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Abstract

Consider a backward heat equation in a bounded domain Ω ⊂ R2 with the noisy data in the
initial time geometry. The aim is to find the temperature for 0 < ε < t < T . For this ill-posed
problem, the authors give a continuous dependence estimate of the solution. Moreover, the

convergence rate of the approximate solution is also given.
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§1. Introduction

Consider a backward heat equation in a bounded domain Ω ⊂ R2 with piece wise smooth
boundary ∂Ω. We assume there is neither heat source nor heat sink within the homogeneous
media, and the boundary condition on ∂Ω is of the Robin type. If the initial temperature
at time t = 0 is also given, then the temperature field u(x, t) in 0 < t < T is governed by

∂u(x,t)
∂t = −∆u, (x, t) ∈ Ω× (0, T ),

∂u(x,t)
∂ν(x) + h(x)u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where both the nonnegative boundary impedance h(x) and the outward normal direction
ν(x) on ∂Ω × (0, T ) are time independent. For some initial function u0(x), there exists a
unique u(x, t) in 0 < t < T for this backward system. It is well-known that the above system
is ill-posed. That is, the solution may not exist provided that there are errors in the initial
time geometry. By initial time geometry errors we mean the following ones.
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Firstly, the initial data may not be given at the exact initial time t = 0, but at some
initial curve t = εf(x) for small ε > 0 and |f(x)| ≤ 1. In this case, we should solve v(x, t)
in {(x, t) : εf(x) ≤ t ≤ T, x ∈ Ω} by

∂v(x,t)
∂t = −∆v, (x, t) ∈ Ω× (εf(x), T ),

∂v(x,t)
∂ν(x) + h(x)v(x, t) = 0, (x, t) ∈ ∂Ω× (εf(x)|∂Ω, T ),
v(x, εf(x)) = v0(x), x ∈ Ω.

(1.2)

For initial value v0(x) given appropriately, we assume that there exists a unique solution to
this problem. However, if we are given two initial values u0(x) and v0(x) with a priori error

∥u0 − v0∥L2(Ω) ≤ β(ε), (1.3)

where β(ε) → 0 as ε → 0, then one interesting problem is
(A) What is the error of u(x, t)− v(x, t) in {(x, t) : εf(x) ≤ t ≤ T, x ∈ Ω}?
Secondly, the initial data v0(x) are generally obtained by measurement, hence we can

only get the approximate data v̂0(x) up to an error level

∥v0(·)− v̂0(·)∥L2(Ω) ≤ δ. (1.4)

In this case another problem appears, namely,
(B) How can we get the approximation of v(x, t) from the noisy data v̂0(x)?
It is well-known that the following backward heat problem

∂v(x,t)
∂t = −∆v, (x, t) ∈ Ω× (εf(x), T ),

∂v(x,t)
∂ν(x) + h(x)v(x, t) = 0, (x, t) ∈ ∂Ω× (εf(x)|∂Ω, T ),
v(x, εf(x)) = v̂0(x), x ∈ Ω,

(1.5)

does not have classical solution generally, so we can not get the approximation of v(x, t)
from this problem directly. We must seek some regularizing solution from the noisy data
v̂0(x). Also, in this case, the construction of the regularizing scheme such as the choice of
regularizing parameter, together with the convergence rate of the regularizing solution as
δ → 0, should be studied. It has been found that the conditional stability can be applied
to construct the regularizing scheme for the ill-posed problem[2,7], both in the numerical
inversions and in the theoretical analysis. Furthermore, it seems that this method is more
efficient than the filtering method proposed in [10], which is essentially to filter out the small
singular value for the compact operator[5].

The backward heat problems have been studied for a long time. For some backgrounds
and mathematical treatments on this topic, we refer to [1,3,8,9] and the references therein.
However, the research seems far away from satisfactory.

Thus, our final problem is to get the approximation of u(x, t) in {(x, t) : ε ≤ t ≤ T, x ∈ Ω}
from the noisy data v̂0(x) according to (1.1)–(1.4). This problem depends entirely on the
solutions to problems (A) and (B).

In this paper, we establish the conditional stability firstly. Then, we give a new method
to get the approximate regularizing solution to the backward problem with the error both
at the initial time and at the data themselves. Finally, motivated by the new idea in [2], a
criterion for the choice of the regularizing parameter α is proposed to this problem. This
work generalizes the known research result on the backward heat problems in [4].

