COMPLETE LIE ALGEBRAS WITH *l*-STEP NILPOTENT RADICALS***

GAO YONGCUN* MENG DAOJI**

Abstract

The authors first give a necessary and sufficient condition for some solvable Lie algebras with l-step nilpotent radicals to be complete, and then construct a new class of infinite dimensional complete Lie algebras by using the modules of simple Lie algebras. The quotient algebras of this new constructed Lie algebras are non-solvable complete Lie algebras with l-step nilpotent radicals.

Keywords Complete Lie algebra, *l*-step nilpotent Lie algebra, Nilpotent radical2000 MR Subject Classification 17BChinese Library Classification 0152.5Document Code A

Article ID 0252-9599(2002)04-0545-06

§1. Introduction

A Lie algebra \mathfrak{g} is called a complete Lie algebra, if \mathfrak{g} satisfies the two conditions

$$C(\mathfrak{g}) = 0, \quad \text{Der}\mathfrak{g} = \text{ad}\mathfrak{g}.$$

It is well-known that semisimple Lie algebras over field of characteristic 0, the Borel subalgebras and the parabolic subalgebras of complex semisimple Lie algebras are complete Lie algebras. In [1,2] some complete Lie algebras with commutative nilpotent radicals and other complete Lie algebras whose nilpotent radicals are the direct sum of abelian Lie algebras and Heisenberg algebras were given. In [3] solvable complete Lie algebras were studied. However, up to now there are a great deal of complete Lie algebras unknown. So looking for complete Lie algebras is still an important task. In this paper we first give a necessary and sufficient condition for some solvable Lie algebras with *l*-step nilpotent radicals to be complete. Then we give a method to construct non-solvable complete Lie algebras. Throughout the paper, unless specially pointed out, we always discuss finite dimensional Lie algebras over the complex field \mathbf{C} .

Manuscript received March 6, 2000. Revised April 30, 2001.

 $[\]ast {\rm Department}$ of Mathematics, Beijing Broadcasting Institute, Beijing 100024, China.

E-mail: gaoycjy@263.net

^{**}Department of Mathematics, Nankai University, Tianjin 300071, China.

^{* * *}Project supported by the National Natural Science Foundation of China (No. 19971044), and the Doctoral Program Foundation of the Ministry of Education of China (No. 97005511).

§2. Solvable Complete Lie Algebras with *l*-Step Nilpotent Radicals

A Lie algebra L is said to be nilpotent if L^n is zero for some positive integer n. If $L^l \neq 0 = L^{l+1}$, we say L is *l*-step nilpotent.

Lemma 2.1.^[4] Let N be a nilpotent Lie algebra. Then the following assertions are equivalent:

(1) $\{x_1, \dots, x_n\}$ is a minimal system of generators;

(2) $\{x_1 + [N, N], \dots, x_n + [N, N]\}$ is a basis of N/[N, N].

Definition 2.1. Let N be a nilpotent Lie algebra and \mathfrak{h} a subalgebra of Der N. If all elements of \mathfrak{h} are semisimple linear transformations of N, then \mathfrak{h} is called a torus on N.

Suppose \mathfrak{h} is a torus on N. Clearly N is decomposed into a direct sum of root spaces for \mathfrak{h} :

$$N = \bigoplus_{\beta \in \mathfrak{h}^*} N_{\beta},$$

where \mathfrak{h}^* is the dual space of the vector space \mathfrak{h} and

 $N_{\beta} = \{ x \in N : h \cdot x = \beta(h)x, \quad \forall h \in \mathfrak{h} \}.$

Definition 2.2. Let \mathfrak{h} be a maximal torus on N. One calls \mathfrak{h} -msg a minimal system of generators which consists of root vectors for \mathfrak{h} .

Lemma 2.2.^[4] Let \mathfrak{h} be a maximal torus on $N, \{x_1, \dots, x_n\}$ an \mathfrak{h} -msg and $\{\beta_1, \dots, \beta_n\}$ the corresponding roots, then $\{\beta_1, \dots, \beta_n\}$ is a basis for the vector space \mathfrak{h}^* .

