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Abstract

This paper constructs several classes of new wavelet bases, which are unconditional bases
for related operator spaces. Using these bases, the author analyzes non-homogeneous symbolic
space OpS{'fl and two related kernel-distribution spaces, and characterizes them in two wavelet
coefficients spaces. Besides, some properties for singular integral operators are studied.
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§1. Problems and Introduction

Usual wavelet bases can serve as bases in most of function spaces, and the norm of a func-
tion is equivalent to a norm which is defined by the absolute value of its wavelet coefficients.
Can one develop some unconditional wavelet bases for operator spaces? Furthermore, in
1950’s Calderén established a formal relation between a symbol and a kernel-distribution;
after this period, the symbol school and the kernel-distribution school remain almost in two
isolated classes. How can one establish an internal relation between a symbol and a kernel-
distribution? In this paper, we choose the non-homogeneuos space OpS7"; as an example to
answer these two questions.

A symbolic operator T' = o(x, D) is defined as follows:

o(x, D) f(x) = (2m) ™ / ¢ (,€) (€ de. (11)

Hormander has given a classification for symbolic operators, here we study o(z,§) € ST or
o(z,D) € OpSTy:
Definition 1.1. o(z,§) € STy or o(x, D) € OpSTY, if

1050£0(2,6)] < Cones (14 €)™ 1181, Vo, 5 € N7 (1.2)
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According to kernel’s theorem of Schwartz, a linear operator, which is continuous from
S(R™) to S'(R™) , corresponds to a kernel-distribution K (x,y) or k(z, z); K(x,y) and k(z, 2)
are defined as follows:

/K x,y) f(y)dy = /k(x,z)f(x—z)dz. (1.3)
Note CN(R") = CY(R") = {f(z), X [102f(2)|lsc < 00}, CZ(R™) = ) CY(R").

laj<N N>1
In this paper, we study OpK™ OpK m_ Opk™ and OpK ™ which are defined below.

Definition 1.2. (i) T € OpK™ or K(z,y) € K™, if K(z,y) satisfies the following
conditions:
If lx —y| <1, then

050, K (,y)| < Co | —y| "7l I82N,
VN > 0,Va,8 € N" and n+m + |a| + |5| + N > 0. (1.4)
If |z —y| > 1, then
0205 K (2,y)| < Capnle —y| N, Va, 8 € N™. (1.5)

and if m > 0, K(x,y) satisfies also the following condition:
There exists a positive real number q, such that for all the cube Q,|Q| < 1,Vf(z) €

CS(Q),g(x) € Cg+m(Q), one has
(T f, 90 < LRI F (I Flloo + 1QIF 11l (llloe + Q1 gl ). (16)

(ii) T € OpK™ or K(x,y) € K™, if K(x,y) € K™, and T satisfies the following condi-
tion:

Yo € N",/K(w,y)(x —y)%dy € C°(R"). (1.7)
(iii) T € Opk™ or k(x,z) € k™, if k(x, z) satisfies the following conditions:
If |z| <1, then
10908 k(x, 2)| < Cqpn|z| 7 II=IBI=N WN > 0,Ya, 8 € N™ and n+m+|a|+|B|+N > 0.
1.8

If |z| > 1, then
0900 k(x,2)| < Cag 2| N, Vo, B € N™. (1.9)

and if m > 0, k(z, 2) satisfies also the following condition:
3N > 0, such that Voo € R",VYR,0 < R < 1, Yf(z) € C{(B(z0, R)), Yg(z) € C{ (B0,
R)), one has

[(E(x, 2), f(2)g(2))| < CR™™™ (|| flloo + BN fllen)(ll9lloo + BN lgllen)- (1.10)
(iv) T € Opk™ or k(z,z) € k™, if k(x,z) € k™, and T satisfies the following condition :
Vf(z) € C5°(B(0,1)), one has |(0Pk(x, 2), f(2))| < A, VB € N™. (1.11)

In 1950’s, Calderén found a formal relation between (1.1) and (1.3):

K(z,y)=(2n)™ / o(z,&)e’ ™ VEdE or k(z, 2) = (2m) ™" / o(z,&)e* de. (1.12)

But it is difficult to establish an internal relation between a symbol space and a kernel-
distribution space. Here, we construct some groups of orthonormals bases in L?(R" x
R"™), and then use them to analyze the symbolic operator spaces OpS7"; and four kernel-

distribution spaces OpK™, OpK m,OpI;:m and Opk™. With these results, we establish an
isometry between OpS7"; and two kernel-distribution spaces OpK™ and Opk™. As an
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application, a result in Chapter 9 of [7] and some other results in Chapter 7 of [8] are
corollaries of our theorems.

