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DIFFUSIVE-DISPERSIVE TRAVELING
WAVES AND KINETIC RELATIONS

IV. COMPRESSIBLE EULER EQUATIONS
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Abstract

The authors consider the Euler equations for a compressible fluid in one space dimension

when the equation of state of the fluid does not fulfill standard convexity assumptions and
viscosity and capillarity effects are taken into account. A typical example of nonconvex con-
stitutive equation for fluids is Van der Waals’ equation. The first order terms of these partial
differential equations form a nonlinear system of mixed (hyperbolic-elliptic) type. For a class of

nonconvex equations of state, an existence theorem of traveling waves solutions with arbitrary
large amplitude is established here. The authors distinguish between classical (compressive) and
nonclassical (undercompressive) traveling waves. The latter do not fulfill Lax shock inequali-

ties, and are characterized by the so-called kinetic relation, whose properties are investigated
in this paper.
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§1. Introduction

This is the fourth paper of a series by the authors (see [3–5]) devoted to traveling wave

solutions of diffusive-dispersive models arising in continuum physics. Our previous works

were restricted to single equations and systems of two equations. We attempt here to gener-

alize the techniques and results to the (rather challenging) Euler equations for compressible

fluids in one-space dimension. We consider the following three conservation laws (mass,
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momentum, total energy) in Lagrangian coordinates:

vt − ux = 0,

ut − εv(v, S)x = α
(
ν ux

)
x
− β (µ vx)xx +

β

2

(
µv v

2
x

)
x
,

Et −
(
εv(v, S)u

)
x
= α

(
ν u ux

)
x
+ β

(µv

2
u v2x − u (µ vx)x

)
x
+ β

(
µux vx

)
x
.

(1.1)

Note here that Lagrangian coordinates are chosen for simplicity in the presentation only,

and all the results in this paper extend straightforwardly to the formulation in Eulerian

coordinates. The main unknowns are the specific volume v > 0, the fluid velocity u, and

the specific entropy S > 0. The total energy E is given by

E = ε(v, S) +
u2

2
. (1.2)

The coefficients ν = ν(v, S) and µ = µ(v, S) are non-negative functions of the specific volume

and the specific entropy, representing the viscosity and capillarity coefficients of the fluid,

respectively. The non-negative parameters α and β serve to measure the “strength” of the

viscosity and capillarity terms. To close the system of the equations (1.1), we must prescribe

the internal energy ε = ε(v, S). We will be interested in the situation where the first-order

terms in (1.1), that is,

vt − ux = 0,

ut − εv(v, S)x = 0,

Et −
(
εv(v, S)u

)
x
= 0,

(1.3)

form an hyperbolic-elliptic system. The typical example of interest in this paper is the

(nonconvex) equation of state for van der Waals’ fluids

ε(v, S) =
8 a

3
(3 v − 1)−1/a e3S/(8a) − 3

v
, (1.4)

where a is some positive parameter. (Note that (1.4) requires v > 1/3.)

In this paper we will study the existence of traveling wave solutions of the system (1.1)

for a class of nonconvex equations of state. That is, we search for solutions depending only

on the variable y := x − λ t for some constant speed λ and converging to constant states

at y = ±∞. We arrive at an ordinary differential equations, and must determine which

equilibrium points can be connected by trajectories of the system. Recall that the case

when the capillarity is neglected, that is β = 0, has a long history in the literature (see for

instance [6,13,21] and the references therein). Our main focus in this paper is β ̸= 0 and

the limit behavior β → 0 (vanishing capillarity) and β → ∞ (vanishing viscosity).

Some general remarks on the system (1.1) are now made. A simple calculation shows

that (1.1) can be rewritten in the variables (v, u, S):

vt − ux = 0,

ut − εv(v, S)x = α
(
ν ux

)
x
− β (µ vx)xx +

β

2

(
µv v

2
x

)
x(

εS +
β

2
µS v2x

)
St = αν u2

x.

(1.5)

In the special case that the coefficients ν and µ depend upon the specific volume v only,



No.1 N. BEDJAOUI & P. G. LEFLOCH DIFFUSIVE-DISPERSIVE TRAVELING WAVES 19

which is often realized in the applications, we obtain

vt − ux = 0,

ut − εv(v, S)x = α
(
ν(v)ux

)
x
− β

(
µ̃(v) (µ̃(v) vx)x

)
x
,

εS(v, S)St = αν(v)u2
x

(1.6)

with µ̃(v) :=
√
µ(v). Furthermore, it is interesting to point out that, if ε would be inde-

pendent of the entropy S (which is not realistic in the application) and we would ignore the

third equation in (1.6), we would arrive at a system of two equations only, that is,

∂tv − ∂xu = 0,

∂tu− ∂xεv(v) = α (ν(v)ux)x − β
(
µ̃(v) (µ̃(v) vx)x

)
x
.

(1.7)

The system (1.7) was studied in [3] in the hyperbolic case (ε convex) and in [5] in the

hyperbolic-elliptic case (ε not globally convex). This system has drawn a lot of attention

in the literature, initiated with the pioneering work by Slemrod[16−18]. The importance of

the so-called kinetic relation in characterizing the dynamics of undercompressive waves was

recognized by Abeyaratne and Knowles[1,2], Truskinovsky[19,20], LeFloch[10], Shearer[9,14,15],

Hayes and LeFloch[7,8], and LeFloch[11,12].

Throughout this paper, our assumptions on the energy function ε = ε(v, S) are the

following ones. We assume that there exist three smooth mappings v⋆, ṽ, v
⋆ : (0,∞) →

(0,∞) such that v⋆(S) < ṽ(S) < v⋆(S),

εvv(v⋆(S), S) = 0, εvvv(ṽ(S), S) = 0, εvv(v
⋆(S), S) = 0, (1.8a)

εvvvv > 0, (1.8b)

and, uniformly with respect to the variable S in every set of the form [S,+∞),

lim
v→0

εv = −∞, lim
v→+∞

εvv = +∞. (1.8c)

We also assume that

εS > 0, εvS < 0, (1.8d)

µS ≥ 0. (1.8e)

Finally, some technical condition on the behavior at ∞ will be needed: for every set

[V , V ]× [S,+∞) ⊂ (0,∞)× (0,∞) there exist constants c0, C0 > 0 such that

εS ≥ c0, µS ≤ C0 and c0 ≤ µ ≤ C0, (v, S) ∈ [V , V ]× [S,+∞), (1.9)

and we assume also that

inf {(εv(v⋆(S), S), S > 0} > −∞. (1.10)

It is easy to check that van der Waals’ equation of state (1.4) satisfies the conditions

above, at least in some interval of v. In particular, we have

εS(v, S) = (3 v − 1)−1/a e3S/(8a) > 0,

εvS(v, S) =
−3

a
(3 v − 1)−1−1/a e3S/(8a) < 0.
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Under our assumptions (1.8) the first-order system

vt − ux = 0,

ut − εv(v, S)x = 0,

Et −
(
εv(v, S)u

)
x
= 0,

is of elliptic type in the region

E :=
{
(v, S) / v⋆(S) < v < v⋆(S)

}
and of hyperbolic type in H⋆ ∪H⋆, with

H⋆ :=
{
(v, S) / v < v⋆(S)

}
, H⋆ :=

{
(v, S) / v⋆(S) < v

}
.