Lemma 2.3.^[4] Let N be a nilpotent Lie algebra and $\mathfrak{h}_1, \mathfrak{h}_2$ two maximal tori on N. Then $\dim \mathfrak{h}_1 = \dim \mathfrak{h}_2 \leq \dim N/[N, N].$

Definition 2.3. Let N be a nilpotent Lie algebra and \mathfrak{h} a maximal torus on N. We call dim \mathfrak{h} and $n = \dim N/[N, N]$ the rank and type of N respectively. If the rank of N is the same as the type of N, then N is said to be of maximal rank.

Now fix l and n. Let V be a vector space with a basis $\{y_1, \dots, y_n\}$, form the tensor algebra T(V) (view as Lie algebra via the bracket operation), and let L be the Lie subalgebra generated by $\{y_1, \dots, y_n\}$. Set

$$N(l,n) = L/L^{l+1}$$

and let x_i denote the image of y_i under the canonical surjection $L \to N(l, n)$. Then $\{x_1, \dots, x_n\}$ is a minimal system of generators of N(l, n). We have the following well-known theorem.

Theorem 2.1. N(l,n) is an *l*-step niltopent Lie algebra of type *n* and any other *l*-step nilpotent Lie algebra of type *n* is a quotient of N(l,n).

We introduce semisimple derivations d_1, \dots, d_n of T(V) such that

$$d_i(y_j) = \delta_{ij} y_j, \quad i, j = 1, 2, \cdots, n.$$

It is easy to prove by induction that

$$d_i(L^k) \subseteq L^k, \quad k \in \mathbf{Z}_+.$$

So we have the semisimple derivations h_1, \dots, h_n of N(l, n) such that

ł

$$h_i(x_j) = \delta_{ij}x_j, \quad i, j = 1, 2, \cdots, n.$$

Let

$$\mathfrak{h}=\mathbf{C}h_1+\cdots+\mathbf{C}h_n.$$

Clearly we have $[\mathfrak{h}, \mathfrak{h}] = 0$, dim $\mathfrak{h} = n$, so \mathfrak{h} is a maximal torus on N(l, n) and N(l, n) is a maximal rank nilpotent Lie algebra.

Let us recall here the definition of the holomorph of a Lie algebra L. Let L be a Lie algebra, DerL the derivation algebra of L. Set

$$\mathfrak{h}(L) = \mathrm{Der}L + L.$$

Define the bracket on $\mathfrak{h}(L)$ by

$$[D + x, E + y] = [D, E] + Dy - Ex + [x, y],$$

where $D, E \in \text{Der}L, x, y \in L$. It is easy to prove that $\mathfrak{h}(L)$ is a Lie algebra which is called the holomorph of L. Then it is clear that we have the following lemma.

Lemma 2.4. Let L be a Lie algebra, S a subalgebra of Der L. Set

$$\mathfrak{g} = S + L.$$

Then \mathfrak{g} is a subalgebra of $\mathfrak{h}(L)$.

Set

$$R = \mathfrak{h} + N(l, n).$$

Since \mathfrak{h} is a subalgebra of DerN(l,n), by Lemma 2.4, R becomes a Lie algebra.

Lemma 2.5.^[3] Let R' be a solvable Lie algebra. Then R' is a complete Lie algebra with maximal rank nilpotent radical N if and only if

$$R' = \mathfrak{h} + N,$$

where \mathfrak{h} is a maximal torus on N.

Theorem 2.2. A Lie algebra \mathfrak{g} is a solvable complete Lie algebra with *l*-step nilpotent radical of maximal rank n if and only if there exists an ideal I of R such that $I \subseteq [N(l,n), N(l,n)], (N(l,n)/I)^l \neq 0$, and $\mathfrak{g} \cong R/I$.

Proof. By Lemma 2.5, the sufficiency is clear.

