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Abstract

By using Darboux transformations, the authors give the explicit construction for local iso-
metric immersions of space forms M™(c) into space forms M2"~1(c + £2) via purely algebraic
algorithm.
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§0. Introduction

Isometric immersions of space forms M"(c) of curvature c into space forms MY (&) of
curvature ¢ have been studied by many geometers. Due to the complicated structure of
the integrability condition for isometric immersions, i.e., Gauss-Codazzi-Ricci equations,
over the past decades one focused mainly on the study of the nonexistence rather than
the explicit construction (see, e.g., [2, 6, 9, 15], etc.). Recently, it has been found that
these equations admit “Lax pairs”, i.e., they can be written as the condition for a family of
connections to be flat. This enable us to use the soliton theory to study some problems on
isometric immersions of space forms. In [11] the local isometric immersions from M"(c¢) into
M?"(c) with flat normal bundle and linearly independent curvature normals were discussed.
The Darboux transformation for the explicit expressions of such isometric immersions was
given in [16]. A general soliton theory on isometric immersions of space forms M"(c) into
M™ (&) with flat normal bundle and 0 # ¢ # & # 0 was proposed in [3]. When ¢ > ¢, there
exists a standard isometric, totally umbilical embedding ip : M™(c) — M"T1(é) (e.g., see
[8]). When ¢ < ¢, it is proved by E.Cartan!! that M™(c) cannot be locally, isometrically,
immersed into M?"~2(&), but can be into M?"~1(¢). Moreover, by the work of J.D.Moorel”]
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and E.Cartan[!, the isometric immersions M™(c) — M?"~1(¢) with ¢ < & must have flat
normal bundle and linearly independent curvature normals.

The purpose of this paper is to give the explicit expressions of the local isometric im-
mersions of the space form M"(c) into the space form M?"~!(c + £2) via the Darboux
transformation.

For this problem, the Lax pair has a twisted so(n) reduction described as in [16]. Here
we use the dressing action by two simple rational elements to express explicitly the Darboux
transformation instead of the singular Darboux transformation (a Darboux transformation
by a limit process[16]). A more general method to construct the Darboux matrix for the
twisted so(p,n — p)-hierarchy is proposed (Theorem 1.1).

Section 2 gives the Darboux transformatin for the local isometric immersion from M™(c)
into M?"~1(c+&?), the Lax set of which was shown in [11]. We present the general explicit
expression of the transformation for the position vector of M"(c) into R?"*! (Theorem 2.1),
where R2"*! denotes R?"*! or R?™1L.

In Section 3, we give the concrete explicit expression for local isometric immersions of
M"(c) into M?"~1(c + €2) derived from trivial solutions. Some interesting examples are
given, including those corresponding to the well-known sine-Gordon equation and the wave
equation (see [4, 5, 10, 12]).

§1. Backlund and Darboux Transformations
for the Twisted so(p, N—p)-hierarchy

Let

g=("f 0 (peN;0<p<N-1), (1.1)
0 In_,
where I, and In_, are identity matrices of orders p and N — p, respectively. We endow cN
the following J-Hermitian metric (, ) :
(w,z) 5 = (w, Jz), Yw,z € CV,
where (, ) stands for the canonical Hermitian metric of CV. The isometric group U(p, N —p)
of (CN,(,)s) and its Lie algebra u(p, N — p) are respectively
U(p, N —p) ={y € GL(N,C) | yJy" = J},
u(p, N —p) ={X € gI(N,C) | XJ + JX* = 0}.

Consider the group SU(p, N —p) = {y € U(p, N — p) | dety = 1} and its Lie algebra
su(p,N —p) =4{X € u(p, N —p) | trX = 0}. Clearly, as real forms of SU(p, N — p) and
su(p, N —p), SO(p, N — p) and so(p, N — p) can be expressed respectively as

G=S50(p,N-p)={yeSUp,N-p)|y=y}, G“=SU@p,N -p),
g=so(p,N —p)={X € su(p, N —p) | X = X}, g% = su(p, N —p).