Finally, we close this section by casting the system (1.1) in the more compact form. We

define the total internal energy by

e = e(v, S, vx) = ε(v, S) +
β

2
µ(v, S) v2x (1.11)

and the thermodynamics pressure p and the total pressure P by

p = −ev,

P = −ev +
(
ew

)
x
= p− β

2
µv(v, S) v

2
x + β

(
µ(v, S) vx

)
x
,

(1.12)

where w denotes the derivative vx. Then, we can rewrite (1.1) in the form

vt − ux = 0,

ut + Px = α
(
ν ux

)
x
,

Et +
(
uP

)
x
= α

(
ν u ux

)
x
+ β

(
ew(v, S, vx)ux

)
x
.

(1.13)

An outline of this paper follows. In Section 2, we display basic properties of the system

under consideration, including some discussion of the Rankine-Hugoniot relations. The

existence of the kinetic function is established in Section 3 which is the central part of this

paper. Finally, in Section 4, we reformulate our conclusions in terms of wave curves and we

discuss important limiting cases when the viscosity or the capillarity coefficients are taken

to vanish.

As the specific entropy S must remain positive, throughout this paper we tacitly assume

that the ranges of parameters under consideration are restricted by this condition. For

instance, the specific entropy S might reach zero along a Rankine-Hugoniot curve.

§2. Basic Properties

In this section we discuss some general properties of traveling wave solutions of the system

(1.1), together with basic properties of the Rankine-Hugoniot jump relations. Any traveling

wave y 7→ u(y), v(y), S(y) with speed λ must satisfy

λ v′ + u′ = 0,

λ u′ + εv(v, S)
′ = −α (ν u′)′ + β (µ v′)′′ − β

2

(
µv v

′2)′,
λE′ +

(
εv(v, S)u

)′
= −α

(
ν u u′)′ + β

(µv

2
u v′

2 − u (µ v′)′
)′

+ β
(
µu′ v′

)′
,

(2.1)
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and the following condition at infinity:

v(y) → v−, u(y) → u−, S(y) → S−, y → −∞,

v(y) → v+, u(y) → u+, S(y) → S+, y → +∞, (2.2)

u′(y), v′(y), S′(y), v′′(y) → 0, y → ±∞,

where u−, v−, S−, u+, v+, S+ are constants. It will be convenient to define

u0 := u−, v0 := v−, S0 := S− (2.3)

and to search for all right-hand states (v+, u+, S+) attainable via a traveling wave initiating

at (v0, u0, S0). For definiteness we will assume that

λ > 0,

that is, we restrict attention to waves of the third characteristic family, and we also assume

that the left-hand state satisfies

v0 < v⋆(S).

On one hand, as was already pointed out in (1.5), the third equation in (2.1) can be

replaced with

λ
(
εS +

β

2
µS v′

2
)
S′ = −αν u′2.

For λ ̸= 0, using the first equation in (2.1) to eliminate u, we get(
εS +

β

2
µS v′

2
)
S′ = −αν λ v′

2
. (2.4)

On the other hand, we can also eliminate the variable u from the second equation in (2.1):

−λ2 v′ + εv(v, S)
′ = λα (ν v′)′ + β (µ v′)′′ − β

2

(
µv v

′2)′. (2.5)

The equations (2.4) and (2.5) form a (second-order) system of two equations for the functions

v = v(y) and S = S(y).

It will be convenient to recast the problem as a first-order system of three equations.

Setting

w = µ(v, S) v′, (2.6)

we re-formulate the equations (2.4) and (2.5) in terms of the variables (v, w, S):

v′ =
w

µ(v, S)
,

w′ = −α

β

ν(v, S)λ

µ(v, S)
w +

µv(v, S)

2µ(v, S)2
w2 +

1

β
g(v0, S0, v, S, λ

2),

S′ =
−2 ν(v, S)λw2

2µ(v, S)2 εS(v, S) + β µS(v, S)w2
,

(2.7)

where

g(v0, S0, v, S, λ
2) := εv(v, S)− εv(v0, S0)− λ2 (v − v0). (2.8)
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The boundary conditions (2.2) now read

v(y) → v−, w(y) → 0, S(y) → S− when y → −∞,

v(y) → v+, w(y) → 0, S(y) → S+ when y → +∞, (2.9)

v′(y), w′(y), S′(y) → 0 when y → ±∞.

For a traveling solution to (2.7)–(2.9) to exist, the states v− = v0, S− = S0, v+, and

S+, and the speed λ must satisfy some compatibility conditions, the Rankine-Hugoniot

relations, which are now derived. By integration of the (conservative!) equation (2.5) over

some interval (−∞, y) and in view of (2.9) we obtain

εv(v, S)− εv(v0, S0)− λ2 (v − v0) = αν λ v′ + β (µ v′)′ − β

2
µv v

′2. (2.10)

Additionally, multiplying (2.10) by v′ and using the third equation in (2.7) we get

β

2
(µ v′

2
)′ = ε(v, S)′ − εv(v0, S0) v

′ − λ2 (v − v0) v
′. (2.11)

By integrating (2.11) over some interval (−∞, y) we find

β

2
µ v′

2
= ε(v, S)− ε(v0, S0)− εv(v0, S0) (v − v0)−

λ2

2
(v − v0)

2

=: f(v0, S0, v, S, λ
2).

(2.12)

(Of course, (2.12) can also be derived from the third equation in (2.1).) In conclusion, if a

traveling wave exists, its propagation speed must satisfy the two Rankine-Hugoniot relations:

λ2 =
εv(v+, S+)− εv(v0, S0)

v+ − v0
= 2

ε(v+, S+)− ε(v0, S0)− (v+ − v0) εv(v0, S0)

(v+ − v0)2
. (2.13)

We investigate first the limiting case when the viscosity vanishes (ν = 0) which, in view

of the third equation in (2.7), implies that the entropy remains constant: S+ = S0. In

particular, it is interesting also to study the case when both the viscosity ν = 0 and the

speed λ2 vanish. This is the subject of the following statement. Given the hypotheses made

on the function ε, it is not difficult to see geometrically that:

Lemma 2.1. (Definition of Maxwell states). For every (v, S) satisfying v < ṽ(S) there

exists a unique point (φ♭
0(v, S), S

♭
0(v, S)) which lies on the Hugoniot curve (for the third

characteristic family) leaving from (v, S) and satisfies

S♭
0(v, S) = S

and, denoting here by Λ♭
0(v, S) the corresponding (square of the) shock speed,

Λ♭
0(v, S) =

εv(φ
♭
0(v, S), S)− εv(v, S)

φ♭
0(v, S)− v

= 2
ε(φ♭

0(v, S), S)− ε(v, S)− (φ♭
0(v, S)− v) εv(v, S)

(φ♭
0(v, S)− v)2

.

