a necessary and

sufficient condition for some solvable Lie algebras with l-step nilpotent radicals to be com-

plete. Then we give a method to construct non-solvable complete Lie algebras. Throughout

the paper, unless specially pointed out, we always discuss finite dimensional Lie algebras

over the complex field C.
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§2. Solvable Complete Lie Algebras with l-Step Nilpotent Radicals

A Lie algebra L is said to be nilpotent if Ln is zero for some positive integer n. If

Ll ̸= 0 = Ll+1, we say L is l-step nilpotent.

Lemma 2.1.[4] Let N be a nilpotent Lie algebra. Then the following assertions are

equivalent :

(1) {x1, · · · , xn} is a minimal system of generators ;

(2) {x1 + [N,N ], · · · , xn + [N,N ]} is a basis of N/[N,N ].

Definition 2.1. Let N be a nilpotent Lie algebra and h a subalgebra of DerN . If all

elements of h are semisimple linear transformations of N , then h is called a torus on N .

Suppose h is a torus on N . Clearly N is decomposed into a direct sum of root spaces for

h:

N =
⊕
β∈h∗

Nβ ,

where h∗ is the dual space of the vector space h and

Nβ = {x ∈ N : h.x = β(h)x, ∀h ∈ h}.
Definition 2.2. Let h be a maximal torus on N . One calls h-msg a minimal system of

generators which consists of root vectors for h.

Lemma 2.2.[4] Let h be a maximal torus on N, {x1, · · · , xn} an h-msg and {β1, · · · , βn}
the corresponding roots, then {β1, · · · , βn} is a basis for the vector space h∗.

Lemma 2.3.[4] Let N be a nilpotent Lie algebra and h1, h2 two maximal tori on N . Then

dimh1=dimh2 ≤ dimN/[N,N ].

Definition 2.3. Let N be a nilpotent Lie algebra and h a maximal torus on N . We call

dimh and n = dimN/[N,N ] the rank and type of N respectively. If the rank of N is the

same as the type of N , then N is said to be of maximal rank.

Now fix l and n. Let V be a vector space with a basis {y1, · · · , yn}, form the tensor

algebra T (V ) (view as Lie algebra via the bracket operation), and let L be the Lie subalgebra

generated by {y1, · · · , yn}. Set
N(l, n) = L/Ll+1

and let xi denote the image of yi under the canonical surjection L → N(l, n). Then

{x1, · · · , xn} is a minimal system of generators of N(l, n). We have the following well-known

theorem.

Theorem 2.1. N(l, n) is an l-step niltopent Lie algebra of type n and any other l-step

nilpotent Lie algebra of type n is a quotient of N(l, n).

We introduce semisimple derivations d1, · · · , dn of T (V ) such that

di(yj) = δijyj , i, j = 1, 2, · · · , n.
It is easy to prove by induction that

di(L
k) ⊆ Lk, k ∈ Z+.

So we have the semisimple derivations h1, · · · , hn of N(l, n) such that

hi(xj) = δijxj , i, j = 1, 2, · · · , n.
Let

h = Ch1 + · · ·+Chn.
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Clearly we have [h, h] = 0, dimh = n, so h is a maximal torus on N(l, n) and N(l, n) is a

maximal rank nilpotent Lie algebra.

Let us recall here the definition of the holomorph of a Lie algebra L. Let L be a Lie

algebra, DerL the derivation algebra of L. Set

h(L) = DerL+ L.

Define the bracket on h(L) by

[D + x,E + y] = [D,E] +Dy − Ex+ [x, y],

where D,E ∈ DerL, x, y ∈ L. It is easy to prove that h(L) is a Lie algebra which is called

the holomorph of L. Then it is clear that we have the following lemma.

Lemma 2.4. Let L be a Lie algebra, S a subalgebra of DerL. Set

g = S + L.

Then g is a subalgebra of h(L).

Set

R = h+N(l, n).

Since h is a subalgebra of DerN(l, n), by Lemma 2.4, R becomes a Lie algebra.

Lemma 2.5.[3] Let R′ be a solvable Lie algebra. Then R′ is a complete Lie algebra with

maximal rank nilpotent radical N if and only if

R′ = h+N,

where h is a maximal torus on N .