§2. Several Groups of Orthonormals Bases

2.1. Usual Wavelet Bases

First, we introduce some preliminaries on Meyer’s wavelets which will be used in the
following sections.

Let 6(¢) € D(R) be an even function, 6(¢) € [0,1]; and if £ € [-2F, 2], then 0(¢) =
if &€ ¢ [—2F, 4], then 6(¢) = 0; furthermore, if 0 < & < 2, then 6%(¢) + 6%(27 — &)
Let 61(§) = (92( ) — 62(€))2. Then Meyer’s wavelets o(x) and (x) are defined by @(§) =

£

i

0(¢) and (&) = 6;(€)e~=. Denote also O (z) = o(z), ®V(z) = ¢(x ) Furthermore,
Ve € {0,1}",2 € R",¢ € R", denote &) (z) = ﬁ ) (), D) (€) = 1‘[ dED(g). Ve €

1;
1.

i=1 =
{0,1}", u(e) is a function which is defined as follows: wu(e) = 0, if ¢ = O;u(e) = 1, if
e # 0; and if € # 0, the smallest index such that ; # 0 is denoted by ie. Denote also
Te = (T, 2 1+157y1ax1+155'-. ). Ve € {0,1}"\{0} and f(z), denote I2f(z) = f(z)
and VN € Z, N > 0,IN f(z) = [*2 ny o [P f(ze)dy - dyn.

Meyer’s wavelets have the following properties:
Proposition 2.2. (i) Ya € N, Zla@(o) (x —=1) =z™
1

(ii) VN € Z,N > 0, there exists a series of functions {®E*N)(2)}pezn which satisfy
Supp IN”(E)(I)(E kN)(x) C [—MN,MN] and || @EFN) (2)||on <Cn, and a series of numbers

{ak }keZ" which satisfy: |a | < 1+\k\)N such that
(I)(a) Z a(EN (I)(Ek'N)( k‘)
kezn

Proof. (i) According to the knowledge of wavelets, one has Yoo € N™, 321900 (¢ — ) =
1
P,(z). Then Vk € Z™, one has

pe = /Z 15O (- 3O (3 — k)da = /Pa(as)d)(o) (x — k)dz = P (k).
1

So one has P, (z) = z*.
(ii) VN > 0, I. Daubechies has constructed a function ®y(x) € CN(R™) such that
Supp @y (z) C [-Mpy, Myn]™ and >, ®n(x — k) =1 (cf. [5]). If e = 0, applying directly
kezn
S On(z— k) =1 to & (x), and choosing ®EFN) () = (1 + |k)N ®n(2)0O (z + k)
kezn

and a(5 N = W, one gets the conclusion for ¢ = 0. If € # 0, one has IN®©)(z) €

S(R™). Applying Y ®n(z —k) =1to IN®©) (), and choosing ®E+*N) (z) = (1 + [k|)2N
kezn

Bon (2)IN OO (z + k), DR (z) = 9N RN (z) and ™) =
conclusion for € # 0.

Using ®(®)(z), Meyer constructed a usual wavelet bases for function spaces. Let T',, =
{A=(g,7,k), 66{0 1}7,5 >0,k € Z™, and if j > 0, then € # 0}. VA = (g,5,k) € I';,, de-

note @y (z) = 27 &) (272 — k); Vf(z) € S'(R"), denote ay = agslz = (f(z), ®x(z)); further-
more V¥(z) € S(R") such that Yoo € N, [ x*W¥(z)dz = 0, denote U, x(z) = 22 ¥ (2/x — k),
and a;.lfk = (f(z), ¥; k(x)). Then one has

Proposition 2.2. (i) {®x(z)}xer, is an orthogonal basis in L?(R™).