§2. Conditional Stability

For backward heat problem with initial date given at t = εf(x), if the date is appropriate,
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then there exists a unique solution. Now we establish a continuous dependence for the
solution, which is important for our regularizing method. We always assume |f(x)| ≤ 1 and
f(x) = 0 on ∂Ω in this paper.

Theorem 2.1. Let u(x, t) and v(x, t) be the solutions to (1.1) and (1.2) respectively with
the initial value satisfying (1.3). If u(x, T ) and v(x, T ) satisfy

∥u(T )∥ ≤ M0, ∥v(T )∥ ≤ M0 (2.1)

for some known constant M0 > 0, then it follows that

∥(u− v)(t)∥ ≤ 4M0 [∥u(ε)− u0∥+ ∥v(ε)− v0∥+ β(ε)]
T−t
T−ε (2.2)

for any t ∈ [ε, T ], where ∥u(t)∥ = ∥u(·, t)∥L2(Ω).

Proof. Let p(x, t) = u(x, t) − v(x, t) and define F (t) = ∥p(t)∥2 for any t ∈ [ε, T ]. Then
the convexity of function lnF (t) leads to

∥p(t)∥ ≤ ∥p(ε)∥
T−t
T−ε ∥p(T )∥

t−ε
T−ε . (2.3)

On the other hand,

∥p(ε)∥2 ≤ 3 [∥u(ε)− u0∥+ ∥v(ε)− v0∥+ β(ε)]
2

(2.4)

due to the triangle inequality and (1.3). Now (2.3) and (2.4) generate (2.2).
Remark 2.1. This result shows that it is possible for us to estimate ∥(u− v)(t)∥ for

ε ≤ t ≤ T by ε provided ∥u(T )∥ , ∥v(T )∥ are bounded. For this purpose, we need to bound
∥u(ε)− u0∥ and ∥v(ε)− v0∥ respectively, since β(ε) is the known error between initial data.
It is enough for us to estimate ∥v(ε)− v0∥.

Theorem 2.2. If we assume that the final value of v(x, t) satisfies

∥v(T )∥H3(Ω) ≤ M (2.5)

with some known constant M and f(x)|∂Ω = 0, |f(x)| ≤ 1 for the initial curve t = εf(x),
then there exists a constant C = C(M,T, ∥h∥L∞(∂Ω)) > 0 such that

∥v(ε)− v0∥ ≤ C

[
1 + ∥▽f∥L∞(Ω) + ∥v0∥L2(∂Ω) + ∥▽v0∥L2(Ω) +

1√
T − ε

]
ε1/2. (2.6)

Remark 2.2. From our procedure, it is easy to see that (2.6) without ∥v0∥L2(∂Ω) still

holds for the Dirichlet boundary condition.
Proof. Since the backward problem for v(x, t) with the given initial value v0(x) generates

a final value v(·, T ) ∈ H3(Ω), the correspondent direct heat problem with the initial value

v(x, T ) defines a function ṽ(x, t) ∈ W 1,0
2 (QT ), where QT = {(x, t) : x ∈ Ω, 0 ≤ t ≤ T}.

Due to the unique solvability of the direct heat problem in W 1,0
2 (QT ) (see [6, Charpt 4]), it

follows that v(x, t) = ṽ(x, t) in QT \ Q(f), where Q(f) = {(x, t) : 0 ≤ t ≤ εf(x), x ∈ Ω}.
Furthermore, if we extend v(x, t) to QT by defining v(x, t) = ṽ(x, t) in Q(f), then v(x, t) ∈
W 1,0

2 (QT ) satisfies 
∂v(x,t)

∂t = −∆v, (x, t) ∈ Ω× (0, T ),

∂v(x,t)
∂ν(x) + h(x)v(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

v(x, εf(x)) = v0(x), x ∈ Ω

(2.7)

with v(x, T ) satisfying (2.5). So we get from v(x, ε)− v0(x) =
∫ ε

εf(x)
∂sv(x, s)ds that

∥v(ε)− v0∥2 = −
∫
Qε\Q(f)

[v(x, ε)− v0(x)]∆v(x, s)dsdx. (2.8)
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Noticing f(x) = 0 on ∂Ω and integrating the second integral by parts with respect to x
yields

∥v(ε)− v0∥2 = B1 +B2 +B3, (2.9)

where

B1 =

∫ ε

0

ds

∫
∂Ω

[v(x, ε)− v0(x)]h(x)v(x, s)dl(x),

B2 = −ε

∫
Ω

[v(x, ε)− v0(x)]▽ v(x, s)|s=εf(x) · ▽f(x)dx,

B3 =

∫
Ω

▽x(v(x, ε)− v0(x))
(∫ ε

εf(x)

▽xv(x, s)ds
)
dx.