Now suppose \mathfrak{g} is a complete Lie algebra as in the theorem. Then by Lemma 2.5 we have

$$\mathfrak{g} = \mathfrak{h}' + N.$$

Let y_1, y_2, \dots, y_n be an \mathfrak{h}' -msg and $\alpha_1, \alpha_2, \dots, \alpha_n$ the corresponding roots. Then

$$[h, y_i] = \alpha_i(h)y_i, \quad i = 1, 2, \cdots, n.$$

By Lemma 2.2, $\alpha_1, \alpha_2, \cdots, \alpha_n$ are linearly independent. So there exist h'_1, \cdots, h'_n such that

$$\alpha_i(h'_i) = \delta_{ij}, \quad i, j = 1, 2, \cdots n.$$

Let $\varphi: R \to \mathfrak{g}$ be a linear map such that

$$h_i \rightarrow h'_i, x_j \rightarrow y_j, \quad i, j = 1, 2, \cdots, n.$$

Then φ is a homomorphism. Let $I = \ker \varphi$, then $\mathfrak{g} \cong R/I$. It is clear that I satisfies the conditions of the theorem.

§3. Non-Solvable Complete Lie Algebras

In this section we first construct a class of infinite dimensional Lie algebras and a class of finite dimensional Lie algebras with *l*-step nilpotent radicals. Then we prove that these Lie algebras are complete.

Let S be a semisimple Lie algebra, V a finite dimensional S-module. Then we have S-modules

$$\mathbf{C}, V, V \otimes V, V \otimes V \otimes V, \cdots$$

where \mathbf{C} is a trivial S-module. So the tensor algebra

$$T(V) = \mathbf{C} + V + V \otimes V + \cdots$$

becomes an S-module. For any x belonging to S, u, v belonging to V, by the definition of tensor module we have obviously

$$x.(u \otimes v) = (x.u) \otimes v + u \otimes (x.v).$$

 So

$$S \subseteq \operatorname{Der} T(V)$$

Since S is a semisimple Lie algebra, V is completely reducible. Let

$$V = V_{\lambda_1} + V_{\lambda_2} + \dots + V_{\lambda}$$

be the irreducible decomposition of V, λ_i be the highest weight of V_{λ_i} , $i = 1, 2, \dots, s$.

We introduce semisimple derivations d_1, d_2, \cdots, d_s of T(V) such that

$$d_i|_{V_{\lambda_i}} = \delta_{ij} \mathbf{I}_{V_{\lambda_i}}, \quad i, j = 1, 2, \cdots, s$$

Clearly it is well defined. Let

$$D = \mathbf{C}d_1 + \mathbf{C}d_2 + \dots + \mathbf{C}d_s.$$

Then $D \subseteq \text{Der } T(V), [D, D] = 0.$

Lemma 3.1. Let (ρ, V) be an irreducible representation of S. If $x \in S$, $\rho(x) = kI_V$, $k \in \mathbf{C}$, then k = 0.

Proof. If $\rho(x) \neq 0$, then $\rho(x)$ is a central element of $\rho(S)$. But $\rho(S)$ is semisimple, it is a contradiction.

Lemma 3.2. As the subspaces of Der T(V), S and D have the following properties: (1) $[s_1 + u_1, s_2 + u_2] = [s_1, s_2], \quad s_1, s_2 \in S, u_1, u_2 \in D;$ (2) $S \cap D = 0.$

Proof. (1) It is straightforward.

(2) Suppose $c \in S \cap D$. Then

$$c = k_1 d_1 + k_2 d_2 + \dots + k_s d_s.$$

If $c \neq 0$, then there exists $k_i \neq 0$. Therefore

$$c|_{V_{\lambda_i}} = k_i I_{V_{\lambda_i}} \neq 0.$$

But $c \in S$, by Lemma 3.1, it is impossible.

By Lemma 3.2, S + D becomes a Lie algebra. So T(V) becomes an S + D-module and $S + D \subseteq \text{Der}T(V)$.

Fix a basis

 $X = \{x_{11}, \cdots, x_{1r_1}, \cdots, x_{s1}, \cdots, x_{sr_s}\}$

of V consisting of weight vectors, where x_{i1} is a highest weight vector of V_{λ_i} , $i = 1, 2, \dots, s$. Let L be the Lie subalgebra of T(V) generated by X.