W, one getb the
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(i) Vf(z) € CN(R™),Yj > 0,k € Z", then |a;-1:k| < 027G N and wvice versa, if

Vi >0,k e 2% Jajp| < C279GHN) then S a;x¥;(x) € CN'(R™),Y0 < N’ < N.
j>0,keZm

(iii) f(z) € C(R™) & YA = (e, k) € T, Vg > 0,]al%)| < Cp2771.

One can find the proof of this proposition in [7]. In fact, the usual wavelet bases can
analyze most of function spaces (cf. [10]).

2.2. New Wavelet Bases

Suppose that T is an operator which continue from S(R"™) to S'(R"™). One hopes that
the absolute value of the element in the matrix {(T'®x(x), ®x (2))}(xa)er, x1, can reflect
all the information of an operator T'. Let T™ be the conjugate operator of T. Meyer used
such a method to analyze OpB = {T : T € OpS},,T* € OpS},}; but if one does not
know the infomation of T, one cannot use this method. Afterward, Beylkin, Coifman and
Rokhlin used B-C-R algorithm to analyze an operator. The main idea of this method is
to regard an operator as a distribution in 2n dimension, and one analyzes this distribution
with usual wavelet bases {®,(x,y)}rer,, in 2n dimension; but these ideas cannot provide
unconditional wavelet bases for OpS7";. Here, we present several kinds of new wavelet bases
(B-C-R wavelet bases), these new orthonormal bases are adapted to analysis of symbol or
kernel-distribution of an operator.

Let Ay = {(e,¢',5,k,1),e,¢ € {0,1}",5 > 0,k,l € Z™, and if j > 0, # 0}, Ay =
{(e,, .5 k. K') e € {0, 13"\ {0}, & € {0,1}7,0 < j' < j.k, k' € 2", and if j' > 0,¢' # 0},
Ay = {(€,O,j, ]f,l),& S {0, 1}"\{0},] >0,k,1 € Zn} Denote then A = A{UAs, A = A UAs.
In fact, A = I'y,,. Now we construct some groups of functions:

Ka(z,y) =20 (272 — k)& (27y — 1), A € A; (2.1)
20n@(€) (275 — k)BED (20 — 1), A€ Ay
K)\(xay) = { 1L(J+J )( (e) (( /) ./ , (22)
®E)(2x —k)®EN (2 y — k), A€ Ay
) (20 — k)PE) (279 ¢)e—ile=27DE, A€ A
Py (2,8) = nG=i) (o) : ik (2.3)
2 ) (2 — k)dE) (277 ¢)e il A€ Ay;
- ‘I)(E)(ij — k)®ED (27 ¢)ei2 e, AeAg;
(b)\(l',g) = n(] i) ( ) ) A( /) o ,2,j’k,£ (24)
OE) (27 — k)DE) (277 ¢)el , AE A,

For these groups of functions, one has the following theorem.

Theorem 2.1. {®y(7,&)}ren, { Pa(z, &) ren: {En (@, y) aen, {Ka (2, y)}ren belong to
S(R™ x R"), and they are four groups of orthonormal bases in L*(R™ x R™).

Proof. According to the knowlege of wavelet’s theory, {f()\(x,y)}AEA are a group of
orthonormal bases in L?(R™ x R"). Using this fact, one sees that {K)(z,y)}ren are
also a group of orthonormal bases in L*(R™ x R™). Then applying the following facts
that ®y(2,8) = [Ki(r,y)e!"¢dy and &y(2,&) = [ka(z,2)e”*¢dz , one gets that
{®r(x, ) ren and {®x(z,€)}rea are two groups of orthonormal bases in L2(R" x R™).

§3. OpSTy, and New Wavelet Bases

In this section, we apply the two groups of wavelet bases in (2.3) and (2.4) to analyze
OpSTy. VA € A, denote ax=(o(z,&),®x(7,§)), and by=(o(7,§),Px(7,&)). According to
Theorem 2.1, {ax}ren or {bx}rea can reflect all the information of an operator in OpSTY.