Let o (# In,J) be a diagonal matrix such that 0 = Iy, which induces an involution on
g, X — 0Xo. Thus, there is the Cartan decomposition g = L & P where I and P are the
41 and —1 eigenspaces, respectively, satisfying

K,KlcK, [K,PlcP, [P,P]CK.
Let K be the subgroup corresdonding to K. Then G/K is a symmetric space. An A())
(e SL(N,C) for A € C) is said to satisfy the G/K-reality condition if

ANJAN =J, A=A,  cAN)o = A(=\). (1.3)

(1.2)
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For a fixed a € P, let
go={X €g|[X,a] =0}, gz ={Xeg|tr(XY)=0, VY € ga},

Aog = {A()\) =3 AN [ A € g, cANo = A(f/\)}.
k

Clearly, A()\) € Agg if and only if A is in K when k is even, and is in P when k is odd.
Consider the following linear system:

{ d®y = Dy(Aa + [a,v]),
®,(0) = Iy,
where a is a P-valued 1-form, v : R — g+ N P. Thus, [a,v] is a (g+ N K)-valued 1-form,
and (Aa + [a,v]) is a Ayg-valued 1-form. Suppose that ®(x,\) = @, (x), a solution to (1.4),
is holomorphic with respect to A € C. By the uniqueness of the solution to (1.4), we see
that @, satisfies the G/K-reality condition (1.3).
Let O be an open subset near co in S? = C U {oo}, and let
Gy ={f:C— GL(N,C)| f isholomorphic, f(A\)Jf(\)* = J},
G_ ={f:04 — GL(N,C) | f is holomorphic, f(A\)Jf(\)* =J, f(o0) = Iy},
G™ ={f(A\) € G_ | f(\) is a rational faction},
(G™)e ={f(N) € G™ | f()) satisfies G/K-reality condition (1.3)}.
Suppose that 7 is a J-Hermitian projection in CV, i.e., 7 satisfies 72 = 7, 7* = JrJ. Let

7+ = I —7 be the complementary J-orthogonal projection (with respect to the J-Hermitian
metric (,)). Then a simple element of G™ is

(1.4)

A —«

a—
§a,W(A):W+>\_dWL:I_ +

(1.5)

for a parameter « € C. Obviously, we have 507,%7 =&an, E—an(A) = &on(—A). By using
the method of the proof of Theorem 5.4 in [14], one can prove that G™ is generated by
simple elements formed as (1.5). Thus, we need only consider the dressing actions of simple
elements.['3 Let # be a J-Hermitian projection in the trivial bundle R” x CV, and let
7 =R" x (Im7).

Lemma 1.1. Let &) : R® — G4 be a solution to (1.4), and &5~ a simple element.
Suppose that 7 is a J-Hermitian projection in C. Set

F=0 ' =JOLIn, Oy =EanPrlas
Then there is an open neighborhood U near the origin 0 in R™ such that &y : U — Gy
satisfies the following system
{ d®y = dy(Na + [a,v + (@ — a)7 L)),
By (0) = Iy.
Proof. By Proposition 4.2 and the proof of Theorem 4.3 in [13], we see that there is an

open neighborhood U near the origin of R™ such that on U the J-orthogonal complementary
subbundle of 7 is

(1.6)

gt =d lnt = JOr Jnt.
Thus, &) : U — G4 and é;ld&h is holomorphic with respect to A € C. The asymptotic

expansion of £, # at oo is

boi ~ T+ (@a—a)A 5t +0(N72).

)
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We then have
O Ay = 6L (951 dPN)Eax + & Rd(Ear)
= Xa+[a,v+ (@ —a)7t]+ O,

Since ®;'d®, is holomorphic in C, then O(A~') = 0, which implies (1.6);. The condition
(1.6)4 follows directly from the fact that 7(0) = .

