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GEOMETRY AND DIMENSION
OF SELF-SIMILAR SET****
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Abstract

The authors show that the self-similar set for a finite family of contractive similitudes (sim-
ilarities, i.e., |fi(x) − fi(y)| = ai|x − y|, x, y ∈ RN , where 0 < ai < 1) is uniformly perfect

except the case that it is a singleton. As a corollary, it is proved that this self-similar set has
positive Hausdorff dimension provided that it is not a singleton. And a lower bound of the
upper box dimension of the uniformly perfect sets is given. Meanwhile the uniformly perfect
set with Hausdorff measure zero in its Hausdorff dimension is given.
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§1. Introduction

Let {f1, f2, · · · , fm}, m ≥ 2, be a finite family of contractive similitudes in N dimensional

Euclidean space RN , that is, fj(x) = ajgj(x) + bj , where 0 < aj < 1, bj ∈ RN , and

gj ∈ O(N), 1 ≤ j ≤ m.

Denote

Gk = {fj1 ◦ · · · ◦ fjk |1 ≤ ji ≤ m, 1 ≤ i ≤ k},
then G =

∪
k≥1

Gk is the semi-group generated by {f1, f2, · · · , fm}.

Let E be the collection of all non-empty compact subsets of RN . For X1, X2 ∈ E ,
dH(X1, X2) = max{d(x,X2), d(X1, y)|x ∈ X1, y ∈ X2}

is the Hausdorff distance between X1 and X2, where d(x,X2) is the Euclidean distance from

x to X2 and d(X1, y) is the Euclidean distance from X1 to y. It is well-known that the space

(E , dH) is complete.
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Define a mapping from (E , dH) to itself by

T (X) =
m∪
j=1

fj(X).

Then

dH(T (X1), T (X2)) ≤ s · dH(X1, X2)

for any X1, X2 ∈ E , where 0 < s = max
1≤j≤m

aj < 1. We also denote min
1≤j≤m

aj by s.

By contraction mapping theorem, there exists a unique X ∈ E such that

T (X) =
m∪
j=1

fj(X) = X.

Moreover, T k(X0) → X in Hausdorff metric as k → ∞ for any initial X0 ∈ E , where T k is

the k-th iteration of T . The unique fixed point X of T is called the self-similar set for the

family {f1, f2, · · · , fm}. For more details, see [1] and [2].

A compact subset E of RN is uniformly perfect if there is a constant 0 < c ≤ 1 such that

for any point x0 ∈ E and 0 < r < diam(E), the Euclidean annulus {x|cr ≤ |x − x0| ≤ r}
meets E. Uniformly perfect sets were introduced by A.F.Beardon and Ch.Pommerenke

(1979) in the complex plane, who showed that the compact set E ⊂ C is uniformly perfect

if and only if the hyperbolic metric of C\E is comparable to the reciprocal of the distance

to the boundary. There are many other characterizations of uniformly perfect plannar sets

(see [3]).

The main result of this note is

Theorem 1.1 (Main Theorem). The self-similar set X for a finite family of contractive

similitudes is a uniformly perfect set or a singleton.

The following statement is an interesting corollary.

Corollary 1.1. The self-similar set X for a finite family of contractive similitudes has

positive Hausdorff dimension except it is a singleton.

Furthermore, for uniformly perfect sets, we have the following results.

Theorem 1.2. The upper box dimension of the uniformly perfect set E ⊂ RN with

uniform constant 0 < c ≤ 1 has the following inequality,

log 1
2

log c
2

≤ dimB(E) ≤ N.

In Section 4, the uniformly perfect set with Hausdorff measure zero in its Hausdorff

dimension is also given.

§2. Uniform Perfectness of X

For the semi-group G, the discontinuous set Ω ⊂ RN of G consists of these points x, so

that there is an open ball B centered at x such that there are only finitely many g ∈ G

satisfying gB
∩
B ̸= ∅. Its complement Λ = RN\Ω is called the limit set of G.

Our first result is

Theorem 2.1. Λ = X.

Proof. For any point x ∈ Ω, there is an open ball B centered at x such that there are

only finitely many g ∈ G satisfying gB
∩

B ̸= ∅.
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Denote X0 = B,Xk =
∪

g∈Gk

g(X0) = T k(X0). Then Xk → X in the Hausdorff metric as

k → ∞. We conclude that Xk

∩
B = ∅ for large k. This implies x ̸∈ X.