For the clarification of notations, note a) = ag . l) and by = &;E,fl) VA € Ay; and ay =

gj’/ ,2 o and by = a(E ‘,sk s VA € Ag. First, we present a definition of OpN™ and OpN™.
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Definition 3.1. T € OpN™ or {ax}xean € N™, if {ar}reca satisfies the following condi-
tions:

Cn2/m
A, VN h <— 1
YA € A, VN >0, one a5|a>\|_(1+|k_”)N, (3.1)
, Cn29m=(=3)N'
YA € Ao, VN > 0,VN' > 0, one has |ay| < At 2 kR~ (3.2)
T € OpN™ or {bx}rea € N™, if {bx}rea satisfies the following conditions:
Cn2im
VA€ A,VN >0, one has |by| < ————; 3.3
C 20 m=N"(G=5")
VA € Ay, VN > 0,YN' > 0, one has |by| < (3.4)

(1 + KN

In this section, we prove that OpST", = OpN™ = OpN™. In fact, one has

Theorem 3.1. (i) '€ OpST"y & T € OpN™. (ii) T € OpSTy & T € OpN™.

Proof. We can get easily that (1.2) implies (3.1), (3.2), (3.3) and (3.4). In fact, VA € Ay,
we calculate ay, (k — 1)%ay, by and [%by; YA € Ay, we calculate ay, (27 7k — k')*ay, by, and

(K")*by. Applying the integration by parts for zand &, we get what we want. Then we
prove that (3.1) and (3.2) or (3.3) and (3.4) imply (1.2). Denote o1(z,£) = > ax®x(z,§),

AEAL
0’2({E,§) = Z CL)\(P)\(Q?7£), 6’1({1,‘75) = Z a)\(I))\(‘T7§) and &2($,§) = Z a)\q))\(xvg)' Then
AEA, AEA; AEA,
we prove that o1 (z,§), 02(7,§),61(x,§) and 72(7, &) all belong to OpSTY;.
For oy (z,§),
020 o (w,6) = 0207 Y ax®a(x,€)
A
= Z arx®© (2 z — k) Z C’gl ij\ﬂl(3?1@(5’))(27%)(2% — [)P2emiz=277D8
AEA; B1+B2=p
= Z Z Z 2j(|a‘7‘5‘)cs;§a2’ﬁla>\(2jx _ l)b’zfaz
AEAL B1+B2=P Z;i";g‘*as:a
(02292 — K)(2796)* (90" @) (2T g)e eI
— Z Z Z 2j(|a\—|3\)05,13171;7ﬂ1771(k — D) May (2 — k)2
AEA; B1+B2=p 1 taataz=a
Yy1+v2=B2—agy
(07 )2 — k) (277€)™ (90 @) (2 ) (208,
Applying (3.1), we get o1 (z,§) € OpSTY.
For o3(x,§),
0700 0x(w,6) = 070( ) ar®a(x.€)
AEA2
n(i—3") . o At Y
=02 > an2 T 0O —k) D 2P ) (27 ¢)
AEA2 B1+pB2=pB

(2j/x - /<J/)ﬁze_i(m_27j,k,)E
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— Z Z Z 2(j_j/)(%+‘a1|)+j/(|a‘_‘m)cziéa2’ﬁla)\(2j/$ _ k’)ﬁz—az

AEA2 B1+B2= B“1+‘52+‘*3 o

(05 @) (21w — k)(277'€)2 (9" &) (27T e lem2 A0
- Z Z Z 2(j*j/)(%+\a1|*72)+j/(\M*WDC{?}B?‘W%&’71(2j/*jk,k’)%

AEAS B1+B2=p @1taztaz=a
Y1+rv2=B2—a2

(P — k)2(0210)) (20 — k)(277'€)™ (90 () (277 e 12T KL,

Applying (3.2), we get o2(z,§) € OpSTy
For 61(z, &) and 62(x, £), we can apply the same ideas as above and get &1(z, ), 2(x, &) €
OpSTY.

§4. Distrbution Spaces K™, k™ and Unconditional Bases

In this section, we analyze two distribution spaces K™ and k™ with wavelet bases in (2.1).
VA € A, denote ay = a(s;l) = (K(z,y), Kx(z,y)), and by = bgekgl) = (k(z,2), Kx(z,2)). We
characterize K™ and k™ in wavelet coefficients spaces.