(2.14)

Moreover, we have

φ♭
0(φ

♭
0(v, S), S) = v. (2.15)

In particular, for every value S > 0 there exist two states v(S) < ṽ(S) and v(S) > ṽ(S)

such that φ♭
0(v(S), S), S) = v(S) and the shock speed vanishes: Λ♭

0(v(S), S) = 0. These

points are characterized by the relations

εv(v(S), S) = εv(v(S), S),

ε(v(S), S)− ε(v(S), S)− (v(S)− v(S)) εv(v(S), S) = 0.
(2.16)
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Note that the value φ♭
0(v, S) is given geometrically by the so-called “equal area rule”. We

refer to the values v(S) and v(S) as the Maxwell states at the entropy level S.

The Rankine-Hugoniot relations in (2.13) lead to the implicit equation

H(v0, S0; v, S) := ε(v, S)− ε(v0, S0)−
1

2

(
εv(v, S) + εv(v0, S0)

)
(v − v0) = 0. (2.17)

Thanks to the assumptions (1.8), we have

HS(v0, S0; v, S) = εS(v, S)−
1

2
εvS(v, S) (v − v0) > 0, for v ≥ v0. (2.18)

Therefore, the implicit function theorem allows us to determine a smooth function v 7→ S =

S(v0, S0; v) for v ≥ v0. The (square of the) shock speed along the Hugoniot curve, denoted

by v 7→ L(v0, S0; v), is

L(v0, S0; v) :=


εv(v, S(v0, S0; v))− εv(v0, S0)

v − v0
, v ̸= v0,

εvv(v0, S0), v = v0.

(2.19)

In the following lemma we investigate the properties of the shock speed along the Hugoniot

curve.

Lemma 2.2 (Definition of Characteristic States). There exist two functions φ♮ = φ♮(v0,

S0) and S♮ = S♮(v0, S0) defined for all v0 < ṽ(S0) and all S0 > 0 such that φ♮(v0, S0) > ṽ(S0)

and

εvv
(
φ♮(v0, S0), S

♮(v0, S0)
)
= L

(
v0, S0;φ

♮(v0, S0)
)
,

S♮(v0, S0) = S
(
v0, S0;φ

♮(v0, S0)
)
.

(2.20)

Similarly, there exist two functions φ−♮ = φ−♮(v0, S0) and S−♮ = S−♮(v0, S0) defined for all

v0 < ṽ(S0) and all S0 > 0 such that φ−♮(v0, S0) > ṽ(S0) and

εvv(v0, S0) = L
(
v0, S0;φ

−♮(v0, S0)
)
,

S−♮(v0, S0) = S
(
v0, S0;φ

−♮(v0, S0)
)
.

(2.21)

Moreover, the function φ♭
0 satisfies

φ♮(v0, S0) ≤ φ♭
0(v0, S0) < φ−♮(v0, S0), v0 < ṽ(S0). (2.22)

Furthermore, the function v 7→ L(v0, S0; v) is strictly monotone decreasing when v ∈ (v0,

φ♮(v0, S0)) and strictly monotone increasing when v ∈ (φ♮(v0, S0),+∞), with

lim
v→∞

L(v0, S0; v) = +∞. (2.23)

In the following we will say that
(
φ♮(v0, S0), S

♮(v0, S0)
)
and

(
φ−♮(v0, S0), S

−♮(v0, S0)
)

are the characteristic states associated with the point (v0, S0).

Proof. In this proof, we do not indicate the dependence upon v0 and S0. Define the

function

D(v) := εv(v0, S0)− εv(v, S(v)) + εvv(v, S(v)) (v − v0). (2.24)

By differentiating (2.17) and (2.19) with respect to v we get

S′(v) =
D(v)

2HS(v, S(v))
, (2.25)

L′(v) =
εS(v, S(v)) S′(v)

(v − v0)2
=

εS(v, S(v))D(v)
2HS(v, S(v)) (v − v0)2

. (2.26)
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The function D satisfies

D(v0) = D′(v0) = 0, D′′(v0) = εvvv(v0, S0) < 0.

This implies that D(v) < 0 on some interval of the form (v0, v0 + η) with η > 0, at least.

In view of the definition of L and D, this is completely equivalent to saying that L(v) >

εvv(v, S(v)) in the same interval.

Now, assume that D remains strictly negative for all v > v0. Then, on one hand, from

(1.8c) we get

lim
v→+∞

L(v) = +∞

and, on the other hand, (2.26) would give L′ < 0 for all v > v0 which is a contradiction. We

conclude that there exists φ♮ such that D(φ♮) = L′(φ♮) = 0 and D(v) < 0 on the interval

[v0, φ
♮).

Now, let us prove that εvvv(φ
♮, S♮) > 0. First it is clear that D′(φ♮) ≥ 0 and a simple

calculation gives

D′(φ♮) = εvvv(φ
♮, S♮)(φ♮ − v0).

We deduce that εvvv(φ
♮, S♮) ≥ 0. Assume by contradiction that εvvv(φ

♮, S♮) = 0. Necessar-

ily, D′′(φ♮) ≤ 0 which is contradictory since D′′(φ♮) = εvvvv(φ
♮, S♮)(φ♮ − v0) and εvvvv > 0

by (1.8).

We claim now that D remains strictly positive for v > φ♮. Otherwise, there would

exist another value φ♮
2 for which D(φ♮

2) = 0 and D′(φ♮
2) ≤ 0. This would imply that

εvvv(φ
♮
2, S

♮
2) ≤ 0. We must add here the assumption that the Hugoniot curves associated

with (1.1) are transverse to the curve defined by ṽ in the sense that any Hugoniot curve

intersects the critical curve
{
(ṽ(S), S), S > 0

}
at one point. Thus, we obtain a contradiction.

Now, L is strictly monotone increasing for v > φ♮ and, thanks to (1.8c) and (2.19), we

easily obtain

lim
v→∞

L(v0, S0; v) = +∞.

This implies the existence of the function φ−♮ satisfying (2.22).