Lemma 3.3. $L^{l}(l \in \mathbb{Z}_{+})$ is an S + D-submodule of T(V). In particular $S + D \subseteq \text{Der } L^{l}$. **Proof.** We use induction for l. When l=1, we have $L^l = L$. For any $x \in S + D$ and for any $u, v \in X$, because $x.u, x.v \in V, x.u, x.v$ can be written as the linear combinations of elements of X, we have

$$x.[u,v] = x.(u \otimes v - v \otimes u) = [x.u,v] + [u,x.v] \in L$$

So it is true that $(S + D).L \subseteq L$.

Now suppose it is true for l-1. For any $x \in S + D, u_1, u_2, \dots, u_l \in L$, we have

$$x.[u_1, [u_2, \cdots, u_l] \cdots] = [x.u_1, [u_2, \cdots, u_l] \cdots] + [u_1, x.[u_2, \cdots, u_l] \cdots] \in L^l.$$

So we have proved the lemma.

Set

$$\tilde{\mathfrak{g}} = S + D + L$$

and define the bracket on $\tilde{\mathfrak{g}}$ by

$$[x + u, y + v] = [x, y] + x \cdot v - y \cdot u + [u, v].$$

By Lemma 2.4 and Lemma 3.3, $\tilde{\mathfrak{g}}$ becomes an infinite dimensional Lie algebra.

We will prove that $\tilde{\mathfrak{g}}$ is a complete Lie algebra. For that we need the following theorem.

Theorem 3.1. ^[2] Let \mathfrak{g} be a Lie algebra, \mathfrak{h} a Cartan subalgebra of \mathfrak{g} . \mathfrak{g} and \mathfrak{h} satisfy the following conditions:

(1) \mathfrak{h} is abelian;

(2) the decomposition of \mathfrak{g} with respect to \mathfrak{h} is

$$\mathfrak{g} = h + \sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha},$$

where $\Delta \subset \mathfrak{h}^* - (0)$ and

$$\mathfrak{g}_{\alpha} = \{ x \in \mathfrak{g} : [h, x] = \alpha(h)x, h \in \mathfrak{h} \};$$

(3) there is a basis $\alpha_1, \alpha_2, \cdots, \alpha_n$ of \mathfrak{h}^* in Δ such that

$$\dim \mathfrak{g}_{\pm \alpha_i} \leq 1, [\mathfrak{g}_{\alpha_i}, \mathfrak{g}_{-\alpha_i}] \neq 0, \ if - \alpha_i \in \Delta, \quad i = 1, 2, \cdots, n;$$

(4) \mathfrak{h} and $\{\mathfrak{g}_{\pm\alpha_i}: 1 \leq i \leq n\}$ generate \mathfrak{g} .

Then ${\mathfrak g}$ is a complete Lie algebra.

Theorem 3.2. $\tilde{\mathfrak{g}}$ is an infinite dimensional complete Lie algebra.

Proof. We prove that $\tilde{\mathfrak{g}}$ satisfies the conditions (1)–(4) of Theorem 3.1

Let \mathfrak{h}_0 be a Cartan subalgebra of S. The root space decomposition of S with respect to \mathfrak{h}_0 is

$$S = \mathfrak{h}_0 + \sum_{\alpha \in \Delta_0} S_\alpha.$$

It is easy to prove that

$$\mathfrak{h} = \mathfrak{h}_0 + D$$

is a Cartan subalgebra of $\tilde{\mathfrak{g}}$. Clearly it is abelian and for any $h \in \mathfrak{h}$, $\mathrm{ad}h$ is semisimple on $\tilde{\mathfrak{g}}$. Now, for $\beta \in \mathfrak{h}_0^*$, by Lemma 3.2 we can extend β to a linear function on \mathfrak{h} by setting

$$\beta(h) = \beta(h), \quad h \in \mathfrak{h}_0, \quad \beta(d_i) = 0, \quad i = 1, 2, \cdots, s$$