Definition 4.1. (i) T'€ OpKN™ or {ax} ez € KN™, if {ax},ci satisfies the following
condition:

Cy2/m

i < ————— VA €A. 4.1
(i) T € OpkN™ or {BA},\GZ\ e kN™, if {EA},\GI\ satisfies the following condition :
- Cn2im ~
| < ————, VA e A. 4.2

K™ and k™ can be characterized by the above two spaces. In fact, one has

Theorem 4.1. (i)] K(z,y) € K™ < {ax}yexr € KN™,

(i) k(z,2) € k™ < {B)\})\e[\ e kN™,

Proof. The ideas of proof for (i) is the same as that for (ii), so we prove only (ii). First,
prove that k(z,z) € k™ = {Z’A}Ae[\ € kN™. In fact, VA € Ay,

bggksz - // (2,2)2" 0 (2 z — k)& (22 — ) dwd.

Applying Proposition 2.1, we have

bggkgl) 2Im a,(fz,’N) / k(x, 2)® ) (200 — k)®E F2N) (272 — | — ko) dadz
koeZmn
= 2in als ™) // (z,2)8) (202 — k)DEF2N) (272 — | — ky)dadz
erz"
li+ko|<8
4 2im Z a(e ) / k(z,2)®) (20 — k)®E F2N) (275 — | — ky)dadz
ko€Z™
[l+ko|>8
=1 + Is.

For Iy, if m < 0, we apply (1.8) and (1.9); if m > 0, we apply (1.8), (1.9) and (1.10), and
we get |I;] < % For I, applying (1.8), (1.9) and the integration by parts for z, we
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C 2j'm

VA € Ao, applying the same calculation, we get the same conclusion.

Then, we prove that {b,\}AGA € kN™ = k(z,z) € k™.

We denote ki(z,2) = 3. baKa(z,2) and ko(z,2) = 3 byKa(z,2), and prove that

AEA, AEA,

k1(z, z) and kao(x, 2) satisty (1.8), (1.9) and (1.10). It is evident for (1.8) and (1.9). As for
(1.10), we suppose m > 0. We choose N > m, then Vxg € R",Vf(x) € O (B(x,27")),Va €
N |02 f[loo < Ca2"l®l, and Vg(z) € G (B(0,271)),8 € N™, |[02gl|oo < Ca2V12l | we esti-
mate [(ki(z, 2), f(x)g(2))],i = 1,2.

For ¢ = 1, we consider two cases for j, and calculate I; and I5. In fact,

=[] E i eR@e (sl ded:

AEA1,j<p

Jj(m+n
<0// > %\@ (27— B)[[0€) (275~ DI/ (2)llg(=)ldd

jeioiezn LD

<C [ 3 2me) @ - 1) f(w)lds

I<m

< corm / 1f(2)|da < C2m0m=n)

For I = ’ff > bgekol)fb(e)( )q>§€ll)(z)f(x)g(z)dxdz , we make the integration by
AEALG>p ’
parts for z, and then making the same calculations, we get also I, < C'2#(m—")

For i = 2, we consider also two cases for j, and calculate I; and I5. In fact,

n-| / / > W@ () f (@)g(z)dudz|

AEAL,j<p

j(m+n) , ,
o[ T e - e @ 0l

j<wp,lezm™

< [ S rme0@s - b f@)ds < 02,

J<p
For I, = ‘ I > ; L @;s,z( )<I>( l)(z)f(x)g(z)dxdz , we make the integration by parts
AEAL, =1 7

for z, and then making the same calculations, we get also Iy < C2H(m=m),

§5. Kernel-Distribution Spaces K™, k™ and Wavelets

In this section, we analyze OpK™ and Opk™ with wavelet bases in (2.1) and (2.2). First,
we use wavelet bases in (2.1) to analyze these two spaces.