Theorem 2.2. A Lie algebra g is a solvable complete Lie algebra with l-step nilpo-

tent radical of maximal rank n if and only if there exists an ideal I of R such that I ⊆
[N(l, n), N(l, n)], (N(l, n)/I)l ̸= 0, and g ∼= R/I.

Proof. By Lemma 2.5, the sufficiency is clear.

Now suppose g is a complete Lie algebra as in the theorem. Then by Lemma 2.5 we have

g = h′ +N.

Let y1, y2, · · · , yn be an h′-msg and α1, α2, · · · , αn the corresponding roots. Then

[h, yi] = αi(h)yi, i = 1, 2, · · · , n.

By Lemma 2.2, α1, α2, · · · , αn are linearly independent. So there exist h′
1, · · ·h′

n such that

αi(h
′
j) = δij , i, j = 1, 2, · · ·n.

Let φ : R → g be a linear map such that

hi → h′
i, xj → yj , i, j = 1, 2, · · · , n.

Then φ is a homomorphism. Let I = kerφ, then g ∼= R/I. It is clear that I satisfies the

conditions of the theorem.

§3. Non-Solvable Complete Lie Algebras

In this section we first construct a class of infinite dimensional Lie algebras and a class

of finite dimensional Lie algebras with l-step nilpotent radicals. Then we prove that these

Lie algebras are complete.
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Let S be a semisimple Lie algebra, V a finite dimensional S-module. Then we have

S-modules

C, V, V ⊗ V, V ⊗ V ⊗ V, · · · ,
where C is a trivial S-module. So the tensor algebra

T (V ) = C+ V + V ⊗ V + · · ·
becomes an S-module. For any x belonging to S, u, v belonging to V , by the definition of

tensor module we have obviously

x.(u⊗ v) = (x.u)⊗ v + u⊗ (x.v).

So

S ⊆ DerT (V ).

Since S is a semisimple Lie algebra, V is completely reducible. Let

V = Vλ1 + Vλ2 + · · ·+ Vλs

be the irreducible decomposition of V , λi be the highest weight of Vλi , i = 1, 2, · · · , s.
We introduce semisimple derivations d1, d2, · · · , ds of T (V ) such that

di|Vλj
= δijIVλj

, i, j = 1, 2, · · · , s.

Clearly it is well defined. Let

D = Cd1 +Cd2 + · · ·+Cds.

Then D ⊆ DerT (V ), [D,D] = 0.

Lemma 3.1. Let (ρ, V ) be an irreducible representation of S. If x ∈ S, ρ(x) = kIV , k ∈
C, then k = 0.

Proof. If ρ(x) ̸= 0, then ρ(x) is a central element of ρ(S). But ρ(S) is semisimple, it is

a contradiction.

Lemma 3.2. As the subspaces of DerT (V ), S and D have the following properties :

(1) [s1 + u1, s2 + u2] = [s1, s2], s1, s2 ∈ S, u1, u2 ∈ D ;

(2) S ∩D = 0.

Proof. (1) It is straightforward.

(2) Suppose c ∈ S ∩D. Then

c = k1d1 + k2d2 + · · ·+ ksds.

If c ̸= 0, then there exists ki ̸= 0. Therefore

c|Vλi
= kiIVλi

̸= 0.

But c ∈ S, by Lemma 3.1, it is impossible.

By Lemma 3.2, S +D becomes a Lie algebra. So T (V ) becomes an S +D-module and

S +D ⊆ DerT (V ).

Fix a basis

X = {x11, · · · , x1r1 , · · · , xs1, · · · , xsrs}
of V consisting of weight vectors, where xi1 is a highest weight vector of Vλi , i = 1, 2, · · · , s.
Let L be the Lie subalgebra of T (V ) generated by X.

Lemma 3.3. Ll(l ∈ Z+) is an S+D-submodule of T (V ). In particular S+D ⊆ DerLl.

Proof. We use induction for l.
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When l=1, we have Ll = L. For any x ∈ S +D and for any u, v ∈ X, because x.u, x.v ∈
V, x.u, x.v can be written as the linear combinations of elements of X, we have

x.[u, v] = x.(u⊗ v − v ⊗ u) = [x.u, v] + [u, x.v] ∈ L.

So it is true that (S +D).L ⊆ L.