On the other hand, if x ̸∈ X, there is an open ball B centered at x such that B is

disjoint with an ε0-neighborhood Nε0(X) of X for some ε0 > 0. Denote X0 = B,Xk =

T k(X0) =
∪

g∈Gk

g(X0). Then Xk ⊂ Nε0(X) for large k. This yields Xk

∩
B = ∅ for large k

and ♯{g ∈ G|gB
∩
B ̸= ∅} < ∞. Hence x ∈ Ω.

We proved that Ω = RN\X, i.e. Λ = X.

From definitions, it is clear that gX ⊂ X,Ω ⊂ gΩ for any g ∈ G and X contains fixed

points of mappings {fj |1 ≤ j ≤ m}. When mappings {fj |1 ≤ j ≤ m} have a common fixed

point x, take X0 = {x}, then Xk = T (Xk−1) = {x} for all k ≥ 1 and the self-similar set

X = {x} is a singleton. Hence X is a singleton if and only if these mappings {fj |1 ≤ j ≤ m}
have a common fixed point.

The next theorem provides a topological property of X.

Theorem 2.2. The self-similar set is either a perfect set or a singleton.

Proof. Suppose that X has an isolated point x. Choose an open ball B(x, r) centered

at x with radius r > 0 such that B(x, r)
∩
X = {x}. From Theorem 2.1, there exists

an element g ∈ G such that g(B(x, 1
2r))

∩
B(x, 1

2r) ̸= ∅. Since g(B(x, 1
2r)) is also a ball

centered at g(x) ∈ X with radius less than 1
2r, we have g(x) ∈ B(x, r) and g(x) = x.

For large k, g−k(B(x, r)) = B(x, c−kr) ⊃ X, where 0 < c = |g′(x)| < 1. This yields

gk(X) ⊂ B(x, r)
∩
X = {x}. Hence X = {x}.

The following statement is useful in the proof of our main theorem.

Theorem 2.3. Suppose that U is an open set intersecting the self-similar set X. Then

there exists gk ∈ Gk such that g−1
k U ⊃ X for every sufficiently large k.

Proof. Let x0 be a point in X
∩
U . Take a small r > 0 such that B(x0, r) ⊂ U . There is

gk ∈ Gk such that g−1
k x0 ∈ X for every k ≥ 1. Look at the preimage g−1

k B(x0, r), it is a ball

centered at g−1
k x0 ∈ X with radius at least s−kr. Choose k0 such that s−k0 > diamX, then

g−1
k0

B(x0, r) ⊃ X. For every k ≥ k0, the element gk = gk0 ◦ fj1 ◦ · · · ◦ fjk−k0
∈ Gk satisfies

g−1
k U = f−1

jk−k0
◦ · · · ◦ f−1

j1
◦ g−1

k0
U ⊃ f−1

jk−k0
◦ · · · ◦ f−1

j1
X ⊃ X,

where 1 ≤ j1, · · · , jk−k0 ≤ m.

In the remainder of this section, we give the proof of our main theorem.

Proof of the Main Theorem. We assume X is not a singleton. Suppose X is not

uniformly perfect. Then there is a sequence of round annuli {An} in RN\X = Ω, An =

{x|rn ≤ |x−xn| ≤ Rn} with center xn in X, separating X such that Rn

rn
→ +∞ as n → +∞.

The condition Rn ≤ diamX < +∞ implies that rn tends to 0.

From Theorem 2.2, X contains uncountably many points. Fix two points of X which is

of distance greater than a given δ > 0. For every gk ∈ Gk,

g−1
k B(xn, rn) = B(g−1

k xn, |(g−1
k )′(xn)|rn),

where s−k ≤ |(g−1
k )′(xn)| ≤ s−k. From Theorem 2.3 and its proof, we can choose the first

integer kn and an element gkn ∈ Gkn for large n such that the diameter of g−1
kn

B(xn, rn)

exceeds sδ and g−1
kn

xn ∈ X. The diameter of g−1
kn

B(xn, rn) is at most δ.