Thanks to Lemma 2.2 and the formulas (2.25) and (2.26), we obtain the following result:

Lemma 2.3 (Monotonicity Properties of the Specific Entropy). The function v 7→ S(v0,
S0; v) is strictly monotone decreasing when v ∈ (v0, φ

♮(v0, S0)) and strictly monotone in-

creasing when v ∈ (φ♮(v0, S0),+∞), with

S(v0, S0; v) ≤ S0 if and only if v ≤ φ♭
0(v0, S0). (2.27)

§3. Nonclassical Trajectories

In this section, we study the existence of traveling waves solutions of (2.7). The following

preliminary lemma determines the range of values where the (square of the) speed L is

positive.

Lemma 3.1. With each S0 > 0 we can associate a value v−⋆(S0) such that v−⋆(S) < v(S)

and that the shock speed between the points (v−⋆(S0), S0) and its associated characteristic
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value (φ♮(v−⋆(S0), S0), S
♮(v−⋆(S0), S0)) vanishes, that is,

εv
(
φ♮(v−⋆(S0), S0), S

♮(v−⋆(S0), S0)
)
= εv(v

−⋆(S0), S0),

εv(φ
♮(v0, S0), S

♮(v0, S0))− εv(v0, S0) > 0, v0 < v−⋆(S0),

εv(φ
♮(v0, S0), S

♮(v0, S0))− εv(v0, S0) < 0, v−⋆(S0) < v0 < v(S0).

We deduce from Lemma 3.1 that the condition that L vanishes, together with (2.20),

gives

εvv
(
φ♮(v−⋆(S0), S0), S

♮(v−⋆(S0), S0)
)
= 0.

Proof. Setting ε♮vv(v0, S0) = εvv(φ
♮(v0, S0), S

♮(v0, S0)) = L(v0, S0;φ
♮(v0, S0)), we will

prove that

∂ε♮vv
∂v0

(v0, S0) < 0.

By differentiating (2.20) with respect to v0 we obtain

∂ε♮vv
∂v0

(v0, S0) =
∂L
∂v0

+
∂L
∂v

∂φ♮

∂v0
=

∂L
∂v0

(v0, S0, φ
♮(v0, S0)),

since ∂L
∂v (v0, S0, φ

♮(v0, S0)) = 0. Now, using (2.19) we obtain

∂L
∂v0

(v0, S0, φ
♮(v0, S0))

=

(
εvS(φ

♮, S♮) ∂S
∂v0

(v0, S0, φ
♮)− εvv(v0, S0)

)
(φ♮ − v0) + εv(φ

♮, S♮)− εv(v0, S0)

(φ♮ − v0)2
.

By differentiating (2.17) with respect to v0 we obtain

∂S
∂v0

(v0, S0, φ
♮) =

(εvv(v0, S0)− εvv(φ
♮, S♮))(φ♮ − v0)

2εS(φ♮, S♮)− εvS(φ♮, S♮)(φ♮ − v0)
.

Finally, combining the two last equations we get

∂ε♮vv
∂v0

(v0, S0) = 2

(
εvv(v0, S0)− εvv(φ

♮, S♮)
)(
εS(φ

♮, S♮)− εvS(φ
♮, S♮)(φ♮ − v0)

)
(v0 − φ♮)

(
2 εS(φ♮, S♮)− εvS(φ♮, S♮)(φ♮ − v0)

)
which is clearly negative by assumptions. On the other hand,

ε♮vv(v(S0), S0) < Λ♭
0(v(S0), S0) = 0.

Now, we have to prove that lim
v0→0

ε♮vv(v0, S0) > 0. By contradiction, assume that ε♮vv(v0, S0) ≤

0 for all v0 ≤ v(S0). Then, from (2.19) and (2.20) we get εv(v0, S0) ≥ εv(φ
♮, S♮). But

εv(φ
♮, S♮) ≥ εv(v

⋆(S♮), S♮). Then, combining the two previous inequalities and using (1.10)

we obtain that lim
v0→0

εv(v
⋆(S♮), S♮) = −∞ which contradicts (1.10).

Now, thanks to Lemmas 2.2 and 3.1, the (square of) the speed is positive for all v0 <

v−⋆(S0) and we can define the quantities

λ♮(v0, S0) =
√
L(v0, S0;φ♮(v0, S0)), v0 < v−⋆(S0), (3.1)

λ♭
0(v0, S0) =

√
Λ♭
0(v0, S0) =

√
L(v0, S0;φ♭

0(v0, S0)), v0 < v(S0), (3.2)

λmin(v0, S0) =

{
λ♮(v0, S0), v0 < v−⋆(S0),

0, v−⋆(S0) < v0 < v(S0).
(3.3)
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Thanks to Lemmas 2.2 and 2.3, given λ in the range (λmin(v0, S0), λ
♭
0(v0, S0)], the Rankine-

Hugoniot relations have two (non-trivial) solutions (v+, S+) ̸= (v0, S0), with S+ ≤ S0, which

we denote by

(v1, S1) and (v2, S2) with v0 < v1 < v2.

To study the O.D.E. system (2.7), it is convenient to regard it as a system of only two

equations. Namely, the equation (2.12) derived earlier can be written in the form

f(v0, S0, v, S, λ
2) =

β

2µ
w2, (3.4)

where w and f are defined in (2.7) and (2.12), respectively. Since µS and εS are positive by

assumption, we have

∂

∂S

(
f(v0, S0, v, S, λ

2)− β

2µ
w2

)
=

1

2µ2
(2µ2 εS + βµS w2) > 0.

Therefore, using the implicit function theorem, the equation (3.4) allows us to express the

variable S as a smooth algebraic function (v, w) 7→ S := S(v, w), which leads us to a reduced

form of the system (2.7):

v′ =
w

µ(v,S)
,

w′ = −α

β

ν(v,S)λ

µ(v,S)
w +

µv(v,S)

2µ(v,S)2
w2 +

1

β
g(v0, S0, v,S, λ

2).
(3.5)

The eigenvalues of the system (3.5) at an equilibrium point are found to be

σ(v, S, λ, α, β) =
1

2β µ

(
− αν λ−

√
α2ν2 λ2 + 4β µ (εvv − λ2)

)
,

σ(v, S, λ, α, β) =
1

2β µ

(
− αν λ+

√
α2ν2 λ2 + 4β µ(εvv − λ2)

)
.

(3.6)

The following lemma covers the general case α ≥ 0 and β ∈ RI \
{
0
}
. It applies to any of

the three equilibria (v0, S0), (v1, S1), and (v2, S2).
Lemma 3.2 (Properties of Equilibria). Some values v− and λ being fixed, let (v, 0) be

an equilibrium point of (2.4).
(a) If βµ (εvv(v, S) − λ2) > 0, then (v, 0) is a saddle point having two real eigenvalues:

σ < 0 < σ.
(b) If βµ < 0 and εvv(v, S)− λ2 > 0, then Re(σ) and Re(σ) are both positive and (u, 0)

is referred to as an unstable equilibrium. If furthermore α2ν2 λ2 + 4β µ(εvv − λ2) > 0
then it is called an unstable node as it corresponds to two real positive eigenvalues 0 <
σ < σ. Otherwise, if α2ν2 λ2 + 4β µ(εvv − λ2) < 0, it is called an unstable spiral since it
corresponds to two complex conjugate eigenvalues with positive real parts.