Now suppose it is true for l − 1. For any x ∈ S +D,u1, u2, · · · , ul ∈ L, we have

x.[u1, [u2, · · · , ul] · · · ] = [x.u1, [u2, · · · , ul] · · · ] + [u1, x.[u2, · · · , ul] · · · ] ∈ Ll.

So we have proved the lemma.

Set

g̃ = S +D + L

and define the bracket on g̃ by

[x+ u, y + v] = [x, y] + x.v − y.u+ [u, v].

By Lemma 2.4 and Lemma 3.3, g̃ becomes an infinite dimensional Lie algebra.

We will prove that g̃ is a complete Lie algebra. For that we need the following theorem.

Theorem 3.1. [2] Let g be a Lie algebra, h a Cartan subalgebra of g. g and h satisfy the

following conditions :

(1) h is abelian ;

(2) the decomposition of g with respect to h is

g = h+
∑
α∈∆

gα,

where ∆ ⊂ h∗ − (0) and

gα = {x ∈ g : [h, x] = α(h)x, h ∈ h};

(3) there is a basis α1, α2, · · · , αn of h∗ in ∆ such that

dimg±αi ≤ 1, [gαi , g−αi ] ̸= 0, if − αi ∈ ∆, i = 1, 2, · · · , n;

(4) h and {g±αi : 1 ≤ i ≤ n} generate g.

Then g is a complete Lie algebra.

Theorem 3.2. g̃ is an infinite dimensional complete Lie algebra.

Proof. We prove that g̃ satisfies the conditions (1)–(4) of Theorem 3.1

Let h0 be a Cartan subalgebra of S. The root space decomposition of S with respect to

h0 is

S = h0 +
∑
α∈∆0

Sα.

It is easy to prove that

h = h0 +D

is a Cartan subalgebra of g̃. Clearly it is abelian and for any h ∈ h, adh is semisimple on g̃.

Now, for β ∈ h∗0, by Lemma 3.2 we can extend β to a linear function on h by setting

β(h) = β(h), h ∈ h0, β(di) = 0, i = 1, 2, · · · , s.

We denote by δi the linear function on h defined by

δi|h0 = 0, δi(dj) = δij , i, j = 1, 2, · · · s.
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Now we can describe the root space decomposition of g̃ with respect to h. Let the weight

space decomposition of Vλi with respect to h0 be

Vλi =
∑

λ∈w(λi)

Vλ.

Then the root space decomposition of g̃ with respect to h is

g̃ = h+
∑
α∈∆0

Sα +
s∑

i=1

∑
λ∈w(λi)

Vλ+δi +
∑

i1,··· ,ir

g̃µi1+δi1+···+µir+δir
,

where g̃µi1+δi1+···+µir+δir
is the root space of g̃ with root µi1 + δi1 + · · ·+ µir + δir , which

linearly spans by element [vi1j1 , [vi2j2 , · · · , virjr ] · · · ].
Suppose α1, α2, · · · , αn is a simple root system of ∆0. Then

α1, α2, · · · , αn, λ1 + δ1, λ2 + δ2, · · · , λs + δs

is a basis of h∗, and

S±αk
, Vλ1+δ1 , Vλ2+δ2 , · · · , Vλs+δs

are 1-dimensional.

It is clear that −(λi1 + δi1), · · · ,−(λir + δir ) are not roots. On the other hand we have

−αk, k = 1, 2, · · · , n, are roots, and

[Sαk
, S−αk

] ̸= 0.

Clearly, {h, S±αk
, Vλi , k = 1, 2, · · · , n; i = 1, 2, · · · , s} generate g̃.

From above discussion we have proved that g̃ satisfies the conditions (1)–(4) of Theorem

3.1, so g̃ is a complete Lie algebra.

Theorem 3.3. S + D + L/Ll+1 is a complete Lie algebra with l-step nilpotent radical

L/Ll+1, radical D + L/Ll+1 and Levi subalgebra S.

Proof. Noticing that Ll is an ideal of L, by Lemmas 2.4 and 3.3 we know that S+D+L/Ll

becomes a Lie algebra. From the proof of Theorem 3.2 clearly we have the result.

Similarly we can prove the following theorems.

Theorem 3.4. Let I be an ideal of g̃ and I ⊆ L2. Then S +D + L/I is a complete Lie

algebra.

Theorem 3.5. The Borel subalgebra and the parabolic subalgebras of S + D + L/Ll+1

are complete Lie algebras.
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