Now the estimates on B1, B2, B3 given in the following section complete the proof.

The estimate on ∥u(ε)− u0∥ can be obtained from Theorem 2.3 immediately by taking
f(x) = 0 and v0(x) = u0(x). That is,

Theorem 2.3. If we assume

∥u(T )∥H3(Ω) ≤ M (2.10)

for the final value of u(x, t) with some known positive constant M , then there exists a
constant C > 0 depending only on M,T, ∥h∥L∞(∂Ω) such that

∥u(ε)− u0∥ ≤ C
[
∥u0∥L2(∂Ω) + ∥▽u0∥L2(Ω) +

1√
T − ε

+ 1
]
ε1/2. (2.11)

Now we can give an answer to our problem A, based on the above theorems.

Theorem 2.4. Let |f(x)| ≤ 1 for x ∈ Ω and f(x) = 0 on ∂Ω. If u(x, t) and v(x, t) are
the solutions of (1.1) and (1.2) satisfying (2.5) and (2.10) respectively, then there exists a
constant C = C(M,T, ∥h∥) > 0 such that

∥(u− v)(t)∥ ≤ C
[
(1 + ∥▽f∥L∞)ε1/2 + β(ε)

] T−t
T−ε

, ε ≤ t ≤ T. (2.12)

Proof. It follows from Theorems 2.1, 2.2, 2.3 that

∥(u− v)(t)∥ ≤ C0

[(
E(u0, v0, f) +

2√
T − ε

+ 2
)
ε1/2 + β(ε)

] T−t
T−ε

, (2.13)

where

E(u0, v0, f) = ∥▽u0∥L2(Ω) + ∥u0∥L2(∂Ω) + ∥▽v0∥L2(Ω) + ∥v0∥L2(∂Ω) + ∥▽f∥L∞ .

Since u(x, T ), v(x, T ) satisfy the bounded condition (2.5) and (2.10), the application of
semigroup theory to the direct heat equation about u(x, t) and v(x, t) says that there exists
a constant C > 0 such that

∥u0∥H3(Ω) , ∥v(·, t)∥H3(Ω) , ∥vt(·, t)∥H1(Ω) ≤ CM0 (2.14)

for all t ∈ [0, T ]. Moreover, the Sobolev trace theorem implies that

∥u0∥L2(∂Ω) ≤ CM. (2.15)

Now we consider v0(x) = v(x, εf(x)). Since

▽v0(x)−▽v(x, ε) = −
∫ ε

εf(x)

▽∂v(x, s)

∂s
ds+

∫ ε

εf(x)

∂v(x, s)

∂s
dsε▽ f(x),
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we get

| ▽ v0(x)|2

3
≤ | ▽ v(x, ε)|2 + T

∫ T

0

∣∣∣▽ ∂v(x, s)

∂s

∣∣∣2ds+ Tε2| ▽ f(x)|2
∫ T

0

∣∣∣∂v(x, s)
∂s

∣∣∣2ds.
Integrating this inequality in Ω says from (2.14) that

∥▽v0∥2L2(Ω) ≤ C(1 + ∥▽f∥2L∞(Ω))M
2
0 ≤ C(1 + ∥▽f∥L∞(Ω))

2M2
0 , (2.16)

where we have used the bound of ∥▽v(ε)∥ (see (3.4) in the next section). As for ∥v0∥L2(∂Ω),

it follows that

∥v0∥2L2(∂Ω) =

∫
∂Ω

v2(x, εf(x))dl(x) =

∫
∂Ω

v2(x, 0)dl(x) (2.17)

due to f(x) = 0 on ∂Ω. Since v(·, 0) ∈ H3(Ω), the Sobolev trace theorem tells us

∥v0∥L2(∂Ω) ≤ C. (2.18)

Inserting these estimates into E(u0, v0, f) leads to (2.12) from (2.13) immediately.