Denote Ãn = g−1
kn

An = {x|r̃n ≤ |x−x̃n| ≤ R̃n}. Then Ãn ⊂ Ω = RN\X, x̃n = g−1
kn

xn ∈ X

and 1
2sδ ≤ r̃n ≤ 1

2δ. Hence {x||x − x̃n| ≤ R̃n} contains at most one of these two (fixed)
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points for large n. Consequently {x||x− x̃n| > R̃n} intersects X and R̃n ≤ diamX < +∞.

Since R̃n

r̃n
= Rn

rn
tends to ∞, we conclude that r̃n tends to 0. It contradicts with r̃n ≥ 1

2sδ.

This completes the proof of the main theorem.

§3. Hausdorff Dimension of Self-Similar Sets

Let A be a non-empty bounded subset of RN , and 0 ≤ s ≤ N . For each δ > 0 let

Hs
δ(A) = inf

{∑
i

(diam(Ui))
s : A is covered by sets

Ui with 0 < diam(Ui) ≤ δ
}
,

where the infimum is taken over all coverings of A by a (finite or countable) collection of

sets with diameters at most δ. We may define

Hs(A) = lim
δ→0

Hs
δ(A).

We call Hs(A) the s-dimensional Hausdorff measure of A.

It is easy to see that there is a number s at which Hs(A) jumps from ∞ to 0; we call

this number s the Hausdorff (or Hausdorff-Besicovitch) dimension of A which we denote by

dimH(A). Thus

dimH(A) = sup{s : Hs(A) = ∞} = inf{s : Hs(A) = 0}.

In this section, we want to prove Corollary 1.1.

Before proving this corollary, we construct a Cantor set which has positive Hausdorff

dimension and this Cantor set is a subset of a given uniformly perfect set. This implies the

following lemma is true.

Lemma 3.1. A non-empty uniformly perfect set X has positive Hausdorff dimension.

Proof. Let c be the constant given by the definition of the uniform perfectness of X.

The following is a general observation.

Let x be any point in X, 0 < r < diam(X). We divide the radius of B(x, r) into

m = ⌊3/c⌋ + 2 equal segments. For B(x, m−1
m r), it follows from the definition that the

closed annulus A = {y|cm−1
m r ≤ |y − x| ≤ m−1

m r} meets X. Take any point y in A ∩ X.

Then B(y, 1
mr) is contained in B(x, r) and the distance d(B(y, 1

mr), B(x, 1
mr)) > 1

mr since

cm−1
m r > 3

mr.

Now we are going to construct a Cantor set C in X. Denote by d the half of the diameter

of X. We start with a point x0,0 ∈ X and take r = d. Let E0 = B(x0,0, d). Making use of the

above observation we find two disjoint balls B(x1,1,
1
md) and B(x1,2,

1
md), where x1,1 = x0,0.

The distance between them is greater than 1
md. Let E1 = B(x1,1,

1
md)∪B(x1,2,

1
md). Then

E1 ⊂ E0. Inductively, we can find Ek in Ek−1 which is a union of 2k disjoint balls with

centers in X and radii of m−kd. And the distance between any two of these balls is greater

than m−kd. With this construction, if we set C =
∞∩
k=0

Ek, then C is a Cantor set in X.

Take a unit mass on E0, split it equally between the two balls of E1, split the mass

on each of these equally between the two corresponding balls of E2, and so on, to get a

mass distribution µ on C. Each ball in Ek has mass 2−k. Let U be a subset of C with

diam(U) < d, and let k be the integer such that m−(k+1)d ≤ diam(U) < m−kd. Then U
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intersects at most one ball of Ek. Hence

µ(U) ≤ 2−k = 2(
1

d
)

log 2
log m (m−(k+1)d)

log 2
log m ≤ 2(

1

d
)

log 2
log m (diam(U))

log 2
log m

for diam(U) < d.

Since µ(C) = 1, the mass distribution principle gives

dimH(C) ≥ log 2

logm
> 0.

This completes the proof.

Proof of Corollary 1.1. From Theorem 1.1 and the above Lemma 3.1, we know this

corollary is true.

§4. Hausdorff Measure and Upper Box
Dimension of Uniformly Perfect Sets

We now define another frequently used definition of dimension.

Let F be a bounded subset of RN , and 0 ≤ s ≤ N . For δ > 0, let Nδ(F ) be the least

number of sets of diameter at most δ that can cover F . We define the lower and upper

box-counting dimensions of F as

dimB(F ) = lim
δ→0

logNδ(F )

− log δ
, dimB(F ) = lim

δ→0

logNδ(F )

− log δ
.