As in Lemma 1.1, ) = €a,nPrEa, = is called the dressing action by the simple element
€ar in [13].

By Lemma 1.1 and the uniqueness of the Birkhoff factorization, we have immediatly the
following Bécklund transformation.!*?!

Proposition 1.1. Let @y be a solution to (1.4), and f(\) € (G™),. Then there are an
open neighborhood U near the origin 0 in R™ and a unique smooth map D : U — (G™),
such that ®y = f(\)®xDy satisfies the following system:

{ d‘ib\ = &))\O\a+ [a,f)]),
(i))\(O) = IN;

where U = v + (dl)g; € gt NP, dy is the coefficient of the term \~' in the asymptotic
expansion of Dy at co.

In order to express explicitly the Bécklund transformation in Proposition 1.2, we consider
the dressing action by two simple elements of (G™), because there is no non-trivial simple
element in (G™),. Let 7 be a diagonal complex matrix such that 72 = o. Note that
T l=r"=7=13.

Lemma 1.2. Let mg be a real J-Hermitian projection in CV, i.e., 7y = mg, such that
ompomy = moompo. Set m =1 mor. Then, f(N) = €anl-a.ono i85 in (G™), for a € iR.

Proof. 1t is clear that omom = momo and & = omwo. Then we have

Uf(A)J = ga,oﬂa()‘)g*a,ﬂ'(A) - ga,ﬂ'(_)\)gfa,om:r(_A) = f(_)‘)v

f()\) - &,ﬁ()‘)ffd,UﬁJ(A) - gfa,oﬂa()\)ga,rr(A) = f(>\)

In fact, if orom = mowo, then (orto)rt = 7t (orteo), which yields that =+ can be
decomposed as w1+ @ mot such that 7im = 0, mifoni = 0 and omy 0 = 75. By using
a direct computation, we can see that {o &—a,0crc = Ea,mE—a,omo- Hence, without loss of
generality, we need only consider the case that 7 satisfies 7tort = 0.

Let @ be a real constant s x N matrix satisfying that QJoQ” = 0, det(QJQT) # 0. On

putting

(1.7)

m =JQT(QIQT)'Q, wt=7""mT, (1.8)

we see easily that 7tort = 0. Set
h=Qrd,, i =Jh*(hJh*)"'h,
By = EaxPrars h=Qro®_,, 7+ =Jh"(hJh*) h.
For a € iR, we have
b_, =g =705 + 1t PaFf — 20w Pa7T,

h=Qro®s — 2aQTUi>m~rf‘ = ho + iapA~1h,
where &, = (dPr/dN)|r=a, p= iQrodsJh*, A= %th*. Since

Dy = —0Dyo, DG JOL = —D,J(Ds)",
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noting that 7®,7 and iT®,7 are real we have
p=iQrods JO T QT = iQ(T®\7)J (10aT)* 0 QT = —p* = —pT,
which means that p is a real skew-symmetric s X s matrix.
Let A = 1h Jh*. Then it is easy to see that A = A + a?pA~!p. It follows that

200 200
Dy tntens = (1= 5307 ) (T 3257)

Jh*ATh

(07

A a
* %J(ah* —iah* AT p)(A + o pA™p) T (ho + iapAT h)
2

3
+ f%th*A‘lp(A +a?pA™ p) T (ho + iapAT R).

:I—

(1.9)

_ dDy- ol o~
== |y = 20 — ) (1.10)

= aJ{(ch* —iah* A p)(A + ?pA~ p) " (ho +iapA~th) — R* AR}

If s = 1, i.e., Q is a nonzero row vector in R™, then we have p = 0, h = ho, i.e., 7y = o7{ 0.

In such a case, (1.9) and (1.10) are reduced to
a h*h  oh*ho a
Dy=I—-—J{v+—+— dy = —Jolh*h
A AJ{)\+Q )\—Oé}’ 1 AJU[ 70]7

which have been shown in [16] in a different way.