§3. Estimates on B1,B2 and B3

Firstly, we estimate B3.
Theorem 3.1. If ∥v(T )∥ ≤ M , then there exists a constant C > 0 such that

|B3| ≤
1

4
∥v(ε)− v0∥2 + C

( 1

T − ε
+ ∥▽v0∥2

)
ε. (3.1)

Proof. It is easy to see

B3 ≤
√
2ε
[ ∫

Ω

| ▽ (v(x, ε)− v0(x))|2dx
]1/2[ ∫

Ω

∫ ε

εf(x)

| ▽ v(x, s)|2dsdx
]1/2

≤ 2
√
ε(∥▽v(ε)∥+ ∥▽v0∥)

[ ∫
Ω

∫ ε

εf(x)

| ▽x v(x, s)|2dsdx
]1/2

(3.2)

due to |f(x)| ≤ 1. Define

J1(ε) = ∥▽v(ε)∥ , J2(ε) =
[ ∫

Ω

∫ ε

εf(x)

| ▽x v(x, s)|2dsdx
]1/2

.

It is necessary to estimate J1 and J2. From the divergence theorem, we get

J2
1 (ε) = −

∫ T

ε

∂

∂s

[
T − s

T − ε

∫
Ω

| ▽x v(x, s)|2dx
]
ds =

3∑
j=1

Aj(ε), (3.3)

A1(ε) =
1

T − ε

∫ T

ε

∥▽xv(s)∥2 ds,

A2(ε) = −2

∫ T

ε

T − s

T − ε

∫
∂Ω

∂v(x, s)

∂ν(x)

∂v(x, s)

∂s
dxds,

A3(ε) = 2

∫ T

ε

T − s

T − ε

∫
Ω

∆v(x, s)
∂v(x, s)

∂s
dxds ≤ 0.

Now it follows from the boundary condition for v(x, t) that

A1(ε) = − 1

T − ε

∫ T

ε

∫
∂Ω

h(x)v2(x, s)dxds+
1

T − ε

∫ T

ε

∫
Ω

v
∂v

∂s
dxds,

A2(ε) ≤
1

T − ε

∫ T

ε

∫
∂Ω

h(x)w2(x, s)dxds.
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Inserting the above expressions to (3.3) generates

J2
1 (ε) ≤

1

T − ε

∫ T

ε

∫
Ω

v
∂v

∂s
dxds ≤ 1

2(T − ε)

∫
Ω

v2(x, T )dx,

therefore it follows from (2.5) that

J1(ε) ≤
M√

2(T − ε)
. (3.4)

Now we estimate J2(ε). Firstly, rewrite J2
2 (ε) as

J2
2 (ε) =

∫
Ω

∫ ε

εf(x)

▽v · ▽(v − v0)dsdx+

∫
Ω

∫ ε

εf(x)

▽v · ▽v0dsdx = J
(1)
2 + J

(2)
2 . (3.5)

Noticing v(x, εf(x)) = v0(x), by exchanging the order of integration and integrating by
parts with respect to x, we get

J
(1)
2 = −

∫
Ω

∫ ε

εf(x)

∆v(x, s)[v(x, s)− v0(x)]dsdx =
1

2
∥v(ε)− v0∥2 .

However, it follows that J
(2)
2 ≤ [2ε ∥| ▽ v0|∥2+J2

2 (ε)]/2 from the Cauchy-Schwartz inequality
due to |f(x)| ≤ 1, so we get from (3.5) that

J2(ε) ≤ ∥v(ε)− v0∥+ 2
√
ε ∥| ▽ v0|∥ . (3.6)

Now inserting (3.4) and (3.6) into (3.2) says

B3 ≤ 1

4
∥v(ε)− v0∥2 + 4ε

( M2

2(T − ε)
+ ∥| ▽ v0|∥2

)
+ 2

√
2ε ∥| ▽ v0|∥2 +

√
2ε
( M2

2(T − ε)
+ ∥| ▽ v0|∥2

)
,

which completes the proof of Theorem 3.1 immediately.

For the estimates on B1 and B2, we need the following result[6].

Lemma 3.1. Let ϕ(x) ∈ W 1
2 (Ω). Then there exists a constant C = C(Ω) > 0 such that∫

∂Ω

ϕ2(x)dx ≤
∫
Ω

[
γ| ▽ ϕ(x)|2 + C(Ω)

(C(Ω)

4γ
+ 1

)
ϕ2(x)

]
dx, ∀γ > 0. (3.7)

For simplicity, we will set C(Ω) = 1 in the sequel.