If these are equal, we call the common value the box-counting dimension, abbreviated to

box dimension,

dimB(F ) = lim
δ→0

logNδ(F )

− log δ
.

[Note that this is the case if Nδ(F ) ∼ δ− dimB(F )]. Box dimension has also been called metric

dimension, capacity, logarithmic density, entropy dimension, · · · .
We get precisely the same answer if we take Nδ(F ) to be the following:

(a) the least number of (closed) balls of radius δ that cover F ;

(b) the least number of sets of diameter at most δ that cover F ;

(c) the least number of cubes of side δ that cover F ;

(d) the number of cubes of the lattice of side δ that intersect F ;

(e) the largest number of disjoint balls of radius δ centred in F .

In the next, we will prove Theorem 1.2.

Proof of Theorem 1.2. Let Nδ(E) be the largest number of disjoint balls of radius δ

centred in E. Then the upper box dimension of E is dimB(E) = lim
δ→0

logNδ(E)
− log δ .

Let c be the constant in the definition of the uniform perfectness of E. The following is

a general observation.

Let x be any point in E, 0 < r < diam(E). For B(x, r), it follows from the definition

that the closed annulus A = {y|cr ≤ |y−x| ≤ r} meets E. Take any point y in A∩E. Then

B(x, c
2r) ∩B(y, c

2r) = ∅.
Thus we have N( 1

2 c)δ
(E) ≥ 2Nδ(E). Inductively, we have N( 1

2 c)
nδ(E) ≥ 2nNδ(E) for all

n ≥ 1. Fix a δ0 > 0, we have

lim
n→∞

logN( 1
2 c)

nδ0(E)

− log( 12c)
nδ0

≥ lim
n→∞

log(2nNδ0(E))

− log(( 12c)
nδ0)

=
log 1

2

log c
2

.
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That is to say, there is a subsequence {( 12c)
nδ0}n≥1 such that

lim
n→∞

logN( 1
2 c)

nδ0(E)

− log( 12c)
nδ0

≥
log 1

2

log c
2

.

Then

dimB(E) = lim
δ→0

logNδ(E)

− log δ
≥

log 1
2

log c
2

.

This completes the proof.

Evidently, when the uniformly perfect set is a segment with c = 1 in R1, in the inequality

of Theorem 1.2, the equality holds.

In the above section, we have proved that the Hausdorff dimension of the uniformly

perfect set E ⊂ RN with the uniform constant 0 < c ≤ 1 has the following inequality,

log 2

log ([ 3c ] + 2)
≤ dimH(E) ≤ N.

It is to say that the Hausdorff dimension of a uniformly perfect set is positive. In the next,

we will prove there is a uniformly perfect set whose Hausdorff measure is zero.

Self-similar sets are among the most important and the most typical fractals, which were

first considered by Moran[4] and systematically studied by Hutchinson[5]. For self-similar

sets, the Hausdorff dimension and Upper Box dimension coincide.

Let ∆ be the one-dimensional Sierpinski gasket as in [6, Fig.5.1]. In [7, p.214] one finds

a method due to Kahane to prove that H1(PL∆) = 0 for γ2,1 almost all L ∈ G(2, 1).

However, it seems to be difficult to decide for which lines L this holds. Kenyon[8] showed

that H1(PL∆) = 0 if the angle between L and the x-axis is irrational.

Applying Corollary 9.4 and Theorem 18.1 in [6] to self-similar sets such as ∆ one obtains

self-similar subsets K of R with dimH(K) = 1 and L1(K) = 0 = H1(K).

Meanwhile, we know the similar set generated by {f1, f2, · · · , fm} is either a uniformly

perfect set or a singleton. Since dimH(K) = 1, we know K is not a singleton. This uniformly

perfect set K has zero Hausdorff measure.

In the next, we give some exact examples about uniformly perfect sets with zero Hausdorff

measure.

Let the set S be a self-similar set in R2 for the three contracting linear maps

f1 : (x, y) 7→
(x
3
,
y

3

)
, f2 : (x, y) 7→

(x+ 1

3
,
y

3

)
, f3 : (x, y) 7→

(x
3
,
y + 1

3

)
.

It is easy to see S is the set of points in R2 with an expansion in base 3 using negative

powers of the base and digits {(0, 0), (1, 0), (0, 1)}, that is,

S =
{ ∞∑

i=1

αi3
−i|αi ∈ {(0, 0), (1, 0), (0, 1)}

}
.