Definition 5.1. (i) T € OpBN™ & T € OpIA{Nm and {ax} ci satisfies the following
condition:

YA € Ay, Vg > 0,1 (k= 1)@ | < Ca27i0. (5.1)
l

(ii) T € OpBN™ & T e OpKN™ and {B)\}Aef\ satisfies the following condition:
VA € Ay, Vg > 0, 19057 < Cu27ie. (5.2)
1
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Theorem 5.1. (i) T € OpK™ < T € OpBN™. (i) T € Opk™ < T € OpBN™.
Proof. (i) In order to prove (i), we apply Theorem 4.1, and prove that if T € OpK™,
then (1.7) is equivalent to (5.1). In fact,

/K z,y)(x —y)%dy
= Y D 2vaileC@e k) / (x — )" 2O 2y — )dy

(e,5,k)el’y, 1
= Y Z 2776(0) @) (202 — k) /(x — 279 — (y — 2791))* @) (27y — 1)dy

(e,3,k)ely,
=3 3 (@-27neal) e 2 — k)

I (e,4,k)eTy,
=08 3 279N (k- 1)fal) (27 — k) PR (2 — k).

B (e,4,k)ET l

That is to say, (5.1) implies (1.7).
Furthermore, applying proposition 2.1 in Section 2, we get

Z(ij — 1P 27y —1) = Z(_1)61(ij)ﬂ—ﬁllmq,(o)(gjy -1

l 1,81

_ Z Bl 23 /J' B1 (ij)61 — (ij _ ij)ﬂ.

Then

a~(e,0
> Z ~0ag)
(e,4,k)ETy

= ) Z — ) //2”J<I>E) W — kK (z,y)00 (27y — 1) dzdy

(e,4,k)ETn

= Z ZZC’B (k—22)2B(2x —1) //27”@(5 (22 — k) K (x,y)0 (27y — 1) dxdy

(e,4,k)ET Y

= Z ZZCﬁk 27 ) ﬁ//Z"J(I)(E) W — kK (x,y)(2x — 2y)Pdady

(e.3,k)€ln
= > > (=n*regtien //(2% — k)2 P (2 — k)(x — y)Pdady.

(e.5.k)€ln B

Applying (ii) of Proposition 2.2, we get that (1.7) implies (5.1).

(ii) In order to prove (ii), we apply Theorem 4.1, and prove that if T € Opk™, then (1.11)
is equivalent to (5.2). Vf(z) € C§°(B(0,1)),

(02K 2), 1 (2))
= D PUIMRED @080 (@ — k)@ (22~ 1), f(2)

(e,e’ .4,k D)EA
e’ #0

+ 3 SRS (956 (27 — k) (@0 (272 1), (2))
(e,4,k)EL,, 1
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Then, if T € Opk™, (5.2) implies (1.11).

S =2 S0 [ [ 0@ ke, )90 @z — s
l l
— 9i(n—N) Zlﬂ // @(E7N)(2jx _ k)ai\iak(x,z)q)(o)@jz ~ \)dzd:.
l

Then, if T € Opk™, (1.11) implies (5.2).
Secondly, we prove that wavelet bases in (2.2) are unconditional bases for K™ and k™.
VYA € A, denote kay = (K(z,y), Kx(z,y)), and kby = (k(x, 2), K\(x, z)). For clarification

of notations, we note also ka) = af,fﬁ and kby = bf,fﬁ ,if A € Ay; kay, = a( o ,2 o and

kby = bﬁsg o+ if A € Ao, According to Theorem 2.1, {kay}rea and {kby}rea become two
representatlons for the operators in OpK™ and in Opk™.
Definition 5.2. (i) '€ OpKN™, if {kaA}AeA e N™.
(i) T € OpkN™, if {kbx}rer € N™
One has the following theorem.
Theorem 5.2. (i) T € OpK™ < T € OpKN™. (i) T € Opk™ & T € OpkN™.
Using Theorem 5.1, we study the relations between OpK N™ and OpBN™, the relations

between OpkN™ and OpBN™. Theorem 5.2 is a direct conclusion of Theorem 5.1 and the
following theorem.

Theorem 5.3. (i) T'€ OpKN™ < T € OpBN™.

(i) T € OpkN™ < T € OpBN™.

Proof. (i) First, we prove T € OpBN™ = T € OpKN™.