Theorem 3.2. There exists a constant C1 = C1(M,Ω, ∥h∥L∞(∂Ω) , T ) > 0 such that

|B1| ≤ C1

(∫
∂Ω

v20dl(x) +

∫
Ω

| ▽ v0|2dx+
1

T − ε
+ 1

)
ε+

1

4
∥v(ε)− v0∥2 . (3.8)

Proof. Let ∥h∥2L∞(∂Ω) ≤ C0. It follows from the expression of B1 that

|B1| ≤ γ1ε

∫
∂Ω

[v(x, ε)− v0(x)]
2dl(x) +

C0

4γ1

∫ ε

0

ds

∫
∂Ω

v2(x, s)dl(x)

= B11(γ1) +B12(γ1). (3.9)

For the first term, it follows from Lemma 3.1 that

B11(γ1) ≤ γ1ε
[
ε

∫
Ω

| ▽ (v(x, ε)− v0(x))|2dx+
1 + 4ε

4ε

∫
Ω

(v(x, ε)− v0(x))
2dx

]
≤ 2γ1ε

2(∥▽v(ε)∥2 + ∥▽v0∥2) + γ1

(1
4
+ T

)
∥v(ε)− v0∥2 (3.10)
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with any constant γ1 > 0. For the second term, it yields( C0

4γ1

)−1

B12(γ1) ≤ γ2

∫ ε

0

ds

∫
Ω

| ▽ v(x, s)|2dx+
( 1

4γ2
+ 1

)∫ ε

0

ds

∫
Ω

v2(x, s)dx (3.11)

with any constant γ2 > 0. On one hand, since v(x, t) solves (2.7), it follows from integrating
by parts that

∫
Ω
v2(x, s)dx is increasing for s ∈ (0, T ), which implies∫ ε

0

ds

∫
Ω

v2(x, s)dx ≤ M2ε. (3.12)

On the other hand, integrating by parts leads to∫ ε

0

ds

∫
Ω

| ▽ v(x, s)|2dx =

∫ ε

0

ds

∫
Ω

▽(v − v0) · ▽vdx+

∫ ε

0

ds

∫
Ω

▽v · ▽v0dx

= −
∫ ε

0

ds

∫
∂Ω

[v(x, s)− v0(x)]h(x)v(x, s)dl(x)

+

∫ ε

0

ds

∫
Ω

[v(x, s)− v0(x)]
∂v(x, s)

∂s
dx+

∫ ε

0

ds

∫
Ω

▽v(x, s) · ▽v0(x)dx

≤ γ3

∫ ε

0

ds

∫
∂Ω

v2(x, s)dl(x) +
1

4γ3

∫ ε

0

ds

∫
∂Ω

h2(x)v20(x)dl(x)

+
1

2

∫
Ω

[v(x, ε)− v0(x)]
2dx+

∫ ε

0

ds

∫
Ω

▽v(x, s) · ▽v0(x)dx

≤ γ3

∫ ε

0

ds

∫
∂Ω

v2(x, s)dl(x) +
C0ε

4γ3

∫
∂Ω

v20(x)dl(x) +
1

2
∥v(ε)− g∥2

+ γ4

∫ ε

0

ds

∫
Ω

| ▽ v(x, s)|2dx+
1

4γ4

∫ ε

0

ds

∫
Ω

| ▽ v0(x)|2dx

≤ γ3

∫ ε

0

ds

∫
∂Ω

v2(x, s)dl(x) + γ4

∫ ε

0

ds

∫
Ω

| ▽ v(x, s)|2dx

+
1

2
∥v(ε)− v0∥2 + C(γ3, γ4, v0)ε

with the function

C(γ3, γ4, v0) =
C0

4γ3

∫
∂Ω

v20(x)dl(x) +
1

4γ4

∫
Ω

| ▽ v0(x)|2dx

and constants γ3, γ4 > 0. Now taking

0 < γ4 < 1 (3.13)

in this estimate leads to∫ ε

0

ds

∫
Ω

| ▽ v(x, s)|2dx ≤ γ3
1− γ4

4γ1
C0

B12(γ1) +
∥v(ε)− v0∥2

2(1− γ4)
+

C(γ3, γ4, v0)

1− γ4
ε.