Summing up, we have proved the following

Theorem 1.1. Let &5 be a solution to (1.4), and @ a real constant s x N matriz
satisfying that QJoQT = 0 and det(QJQT) # 0. Set h = Qr®, for a € iR and a # 0.
Then ®) = D(0)~1®, D, is a solution to (1.7), where Dy and dy are given respactively by
(1.9) and (1.10), and © = v + (d1)4+ -

Remark 1.1. If we take &, = ®,D, in Theorem 1.1, then @, satisfies the equation
(1.7);. Hence, Dy defined by (1.9) is a Darboux matrix of order two. Such ®, without the
normarized condition (1.7)2 may have polar points.

§2. Local Isometric Immersions of Space Forms into Space Forms

Consider local isometric immersions from an n-dimensional space form M"(c) of constant
curvature ¢ into a (2n— 1)-dimensional space form M?"~1(c+&?) of constant curvature c+¢?
with e € R\ {0}. Without loss of generality, we can assume that ¢ = 0,£1. Let U C M™(c)
be a simply connected open subset of M"(c), and ¢ : U — M?"~1(c + ¢?) a local isometric
immersion. By the work of J.D.Moorel”) and E. Cartan!!, it is known that the normal
bundle of ¢ is flat, and there exist a line of curvature coordinates (xy,--- ,x,) on U such
that the first and second fundamental forms of the immersion ¢ are given by

I= bedxf, = Zeaaibidxfnm (2.1)

where {n;,--- ,n,_1} is a parallel normal frame field. Here and from now on, we use the
following convention on ranges of indices unless otherwise stated:

1§Z,]7k,gn, 1§O¢,B,S’I’L—1
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It is known from [11] and [10] th
A= (az]) U— O(n) with an; = b; (2.2)

is a smooth map.
Let ig : M?"~1(c+e?) — M?"(c) be the standard isometric, totally umbilical embedding
(see [8]), and r. : M?"(c) — R?"*! the standard isometric embedding given by

M?™(0) = {(xo, 21, ,T2,) € R*T! | 25 = 0},
M?"(1) = {(zo, 1, ,T2n) ER* T | 22 4o 422 422 =1},
M2 (1) = {(zo, 1, ,@2,) ER*™ |2+ 23, — 28 = —1}.
Then the compositon map r =r.oigo @ : U — R2"HL e,
r:UC M"(c) S M> e+ %) 2% M2(c) Lo R2H1 (2.3)
is a local isometric immersion into R2"*! with flat normal bundle.

Set J, = (C 0 ) Then we have rJ.r” = ¢ for ¢ = £1, and r € R?>” for ¢ = 0. On

0 I,
putting r; = 9;r where 9; = 9/0x;, we see the structure equations of immersions (2.3) are
0;b; 0; b L
8]‘I'i = IJ)Z bg (Z 7é ])
b;0 b 8 b;
Z k ——71; +ebjaging + sb n, — cbfr, (2.4)
k#i 7’
€
Oing = — 3 Gaili; oin, = —er;,

where n,, is the normal frame field of the immersion ig : M?"~1(c + %) — M?"(c).
Let

€y =T, e; = bi_lri, Cn4i = Zajinj, (25)
and set
b= (by, - ,by)(€ 8", 0 = diag(dxy, - - ,dxy),
E=(eg,e1, - ,€2,)  with  Z(0) = J?, (2.6)
by .
F = (fij) € gl(n). ={Y = (yij) € gl(n) | yis = 0}, where fi; = =— (i # j).