(c) If βµ > 0 and εvv(v, S) − λ2 < 0, then Re(σ) and Re(σ) are both negative and
(v, 0) is referred to as a stable point. If furthermore α2ν2 λ2 + 4β µ(εvv − λ2) > 0 then it
corresponds to a stable node with two real negative eigenvalues σ < σ < 0. Otherwise, if
α2ν2 λ2 + 4β µ(εvv − λ2) > 0, it is a stable spiral with two complex conjugate eigenvalues
with negative real parts.

The dependence of these eigenvalues with respect to their arguments will be essential in
several monotonicity arguments below.

Lemma 3.3 (Monotonicity Properties of Eigenvalues). In the case β > 0 and in the range
of parameters where σ(v, S, λ, α, β) and σ(v, S, λ, α, β) remain real-valued, more specifically
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when εvv − λ2 > 0 we have

∂σ

∂α
(v, S, λ, α, β) < 0,

∂σ

∂λ
(v, S, λ, α, β) < 0,

∂σ

∂α
(v, S, λ, α, β) < 0. (3.7)

For β > 0, without loss of generality and by a straightforward rescaling of the traveling
wave, we can now assume

β = 1. (3.8)

Theorem 3.1 (Existence of Nonclassical Trajectories). Given (v0, S0) with v0 ≤ v(S0)
and λ in the range (λmin(v0, S0), λ

♭
0(v0, S0)], there exists a unique α ≥ 0 such that (v0, S0)

is connected to (v2, S2) by a traveling wave solution of (2.1)− (2.2).
By Lemma 2.1, we have σ(v0, S0, λ, α, 1) > 0 and it is well-known that there are two

orbits leaving from v0 at y = −∞ and satisfying

lim
y→−∞

w(y)

v(y)− v0
= µ(v0, S0)σ(v0, S0, λ, α, 1). (3.9)

A direct verification from (2.3) (by (2.3i), w and vy have the same sign) shows that one orbit
approaches this point in the quadrant Q1 =

{
v > v0, w > 0

}
while the other approaches it

in the quadrant Q2 =
{
v < v0, w < 0

}
. On the other hand, there are two orbits reaching

u2 at y = +∞ and satisfying

lim
y→+∞

w(y)

v(y)− v2
= µ(v2, S2)σ(v2, S2, λ, α, 1). (3.10)

One orbit approaches this point in the quadrantQ3 =
{
v > v2, w < 0

}
, the other approaches

in the quadrant Q4 =
{
v < v2, w > 0

}
.

Since v0, S0 and λ are fixed, for simplification we denote f(v, S) = f(v0, S0, v, S, λ
2) and

g(v, S) = g(v0, S0, v, S, λ
2).

We now need some additional properties of the functions f and g, introduced earlier in
Section 2 for our investigation of the Rankine-Hugoniot relations.

Lemma 3.4 (Key Properties of the Functions f and g). (1) There exist two smooth
functions v 7→ F (v) and v 7→ G(v) such that{

(v, S) / f(v, S) = 0
}
=

{
(v, S) /S = F (v)

}
= CF ,{

(v, S) / g(v, S) = 0
}
=

{
(v, S) /S = G(v)

}
= CG.

(2) We have f(v, S) > 0 if and only if S > F (v).
(3) We have g(v, S) > 0 if and only if S < G(v).
(4) The two curves CF and CG intersect at the three equilibrium points:

CF ∩ CG =
{
(v, S) /F ′(v) = 0

}
=

{
(v0, S0), (v1, S1), (v2, S2)

}
.

(5) In the (v, S)-plane, the graph of CF is “above” the one of CG for v < v0 and v ∈
(v1, v2), and “below” for v ∈ (v0, v1) and v > v2.

Proof. The first item is a direct consequence of the implicit function theorem, since

∂f

∂S
(v, S) = εS(v, S) > 0 and

∂g

∂S
(v, S) = εvS(v, S) < 0. (3.11)

The second item is also an immediate consequence of (3.11).
On one hand, the function F satisfies

F ′(v) = − g(v, F (v))

εS(v, F (v))
. (3.12)
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On the other hand, for the function G we have

G′(v) =
λ2 − εvv(v,G(v))

εvS(v,G(v))
> 0 at v = v1 and v = v2. (3.13)

The conclusions of the lemma are clear.
Lemma 3.5. In the phase plane, a traveling wave solution connecting v0 to v2 necessarily

approaches the equilibrium (v0, 0) at y = −∞ through the quadrant Q1, and the equilibrium
(v2, 0) at y = +∞ through the quadrant Q4.

Proof. Suppose that such a traveling wave satisfies v < v0 and w < 0 in a neighborhood
of the point (v0, 0). By continuity, since lim

y→+∞
v(y) = v2 > v0, there would exist some value

y0 achieving a local minimum, that is, such that

v(y0) < v0, vy(y0) = 0, vyy(y0) ≥ 0.

Then, f(v(y1), S(v(y1))) = 0. By Claims 2 and 4 in Lemma 3.4 this implies that g(v(y1),
S(v(y1))) < 0. But we may have a contradiction by the second equation in (3.5). The proof
of the second statement concerning the point (v2, 0) is similar to the first one.

Next, we show that any traveling wave is monotone in some range.
Lemma 3.6. (1) If v = v(y) is a solution of the system (3.5) defined on some interval

(−∞, ȳ) such that

lim
y→−∞

v(y) = v0 and v0 < v(y) < v1

for all y < ȳ, then vy > 0 on the interval (−∞, ȳ).
(2) Similarly, if v = v(y) is a solution of the system (3.5) defined on some interval

(ȳ,+∞) such that

lim
y→+∞

v(y) = v2 and v1 < v(y) < v2

for all y > ȳ, then vy > 0 on the interval (ȳ,+∞).
(3) If v = v(y) is a trajectory connecting (v0, S0) to (v2, S2), then vy(y) > 0 for all y such

that v(y) ∈ (v1, v2).
Proof. First, let us prove the first statement. Assume by contradiction that there exists

y1 ∈ (−∞, y0) such that v(y1) ∈ (v0, v1) with

vy(y1) = 0, vyy(y1) ≤ 0.