Inserting (3.12) and this estimate to (3.11) and choosing γ2, γ3, γ4 such that

1− γ2γ3
1− γ4

> 0, (3.14)

then we get

B12(γ1) ≤
C0

4γ1

[γ2C(γ3, γ4, v0)

1− γ4 − γ2γ3
ε+

γ2 ∥v(ε)− v0∥2

2(1− γ4 − γ2γ3)
+

1 + 4γ2
4γ2

M2ε
]
. (3.15)
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Now inserting (3.10) and (3.15) into (3.9) leads to

|B1| ≤
[ C0

4γ1

(γ2C(γ3, γ4, v0)

1− γ4 − γ2γ3
+

1 + 4γ2
4γ2

M2
)
+ 2γ1T (∥▽v(ε)∥2 + ∥▽v0∥2)

]
ε+

+
[
γ1

(1
4
+ T

)
+

C0γ2
8γ1(1− γ4 − γ2γ3)

]
∥v(ε)− v0∥2 .

Now applying (3.4) we get

|B1| ≤ C(γj , v0, ε)ε+
[
γ1

(1
4
+ T

)
+

C0γ2
8γ1(1− γ4 − γ2γ3)

]
∥v(ε)− v0∥2 , (3.16)

where

C(γj , v0, ε) =
C0

4γ1

(γ2C(γ3, γ4, v0)

1− γ4 − γ2γ3
+

1 + 4γ2
4γ2

M2
)
+ 2γ1T

( M2

2(T − ε)
+ ∥▽v0∥2

)
.

Notice that C(γj , v0, ε) is bounded uniformly as ε → 0 from this expression. Now we can
take γ1 > 0, γ2 > 0 such that

γ1

(1
4
+ T

)
≤ 1

8
,

C0γ2
8γ1(1− γ4 − γ2γ3)

≤ 1

8
. (3.17)

Then (3.16) leads to (3.8) immediately.
Theorem 3.3. If the final value v(x, T ) satisfies

∥v(T )∥H3(Ω) ≤ M, (3.18)

then there exists a constant C2 > 0 such that

|B2| ≤
1

4
∥v(ε)− v0∥2 + C2 ∥▽f∥2L∞(Ω) ε. (3.19)

Proof. From the expression of B2 and Lemma 3.1, we get

|B2| ≤ η1 ∥v(ε)− v0∥2 +
ε2

4η1

∫
Ω

∣∣▽v(x, s)s=εf(x) · ▽f(x)
∣∣2 dx. (3.20)

On the other hand,

▽v(x, s)
∣∣
s=εf(x) −▽v(x, s) |s=ε = −

∫ ε

εf(x)

∂s(▽v(x, s))ds

tells us ∣∣▽v(x, s)s=εf(x) · ▽f(x)
∣∣2

≤
(
|▽v(x, s)s=ε · ▽f(x)|+ | ▽ f(x)|

∫ ε

εf(x)

|∂s ▽ v(x, s)|ds
)2

≤ 2
(
|▽v(x, s)s=ε · ▽f(x)|2 + 2| ▽ f(x)|2

∫ ε

εf(x)

| ▽ (∂sv(x, s))|2ds
)
,

which implies that∫
Ω

∣∣▽v(x, s)s=εf(x) · ▽f(x)
∣∣2 dx

≤ ∥▽f∥2L∞(Ω)

[ ∫
Ω

| ▽ v(x, ε)|2dx+ 2

∫ T

0

ds

∫
Ω

| ▽ (∂sv(x, s))|2dx
]

≤ ∥▽f∥2L∞(Ω)

[ M2

2(T − ε)
+

∫ T

0

∥vs(·, s)∥2H1(Ω) ds
]
≤ C ∥▽f∥2L∞(Ω) (3.21)

from (2.14) and (3.4). Inserting this estimate into (3.20) and taking η1 = 1
4 lead to (3.19)

immediately.
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§4. Regularization Method

This section is devoted to the solution of our problem (B), i.e, how to get the approximate
solution from the noisy data v̂0(x). For the exact initial data v0(x) given at the curve t =
εf(x), we assume that there exists a unique solution v(x, t) in {(x, t) : εf(x) ≤ t ≤ T, x ∈ Ω}
to (1.2). We also assume this solution satisfies

∥v(·, T )∥H3(Ω) ≤ M. (4.1)

Noticing (2.16) and (2.18), we see that the following is a direct result of Theorem 2.3.