YA € A,, we have

dse) =0 aG0el) el ) ) = 25 (a0, @O (1), ) (2 a4 2 k).
1 1
We consider two cases for 24 =7k — k. If 20" ~7k — k/| > 1,

|a(6f) | < CN/ 2 — 1. . dx
33"k k = (1+ |z|)2N (1 + |20 a4 25" =ik — k|)2N

<C / 2im 1 4
<Cn T _ x
23 —iz|< 320 —ik—kr) (1 [2])2N (1 + |22 4+ 27~k — K'[)?N
2dm 1
+C / T ——— dx
N 2" ~da|> |25 ~ik—k| (L4 22N (1 + |22 + 27" ~Tk — K'[)2N
Cyn N 29m=G=iON

=+ [Tk — RV

If |27~k — /| < 1,
4 n(i+i") - ’ . g
ol ) =275 (00 a0 @O @ — 1), @) (20 + 2 T — k)
l

:2"“%'%2 (=0 8O (@ — 1), (2 i 42 Ik~ )

= > RN (2 Tk — k)2 )

la|<N

ni+i’) ~(£,0 o o (e g VRN
+275 0 3 a50,, 00 @ — 1), T CR(020E) (2 Tk — K (20 ).

l la| <N
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But

gRiit) ‘< S a0 00 @ — 1), 0 (2 a4+ 27k — k)
l

= Y0 CR@2EE) @ Tk - k) (2 )

la| <N
< MW)/ZI §€kol+k|q)(0) x—l)||2] j$|NdCU

< On2mit(E=N)G=1"),

n(+i") €, (e S o
(A @O @ 1), Y OR @8R Tk — ) )"
l

la| <N

_‘ Z C% 25~ lehl- J)Zla (Ekol) L @aq)(a')>(2j’—jk_k,/) < OpN2mIH(E=N)G=5"),
la|<N

Then we prove T' € OpKN™ = T € OpBN™. In fact, Y\ € A,,

(e.0) ) (0)
Gy hi = <Z a5 L @, 2 >

" o (E ’8’2 (@2 T 4 2T — k), 0O (2 + k — 1)),
(',4",k")€T,
Then
~(£,0) Cn, nr20m —(j—5")N' y o 7
|CL',k,l Sg,jz,k, (1+ |29 ~dk — k/‘)NK ( et Tk ). 8O @ 1 kD)
Z CN N,QjM—(j_j’)N/
< 2
= (€I»j,’k/)€Fn (]. —+ |2J *jk _ k/|)N
[ -
L+ |2z + 277k — K28 (14 Ja + k — )2V "
. Y " 1 CNQJm
< C /2‘7m_(]_] )N -
_%: N.N A=Y = Axfk—I)¥
Furthermore,
a~(€,0
k=0
l
= 3 2 als) @ (@ e 4 2 k- 1), S (k- )70 (@ + k — 1))
el gl k" l
P> Qwaff%,k/<‘I’(E,)(2jl—jx + 27 Tk — k), 2)
5k
= 22 =00 (@O (2 + 27k — ), 1))

Applying (3.2), we get (5.1).
(i) The proof of (ii) is the same as (i).
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§6. Conclusion and Some Remarks

6.1. Characterisation of OpST"; in Kernel-Distribution Spaces and in Wavelet
Coefficient Spaces

After Calderén established a formal relation between a symbol and a kernel-distribution,
the symbolic school and the Calderén-Zygmund school remain almost in two classes isolated.
Using the Littlewood-Paley analysis, E. M. Stein established, in [8], a relation for OpST
and the kernel-distribution spaces in the following sense:

Proposition 6.1. T' € OpS? ,, then K(x,y) satisfies (1.4) and (1.5) or k(x,z) satisfies
(1.8) and (1.9).

There are some properties which are trivial for a symbolic operator, such as (1.6) and
(1.7) or (1.10) and (1.11), but they can not be analyzed by the Littlewood-Paley anal-
ysis. After the apparition of wavelets, Meyer used a wavelet method. VA = (e,5,k) €
L, N =(,j,k) €T, denote ay »» = a§‘)€33,57/,27k, = (T®y, Py ). Meyer analyzed the matrix
{axx}(x,a)er, x1,.» he obtained the following results.

Proposition 6.2. T € OpSY? | and

T € OpS?,l =

, YN eTn,.