Then, we have f(v(y1), S(v(y1))) = 0, which implies—thanks to Claims 2 and 4 in Propo-
sition 3.4—that g(v(y1), S(v(y1))) > 0. But we may have a contradiction by the second
equation in (3.2). The proof of the second statement is similar to the first one. Now, let us
prove the third statement. First, note that for any trajectory connecting (v0, S0) to (v2, S2)
we have Sy(y) < 0. Using Lemma 3.4, noting S1 ≤ S2 ≤ S0 and f(v, S) > 0 for v ∈ (v1, v2),
and studying the intersection between this trajectory and CG for v ∈ (v0, v1), one can easily
see that along the trajectory we have necessarily vy(y) > 0 if v(y) ∈ (v1, v2).

Proof of Theorem 3.1. For each α ≥ 0, we consider the orbit leaving from v0 and
satisfying v > 0 and w > 0 in a neighborhood of (v0, 0). This trajectory crosses the v-axis
for the “first time” at some point (v1, w

−
1 (α)). In view of Lemma 3.6, this part of trajectory

is the graph of a function

[v0, v1] ∋ v 7→ w−(v, λ, α).

Moreover, by standard theorems on differential equations, w− is a smooth function with
respect to its argument (v, λ, α) ∈ [v0, v1]×

(
λmin(v0, S0), λ

♭
0(v0, S0)

]
× [0,+∞).

Similarly, for each α ≥ 0, we consider the orbit arriving at v2 and satisfying v < v2 and
w > 0 in a neighborhood of (v2, 0). This trajectory crosses the w-axis for the “last time” at
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some point (v1, w
+
1 (α)) (or equivalently for the “first time” as y decreases from +∞). By

Lemma 3.5, this trajectory is the graph of a function

[v1, v2] ∋ v 7→ w+(v, λ, α).

The function w+ depends smoothly upon (v, λ, α) ∈ [v1, v2] ×
(
λmin(v0, S0), λ

♭
0(v0, S0)

]
×

[0,+∞).
Now, combining (2.3i) and (2.3ii), we can write for each of these curves v 7→ w−(v) and

v 7→ w+(v) a differential equation in the (v, w) plane:

w
dw

dv
(v) + ανλw(v)− µv

2µ
w2 = µ g(v,S(v, w)). (3.14)

The continuous function

[0,+∞) ∋ α 7→ z(α) := w+(v1, λ, α)− w−(v1, λ, α) = w+
1 (α)− w−

1 (α) (3.15)

measures the distance (in the phase plane) between the two trajectories at v = v1. Therefore,
thanks to Lemma 3.6, we deduce that the condition z(α) = 0 characterizes the traveling
wave solution of interest connecting v0 to v2. The existence of such a root α is obtained as
follows.

Case 1. Suppose first that α = 0. In this case Sy(y) = 0 along the two semi-trajectories.
Then by (3.4) we get in one hand

1

2
(w−

1 (α))
2 = µ(v1, S0) f(v1, S0),

and
1

2
(w+

1 (α))
2 = µ(v1, S2) f(v1, S2)

on the other hand. Since µS > 0, fS = εS > 0 and S2 ≤ S0, we conclude that z(0) < 0.
Case 2. Consider next the limit α → ∞. On one hand, for α > 0, since w1 > 0, we get

in the same way as above

1

2
(w−

1 (α))
2 = µ(v1, S

−(v1)) f(v1, S
−(v1))

with S−(v1) ≤ S0. But since µS ≥ 0, fS = εS > 0, we get

1

2
(w−

1 (α))
2 ≤ µ(v1, S0) f(v1, S0).

On the other hand, consider the function w+. Dividing (3.9) by w we obtain

dw

dv
(v)− µv

2µ
w + ανλ = µ

g

w
.

Inspiring from the compact form given in (1.7), we can rewrite this equation in the form

√
µ
d

dv

( w
√
µ

)
+ ανλ+

µS

2µ

dS

dv
w = µ

g

w
.

Now, setting h = w√
µ and using the first and the third equations in (2.7), we obtain

dh

dv
+ 2

ανλ
√
µ

1

1 + µS

2µεS
h2

=
√
µ

g

w
. (3.16)

Since f ≥ 0 along the trajectory, and thanks to Lemma 3.4, g(v, S) ≤ 0 for v ∈ [v1, v2].
On the other hand, thanks to (1.8) and (1.9) we deduce that h satisfies an inequality in the
form

dh

dv
≤ − α c1

1 + c2 h2
(3.17)
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where c1 and c2 are two positive constants.
Now, integrating (3.17) over the interval [v1, v2], recalling that w+

1 (α) = w+(v1), and

setting h+
1 (α) =

w+
1 (α)√
µ+
1

, we find

h+
1 (α) +

1

3
c2 h

+
1 (α)

3 ≥ α c1 (v2 − v1). (3.18)

It is clear from (3.18) that lim
α→0

h+
1 (α) = +∞. Using that w+

1 (α) =
√
µ+ h+

1 ≥ c h+
1 and

combining (3.16) and (3.18), for large values of α we get w+
1 (α) > w−

1 (α), and so z(α) > 0.
Henceforth, by the intermediate value theorem, there exists at least one value α such that

z(α) = 0,

which establishes the existence of a trajectory connecting (v0, S0) to (v2, S2). Thanks to
Lemma 3.5, it satisfies vy > 0 globally.

The uniqueness of the solution α of z(α) = 0 is checked as follows. Suppose that there
would exist two orbits w = w(v) and w∗ = w∗(v) associated with distinct values α and
α∗ > α, respectively. Then, Lemma 3.3 would give

σ(v0, S0, λ, α
∗, 1) < σ(v0, S0, λ, α, 1), σ(v2, S2, λ, α

∗, 1) < σ(v2, S2, λ, α, 1).

So, in the (v, w) plane, there would exist v3 ∈ (v0, v2) satisfying

w(v3) = w∗(v3),
dw∗

dv
(v3) ≥

dw

dv
(v3).

Comparing the equations (3.14) valid for both w and w∗, we get

w(u3)
(dw
dv

(v3)−
dw∗

dv
(v3)

)
= (α∗ − α) ν λw(v3). (3.19)

Now, since w(v3) ̸= 0 (the connection with the third critical point (v1, 0) is impossible), we
obtain a contradiction, as the two sides of (3.19) have opposite signs. This completes the
proof of Theorem 3.1.