Corollary 4.1. If we assume that the final value of v(x, t) satisfies

∥v(T )∥H3(Ω) ≤ M (4.2)

with some known constant M and f(x)|∂Ω = 0, |f(x)| ≤ 1 for the initial curve t = εf(x),
then there exists a constant C = C(M,T, ∥h∥L∞(∂Ω)) > 0 such that

∥v(ε)− v0∥ ≤ C
[
1 + ∥▽f∥L∞(Ω)

]
ε1/2. (4.3)

Now, for p(x) ∈ H3(Ω), define a map K : p(x) → V (x, εf(x)), where V (x, t) is given by
the direct problem 

∂V
∂t = −∆V, (x, t) ∈ Ω× (0, t0),
∂V

∂ν(x) + h(x)V = 0, (x, t) ∈ Ω× (0, t0),

V (x, T ) = p(x) x ∈ Ω.

(4.4)

Corresponding to v0(x) = v(x, εf(x)), denote by p0(x) the final value v(x, T ) which implies
K · p0 = v0. For the noisy data v̂0(x) satisfying (1.4), we first construct the regularizing
solution pδ(x) to the equation K · p = v̂, then construct the approximate solution vδ(x, t)
from pδ(x) by solving direct problem (4.4). We can also give an estimate on the convergence
rate of approximate solution. Introduce the functional

F δ
α(p) = ∥Kp− v̂∥2L2(Ω) + α ∥p∥2H3(Ω) (4.5)

over the admissible set µM = {p(x) : ∥p∥H3(Ω) ≤ M}.
Theorem 4.1. For any C2

0 > M2 + 1, there exists an approximate minimizer pδ(x) for
functional F δ

δ2(p(·)) over µC0 which satisfies

F δ
δ2(pδ) ≤ C2

0δ
2, (4.6)

∥K · pδ −K · p0∥L2(Ω) ≤ (C0 + 1)δ. (4.7)

Proof. Firstly, it is easy to know that

F δ
δ2(p0) = ∥K · p0 − v̂∥2L2 + δ2 ∥p0∥2H3 = ∥v0 − v̂∥2L2 + δ2 ∥p0∥2H3

≤ δ2 +M2δ2 = (M2 + 1)δ2 ≤ C2
0δ

2, (4.8)

which implies {p : F δ
δ2(p) ≤ C2

0δ
2} ≠ ∅. Hence (4.6) is proven. From this inequality we also

know

∥pδ∥H3 ≤ C0, (4.9)

∥K · pδ − v̂∥L2 ≤ C0δ. (4.10)

Therefore we get

∥K · pδ −K · p0∥ ≤ ∥K · pδ − v̂∥+ ∥v̂ −K · p0∥ ≤ (C0 + 1)δ.



44 CHIN. ANN. MATH. Vol.24 Ser.B

For pδ(x) constructed in this theorem, denote by vδ(x, t) the solution to direct heat
problem (4.4) corresponding to p = pδ. Now we estimate the error between vδ(x, t) and
v(x, t) for ε ≤ t ≤ T .

Theorem 4.2. There exists a constant C = C(C0,M, ∥h∥) > 0 such that

∥(vδ − v)(t)∥ ≤ C
[
(1 + ∥▽f∥L∞)ε1/2 + δ

] T−t
T−ε

. (4.11)

Proof. Following the way in the proof of Theorem 2.1, it is easy to show that

∥(vδ − v)(t)∥L2 ≤ ∥(vδ − v)(ε)∥
T−t
T−ε

L2 ∥(vδ − v)(T )∥
T−ε
T−ε

L2

≤ ∥(vδ − v)(ε)∥
T−t
T−ε

L2 ∥pδ − p0∥
T−ε
T−ε

H3

≤ 2C0 ∥(vδ − v)(ε)∥
T−t
T−ε

L2 . (4.12)

On the other hand,

∥(vδ − v)(ε)∥ ≤ ∥vδ(ε)−K · pδ∥+ ∥K · p0 − v(ε)∥+ ∥K · pδ −K · p0∥
≤ ∥vδ(ε)−K · pδ∥+ ∥K · p0 − v(ε)∥+ (C0 + 1)δ

≤ C
[
(1 + ∥▽f∥L∞)ε1/2 + δ

]
(4.13)

from Corollary 4.1 and (4.7), which leads to (4.11) immediately.
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