We denote by δ_i the linear function on \mathfrak{h} defined by

$$\delta_i|_{\mathfrak{h}_0} = 0, \quad \delta_i(d_j) = \delta_{ij}, \quad i, j = 1, 2, \cdots s.$$

$$V_{\lambda_i} = \sum_{\lambda \in w(\lambda_i)} V_{\lambda}.$$

Then the root space decomposition of $\tilde{\mathfrak{g}}$ with respect to \mathfrak{h} is

$$\tilde{\mathfrak{g}} = \mathfrak{h} + \sum_{\alpha \in \Delta_0} S_{\alpha} + \sum_{i=1}^{s} \sum_{\lambda \in w(\lambda_i)} V_{\lambda + \delta_i} + \sum_{i_1, \cdots, i_r} \tilde{\mathfrak{g}}_{\mu_{i_1} + \delta_{i_1} + \cdots + \mu_{i_r} + \delta_{i_r}},$$

where $\tilde{\mathfrak{g}}_{\mu_{i_1}+\delta_{i_1}+\cdots+\mu_{i_r}+\delta_{i_r}}$ is the root space of $\tilde{\mathfrak{g}}$ with root $\mu_{i_1}+\delta_{i_1}+\cdots+\mu_{i_r}+\delta_{i_r}$, which linearly spans by element $[v_{i_1j_1}, [v_{i_2j_2}, \cdots, v_{i_rj_r}]\cdots]$.

Suppose $\alpha_1, \alpha_2, \cdots, \alpha_n$ is a simple root system of Δ_0 . Then

$$\alpha_1, \alpha_2, \cdots, \alpha_n, \lambda_1 + \delta_1, \lambda_2 + \delta_2, \cdots, \lambda_s + \delta_s$$

is a basis of \mathfrak{h}^* , and

$$S_{\pm \alpha_k}, V_{\lambda_1+\delta_1}, V_{\lambda_2+\delta_2}, \cdots, V_{\lambda_s+\delta_s}$$

are 1-dimensional.

It is clear that $-(\lambda_{i_1} + \delta_{i_1}), \dots, -(\lambda_{i_r} + \delta_{i_r})$ are not roots. On the other hand we have $-\alpha_k, k = 1, 2, \dots, n$, are roots, and

$$[S_{\alpha_k}, S_{-\alpha_k}] \neq 0.$$

Clearly, $\{\mathfrak{h}, S_{\pm \alpha_k}, V_{\lambda_i}, k = 1, 2, \cdots, n; i = 1, 2, \cdots, s\}$ generate $\tilde{\mathfrak{g}}$.

From above discussion we have proved that $\tilde{\mathfrak{g}}$ satisfies the conditions (1)–(4) of Theorem 3.1, so $\tilde{\mathfrak{g}}$ is a complete Lie algebra.

Theorem 3.3. $S + D + L/L^{l+1}$ is a complete Lie algebra with l-step nilpotent radical L/L^{l+1} , radical $D + L/L^{l+1}$ and Levi subalgebra S.

Proof. Noticing that L^l is an ideal of L, by Lemmas 2.4 and 3.3 we know that $S+D+L/L^l$ becomes a Lie algebra. From the proof of Theorem 3.2 clearly we have the result.

Similarly we can prove the following theorems.

Theorem 3.4. Let I be an ideal of $\tilde{\mathfrak{g}}$ and $I \subseteq L^2$. Then S + D + L/I is a complete Lie algebra.

Theorem 3.5. The Borel subalgebra and the parabolic subalgebras of $S + D + L/L^{l+1}$ are complete Lie algebras.

References

- Meng, D. J., Some results on complete Lie algebras [J], Communications in Algebra, 22(1994), 5457– 5507.
- [2] Meng, D. J., Complete Lie algebras and Heisenberg algebras [J], Communications in Algebra, 22(1994), 5509–5524.
- [3] Meng, D. J. & Zhu, L. S., Solvable complete Lie algebras I [J], Communications in Algebras, 24(1996), 4181–4197.
- [4] Santharoubane, L. J., Kac-Moody Lie algebras and the classification of nilpotent Lie algebras of maximal rank [J], Can. J. Math., 34(1982), 1215–1239.
- [5] Humphreys, J. E., Introduction to Lie algebras and representation theory [M], Berlin-Heidelberg-New York, Springer, 1972.