Remark 3.1. It is not difficult to see also that the functions w±
1 introduced in the proof

of Theorem 3.1 satisfy

α 7→ w−
1 (α) is monotone decreasing, (3.20)

α 7→ w+
1 (α) is strictly monotone increasing. (3.21)

In particular, the function z(α) := w+
1 (α)− w−

1 (α) is strictly monotone increasing.
Theorem 3.2 (Definition of the Critical Diffusion). Given (v0, S0) with v0 ≤ v(S0),

consider the function

λ ∈ (λmin(v0, S0), λ
♭
0(v0, S0)] 7→ α(λ, v0, S0)

which, to a speed λ, associates the unique value α such that there is a nonclassical traveling
wave trajectory of (2.1)−(2.2) connecting (v0, S0) to (v2, S2). Then, α(λ, v0, S0) is a strictly
monotone decreasing function of λ, mapping the interval (λmin(v0, S0), λ

♭
0(v0, S0)] onto some

interval of the form [0, αmax(v0, S0)), where

αmax(v0, S0) = +∞ if v−⋆(S0) < v0 < v(S0),

αmax(v0, S0) < +∞ if v0 < v−⋆(S0).
(3.22)

Then, taking (v0, S0) with v0 < v−⋆(S0) and α = αmax(v0, S0), there exists a traveling wave
solution of (2.7) connecting (v0, S0) to (v2, S2) = (v1, S1) = (φ♮, S♮).

Proof. Setting

λs = λ2, βs(λs) =
√

λs α(
√
λs, v0, S0),
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the proof of Theorem 3.7 in [4] can be immediately adapted to the situation under consid-
eration. First, we see that βs is a strictly monotone decreasing function of λs. Since

α(λ, v0, S0) =
βs(λ

2)

λ
,

we deduce the monotonicity property of α with respect to λ. Second, using Theorem 4.1 in
[4], we can derive (3.22). Finally, it is also easy to see that the proof given for the second
statement in Theorem 4.1 in [4] can be easily adapted and we can establish the existence of
a traveling wave solution to our system, in the case v0 < v−⋆(S0) for α = αmax(v0, S0).

The value αmax(v0, S0) will be called the critical diffusion at (v0, S0): Nonclassical tra-
jectories leaving from (v0, S0) exists only when α ≤ αmax(v0, S0) and αmax(v0, S0) is finite.

§4. Kinetic Functions and Shock Sets

Thanks to Theorem 3.2, given (v0, S0) with v0 < v(S0) and 0 ≤ α < αmax(v0, S0),
there exists a unique real λ = λ♭(v0, S0) in the interval (λinf(v0, S0), λ

♭
0(v0, S0)] such that

α = α(λ♭(v0, S0), v0, S0). We now discuss the existence of classical traveling wave solutions
of (2.7).

Theorem 4.1 (Classical Trajectories). Given (v0, S0) and a real α > 0 we have the
following properties:

Case 1. v(S0) < v0 < v⋆(S0). For 0 < λ < εvv(v0, S0)) there exists a traveling wave
solution of (2.7) connecting (v0, S0) to (v1, S1).

Case 2. v−⋆(v0) ≤ v0 < v(S0).

• If λ♭(v0, S0) < λ < εvv(v0, S0)), there exists a traveling wave solution of (2.7) con-
necting (v0, S0) to (v1, S1).

• If 0 < λ < λ♭(v0, S0), there is no traveling wave solution of (2.7) connecting (v0, S0)
to (v1, S1).

Case 3. v0 < v−⋆(S0).

• If α < αmax(v0, S0) and λ♭(v0, S0) < λ < εvv(v0, S0), there exists a traveling wave
solution of (2.7) connecting (v0, S0) to (v1, S1).

• If α < αmax(v0, S0) and λ♮(v0, S0) ≤ λ < λ♭(v0, S0), there is no traveling wave
solution of (2.7) connecting (v0, S0) to (v1, S1)

• If α ≥ αmax(v0, S0) and λ♮(v0, S0) ≤ λ < εvv(v0, S0), there exists a traveling wave
solution of (2.7) connecting (v0, S0) to (v1, S1).

The proof of this theorem is the same as the one given in Theorems 5.1 and 5.2 in [4],
with some minor modifications to adapt the arguments to our system along the lines of what
was discussed earlier. We omit these details. Combining together the results in Theorems
3.2 and 4.1 we deduce:

Theorem 4.2. Given (v0, S0), v0 < v−⋆(S0) and α ≥ αmax(v0, S0), there exists a
traveling wave solution of (2.7) connecting (v0, S0) to (v2, S2) = (v1, S1) = (v♮, S♮).

Given α > 0, thanks to the monotonicity of the function v 7→ L(v0, S0, v) along the
Rankine-Hugoniot curve on [φ♮(v0, S0),∞), one can define the kinetic function associated
with nonclassical shocks,

(v0, S0) 7→ v2 := φ♭
α(v0, S0),

where v2 = φ♭
α(v0, S0) is the unique point satisfying v2 ≥ φ♮(v0, S0) with

λ♭(v0, S0) =

√
εv(v2, S(v0, S0, v2))− εv(v0, S0)

v2 − v0
.
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This definition makes sense for all v−⋆(S0) ≤ v0 < v(S0). Also, in the range v0 < v−⋆(S0),
if α ≥ αmax(v0, S0), we can set by continuity (thanks to Theorem 4.2)

vf(v0, S0) = φ♮(v0, S0).

In the same manner, for a given (v0, S0) with v0 < v(S0) and λ = λ♭(v0, S0), we may
introduce the function (thanks to Lemma 2.2)

(v0, S0) 7→ v1 := φ♯(v0, S0)

such that

L(v0, S0, φ
♯(v0, S0)) = L(v0, S0, φ

♭
α(v0, S0)) = λ♭(v0, S0)

2

with

v0 ≤ φ♯(v0, S0) ≤ φ♮(v0, S0) ≤ φ♭
α(v0, S0).

Concerning the case v(S0) < v0 < v⋆(S0), we introduce the quantity φ♯
0(v0, S0) where

φ♯
0(v0, S0) = inf

{
v ≥ v0/L(v0, S0, φ

♯
0(v0, S0))

}
= 0.

Finally, using these functions and Theorems 4.1 and 4.2, we obtain

Corollary 4.1. Given (v0, S0) with v0 < v⋆(S0) and α > 0, the shock set

S(v0, S0) := {(v, S)/there exists a traveling solution of (2.7) connecting (v0, S0) to (v, S)}
is given by

S(v0, S0) :=


{
(v, S(v))/v0 ≤ v < φ♯(v0, S0)

}
∪
{(

φ♭
α(v0, S0), S

♭(v0, S0)
)}

, v0 < v(S0),{
(v, S(v))/v0 ≤ v < φ♯

0(v0, S0)
}
, v(S0) < v0 < v⋆(S0).

Now, we generalize a formula for the kinetic function which was derived in [5] for the
2× 2 model.