See Figure 1.
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Fig. 1. The set S

Since the set S is self-similar and satisfies the open set condition[5], the Hausdorff dimen-

sion of S is one. We have called S the one-dimensional Sierpinski gasket. In [8], Kenyon

defined Su to be the linear projection of S onto the x-axis, Su = πu(S), where πu sends

(0, 1) to the point (u, 0), that is,

πu =

(
1 u
0 0

)
.

See Figure 2. For example, S0 is the usual “middle third” Cantor set on the interval

[0, 1/2], S 1
2
is the interval [0, 1/2].

Fig. 2

Kenyon proved Su has one-dimensional Lebesgue measure zero when the number u is

irrational. And he also proved that if u is irrational and {pi

qi
}i≥1 a sequence of rationals such

that pi+ qi ≡ 0 mod 3, qi → ∞, and there exist constants C,α > 0 for which |u− pi

qi
| < C

qαi
,

then dimH(Su) ≥ 1− 1
α .

Let M be a positive integer,

XM =
{
u is irrational in R|There is

{pi
qi

}
i≥1

a sequence of rationals such that

pi + qi ≡ 0 mod 3, qi → ∞, and there exist constants C,M > 0

for which |u− pi
qi
| < C

qMi

}
,

and let X =
∞∩
k=1

Xk. Then by the results of Kenyon, for every u ∈ X, dimH(Su) = 1. In

the next we will prove X is not empty.

Let u = 1
101!

+ 1
102!

+ 1
103!

+ · · · + 1
10n! + · · · and pi

qi
= 1

101!
+ 1

102!
+ 1

103!
+ · · · + 1

10i!
. We
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have ∣∣∣u− pi
qi

∣∣∣ = 1

10(i+1)!
+ · · · ≤ 2× 1

10(i+1)!
=

2

(10i!)i+1
≤ 2

qMi

for all i + 1 ≥ M , where qi = 10i!. It is easy to take a subsequence {pik

qik
}k≥1 such that

pik + qik ≡ 0 mod 3. This means u ∈ X.

Let Xu ⊂ R be a self-similar set for the three linear maps

x 7→ x

3
, x 7→ x+ 1

3
, x 7→ x+ u

3
.

It is easy to see that it is the set of real numbers which have an expansion in base 3 using

negative powers of 3 and digits {0, 1, u}. It is enough to prove Su = Xu. For y ∈ Su,

there is an x ∈ S such that y = πu(x) = πu

( ∞∑
i=1

αi3
−i
)
=

∞∑
i=1

πu(αi)3
−i =

∞∑
i=1

βi3
−i, where

αi ∈ {(0, 0), (1, 0), (0, 1)}, βi ∈ {(0, 0), (1, 0), (u, 0)}, so y ∈ Xu. Conversely it is also true.

Thus if u ∈ X, for example, u = 1
101!

+ 1
102!

+ 1
103!

+ · · ·+ 1
10n! + · · · , then Su is a uniformly

perfect set with Hausdorff measure zero in its Hausdorff dimension.

§5. A Counterexample

A mapping f : RN → RN is called contractive if there exists a constant 0 < c < 1 such

that |f(x1)− f(x2)| ≤ c · |x1 − x2| for all x1, x2 ∈ RN .

For a family of contractive mappings {f1, f2, · · · , fm}, which are not necessarily simili-

tudes in RN , there is also an attractor X such that X =
m∪
j=1

fj(X). But Theorem 2.2 and

the main theorem are not true generally. Now we construct a counterexample in R.

Define a function f ∈ C1(R) satisfying f(x) = x(x− 1) in [0, 1], f(x) = 1 in (−∞,−1] ∪
[2,+∞), and f(x) > 0 in (−1, 0) ∪ (1, 2). Let f1(x) = 1

2M f(x), f2(x) = f1(x) + 1, where

M = max
x∈R

|f ′(x)|. Then f1 and f2 are contractive, and f1(0) = f1(1) = 0, f2(0) = f2(1) = 1.

Denote X0 = {0, 1}. Then Xk = f1(Xk−1) ∪ f2(Xk−1) = {0, 1} for all k ≥ 1. Hence the

invariant set X of {f1, f2} consists of two points.
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