23 4 2-7 )7L+N

() ~1i=3'l(3+N) (
YN >0, laj i i < COn2 ST T k2 — k27|

But if one does not know the information of the conjugate operator T* of an operator
T, one cannot use this method. In [1] and [9], a new algorithm was developped, one can
analyze the Calderén-Zygmund operator. In this paper, we use some special wavelet bases
to analyze an operator in OpST";, OpK™, and Opk™, the main conclusions of this paper are

Theorem 6.1. OpK™ = OpKN™ = OpN™ = OpS{", = OpN™ = OpkN™ = Opk™.

Proof. According to the formal relation in (1.12), ®,(z,&) = [ Kx(z,y)e'V"")¢dy, and
Oy (2,8) = [ka(z,2)e*¢dz , we have OpKN™ = OpN™ and OpkN™ = OpN™. Then
applying Theorem 3.1 and Theorem 5.1, we get the proof of this theorem.

Remark 6.1. If one does not know the infomation of 7™, one cannot use Meyer’s
method in [7] to analyze an operator in OpST";. As for B-C-R algorithm in [1], the norm of
an operator in OpS7"; can not be decided by the absolute value of wavelet coefficients.

Remark 6.2. In [8], E. M. Stein has got Proposition 6.1. But if one knows only the
information outside the diagonal set {z = y} for K(z,y), or the information outside the
set {z = 0} for k(x, z), generally, one cannot say that K(z,y) or k(z, z) is a distribution in
S(R™ x R"™); so K(x,y) or k(x, z) cannot be the kernel-distribution of a symbolic operator.

6.2. Some Properties for Singular Integral Operators

In this subsection, we consider some properties for singular integral operators. First,
we see that (1.7) is very important for an operator. In fact, David and Journé considered
the action of an operator to the polynomial function 1, they established their famous 71
theorem; Bony considered the action of an operator to the polynomial function 1, he found
a para-product of an operator and established his para-product theory. If an operator maps
all the polynomial functions into S(R™), then T satisfies the following condition:

(6.1) T continues from S(R™) to S(R™).

The auxiliary results of this paper are the following

Theorem 6.2. (i) T € OpK™ < T € Opk™.

(ii) If T € OpK™ or T € Opk™, then the condition (1.7) implies (6.1).

Proof. (i) First, we prove that T' € OpK™ & T € Opk™. 1t is evident that (1.4) and
(1.5)< (1.8) and (1.9). Then we apply (i) and (ii) of Theorem 4.1 to finish the proof of
(i). First we prove that T € OpK™ implies (1.10). In fact, Vzg € R",V0 < R < 1,Vf(x) €
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CéV(B(xm E CO ( (O R)) we have

‘// @2) 2)dwdz| = ‘//K @ — z)f(z)g(z)dzdz

- ’//Z Z ~§,Ek6l) 5812 )@53 (x — Z)f(x)g(z)dxdz’

e gkl

‘//Z Z ~§sksl)q) :Elg( )‘I’fl,)(x - Z)f(x)g(Z)dxdz’

- ‘ // Z Z da j,)(x)‘pfz/)(x - Z)f(x)g(z)dxdz‘
cc(o.1}" Iy

e’€{0,1}n\{0} j=—loga R

+ ’ // Z Z ~§Ek0lq>(5)( )‘I)E-(,)z)(x - Z)f(x)g(z)dxdz’

e€{0,1}m\{0} 7.5t
=10+ 1+ Is.

For Iy, if n4+m > 0, then |I1| < CR"™™||f||so|lg]|s0; if n+m < 0, then |I;| < CR?*™(1
logs R)||fllsollglloe < CR™ ™| flloollgl|oc- For Iz, applying the integration by parts for z,
we get [Io] < CnR™™ ™ N||f||olgl|zn . For I3, applying the integration by parts for z, and
then for 2, we get [I3] < CN R || f||an |9l - So T satisfys the condition (1.10).

Then, making the same calculations as above, we get that T' € Opk™ implys (1.6).

(ii) According to Theorem 6.1, if T € Opf(m or T € Opk™, and T satisfies the condition
(1.7), then T' € OpST"y, so T satisfies (6.1).

—loga R
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