Theorem 4.3 (Kinetic Function). Given α > 0 and S0, the function

v0 ∈ (0, v(S0)) 7→ φ♭
α(v0, S0)

fails to be globally monotone. More precisely, it satisfies

∂φ♭
α

∂v0
(v(S0), S0) =

εvv(v(S0), S0)

εvv(v(S0), S0)

(
1− εvS(v(S0), S0)

εS(v(S0), S0)
(v(S0)− v(S0))

)
> 0 (4.1)

with

lim
v0→0

φ♭
α(v0, S0) = +∞. (4.2)

Proof. Given, α > 0 and a real S0, the function v0 7→ φ♭
α(v0, S0) satisfies the implicit

relation

εv(φ
♭
α(v0, S0), S

♭(v0, S0))− εv(v0, S0) = λ♭(v0, S0)
2 (φ♭

α(v0, S0)− v0). (4.3)

By differentiating the last equation with respect to v0 we get

εvv(φ
♭
α, S

♭)
∂φ♭

α

∂v0
(v0, S0) + εvS(φ

♭
α, S

♭)
∂S♭

∂v0
(v0, S0)− εvv(v0, S0)

=
∂

∂v0

(
λ♭(v0, S0)

2 (φ♭
α(v0, S0)− v0))

)
.

(4.4)

First, let us prove that ∂λ♭2

∂v0
(v(S0), S0) = 0.
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Indeed, multiplying (3.16) by h we get

h
dh

dv
+ 2

ανλ♭ h
√
µ

1

1 + µS

2µεS
h2

= εv(v,S)− εv(v0, S0)− λ♭2 (v − v0)

Integrating the last equation over (v0, φ
♭
α(v0, S0)) we obtain

2αλ♭(v0, S0)

∫ φ♭
α(v0,S0)

v0

ν h
√
µ

1

1 + µS

2µεS
h2

d v

=

∫ φ♭
α(v0,S0)

v0

(εv(v,S)− εv(v0, S0)) d v −
1

2
λ♭(v0, S0)

2 (φ♭
α(v0, S0)− v0)

2.

Now, since λ♭(v0, S0) → 0 when v0 → v(S0) we can write

2αλ♭(v0, S0) ∼
N(v0, S0)

D(v0, S0)
,

where

N(v0, S0) :=

∫ φ♭
α(v0,S0)

v0

(εv(v,S)− εv(v0, S0)) dv,

D(v0, S0) :=

∫ φ♭
α(v0,S0)

v0

ν h
√
µ

1

1 + µS

2µεS
h2

dv.

It is clear that N(v(S0), S0) = 0 and ∂N
∂v0

(v(S0), S0) exists and D(v(S0), S0) > 0. We deduce

that ∂λ♭

∂v0
(v(S0), S0) is finite and then

∂λ♭2

∂v0
(v(S0), S0) = 2λ♭(v(S0), S0)

∂λ♭

∂v0
(v(S0), S0) = 0. (4.5)

Now, by differentiating the identity

f(v0, S0, φ
♭
α(v0, S0), S

♭(v0, S0), λ
♭(v0, S0))

2

= ε(φ♭
α, S

♭)− ε(v0, S0)− εv(v0, S0) (φ
♭
α − v0)−

1

2
λ♭2(v0, S0) (φ

♭
α − v0)

2 = 0

with respect to v0, and using (2.16) and (4.5), we obtain

∂S♭

∂v0
(v(S0), S0) =

εvv(v(S0), S0)

εS(v(S0), S0)
((v(S0), S0)− (v(S0), S0)). (4.6)

Finally, plugging (4.6) and (4.5) in (4.4) we obtain (4.1).

Now, we have to prove (4.2). First, we know that

λ♭(v0, S0)
2 ≤ εvv(φ

♭
α, S

♭) and εv(v
⋆(S♭), S♭) ≤ εv(φ

♭
α, S

♭).

Then

εv(v
⋆(S♭), S♭)− εv(v0, S0) ≤ εv(φ

♭
α, S

♭)− εv(v0, S0) ≤ εvv(φ
♭
α, S

♭)(φ♭
α − v0).

Finally, using (1.8c) and (1.10) we deduce (4.2).

To conclude, let us point out the following asymptotic properties of the kinetic function
which are deduced from Theorem 3.9 and the continuity properties of solutions of (2.7) with
respect to parameters α (and β).

Theorem 4.4 (Asymptotic Properties). For every fixed S0 > 0 we have the following:
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(1) There exists a continuous function κ♮ : (0, v−⋆(S0)) 7→ (0,+∞) such that

φ♭
α(v0, S0) = φ♮(v0, S0) provided ακ♮(v0, S0) ≥ 1,

κ♮(v0, S0) → +∞ as v0 → v−⋆(S0).
(4.7)

(2) For each v < v(S0) we have

φ♭
α(v0, S0) → φ♭

0(v0, S0) as α → 0.

References

[ 1 ] Abeyaratne, R. & Knowles, J. K., Kinetic relations and the propagation of phase boundaries in solids,

Arch. Rational Mech. Anal., 114 (1991), 119–154.
[ 2 ] Abeyaratne, R. & Knowles, J. K., Implications of viscosity and strain gradient effects for the kinetics

of propagating phase boundaries in solids, SIAM J. Appl. Math., 51(1991), 1205–1221.
[ 3 ] Bedjaoui, N. & LeFloch, P. G., Diffusive-dispersive traveling waves and kinetic relations, III, An hyper-

bolic model of nonlinear elastodynamics, Ann. Univ. Ferrara Sc. Mat., 47(2001), 117–144.
[ 4 ] Bedjaoui, N. & LeFloch, P. G., Diffusive-dispersive traveling waves and kinetic relations, I, Nonconvex

conservation laws, J. Differential Equations, 178(2002), 574–607.
[ 5 ] Bedjaoui, N. & LeFloch, P. G., Diffusive-dispersive traveling waves and kinetic relations, II, An hyperbo-

lic-elliptic model of phase transitions, Proc. Royal Soc. Edinburgh, 133A(2002).
[ 6 ] Gilbard, D., The existence and limit behavior of the one-dimensional shock layer, Amer. J. Math.,

7(1951), 256–274.
[ 7 ] Hayes, B. T. & LeFloch, P. G., Nonclassical shocks and kinetic relations : Scalar conservation laws,

Arch. Rational Mech. Anal., 139(1997), 1–56.
[ 8 ] Hayes, B. T. & LeFloch, P. G., Nonclassical shocks and kinetic relations : Strictly hyperbolic systems,

SIAM J. Math. Anal., 31(2000), 941–991.

[ 9 ] Jacobs, D., McKinney, W. R. & Shearer, M., Traveling wave solutions of the modified Korteweg-deVries
Burgers equation, J. Differential Equations, 116(1995), 448–467.

[10] LeFloch, P. G., Propagating phase boundaries: Formulation of the problem and existence via the Glimm
scheme, Arch. Rational Mech. Anal., 123(1993), 153–197.

[11] LeFloch, P. G., An introduction to nonclassical shocks of systems of conservation laws, Proceedings
of the “International School on Theory and Numerics for Conservation Laws”, Freiburg/Littenweiler
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