J
For simplisity, we write an m x (2n + 1) matrix ¥ as a row matrix
1 n n

= (\11(1) (VIORRIONE
In particular, we write a (2n + 1) x (2n + 1) matrix ¥ as a block matrix
1 n n
1) \11(1,2) \11(1,3)
\11(2,1) \11(2,2) \11(2,3)
pBh  pB2) y3,3) n

3

If we take
0 0 O 0 0 —cb 0 —cbd O
a=10 0 6|, v=(0 0 —-FT' ], [guv]=(d"T w 0], (2.7)
0 —6 0 ' F 0 0 0 0
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where § = 6FT — F§, w = 0F — FT§, then the system (2.4) can be written as
d= = ZE(—¢ea + [a,v]). (2.8)

Clearly, r = 21, pT = vV F = 932 Then the Gauss-Codazzi-Ricci equation of the
immersion, i.e., the integrability condition of (2.8), is a system for (4, F) :

dA = A6,
dw +w Aw —cdbT AbS =0, (2.9)
b=FE,A,
where
E; = diag(0,---,0,1,0,--- ,0). (2.10)
NG

(i-1)
Consider the following Lax set for (2.8):
{ d(I),\:(I)A@)” where @)\:G)\"-[a,v},
®,(0) = J2.
- _ (3,3)
Clearly, E=®_., A= A(0)®;"".
Let 50e0(p, q,7) = {X € sl(p+q+7,R) | XJ+ JXT =0}, where
J = diag(0,--+,0,—1,--+ ,—1,1,--- 1).
——— —— —— ——
P q r
Obviously, $0¢,(0,0,7) = so(r) and $0.,(0,1,7r) = so(1,r). Let
80ez(1,0,2n) for ¢ =0,
g=1 so(2n+1) for ¢ =1,
so(1,2n) for ¢ = —1.

(2.11)

Set
I 0 0 —c£ 0
UZ( 8+ I)’ K= Y 0 ‘X,YESO(H),feR” ,
" 0 0 X
0 0 —ct
r={l0o o -Xx ’X € gl(n,R), £ € R"
fT XxXT 0

Clearly, a is a P-valued 1-form, and v(z) € PNgrt, i.e., Oy is a A, g-valued 1-form. When
¢ # 0, (2.9) holds if and only if the system (2.11) has a unique solution ®, satisfying that
O, (7) € AoG, b(z) € S"~1. When ¢ = 0, the (2.9) holds if and only if the system (2.11) has
a unique solution ®, such that ®, satisfies (1.3) and b(x) € S"~!. Hence, in the following,
we give a unified treatment for the cases that ¢ # 0 and ¢ = 0. The following result can be
found in [11] and [10].

Proposition 2.1.1010 Let U M™(c) be a simply connected open neighborhood at
20 =0, and ¢ : U — M?*"~(c+€?) a local isometric immersion. Then there exists a smooth
map (F,b) : U — gl(n), x S"~! such that ©y defind in (2.11) is a flat connection, i.e., there
exists a unique solution ®y to (2.11) such that (I>(_12 =r.otg0 . Conversely, if ®y for some
(F,b) : R™ — gl(n), x S"~! is a unique solution to (2.11), then there exists a smooth map
A = (a;;) : R™ = O(n) such that b = E,, A. Moreover, if U = {z € R™ | b;(z) #0 for all i}
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is mot empty, then there exists a local isometric immersion ¢ : U — M*"~1(c + €2) such
that the first and second fundamental forms for ¢ are given by (2.1), and ro0igo0 p = <1>(}§
We now consider Darboux transformations preserving b(x) € S™~! for solutions to (2.11).
Lemma 2.1. Let ®y be a solution of (2.11) with b(z) = E,A € S"™1, and Q a complex
constant s x (2n+1) matriz. Set A\g € C, h = Q®y, = (£,71,¢). Then we have d(CbT —\o€) =
0.

Proof. From (2.11) it follows that dh = h©,,, i.e.,
dé =nobT,  dn = —c&bS +nw — XoCd,  dC = And + €.
On the other hand, we see from (2.9) that db = bf. Hence, we have
d(¢DT = Xo€) = (dO)bT + Cdb™ — Aode
= CObT + NonobT + ¢OTBT — NondbT = 0.
Let p € R\ {0}, and @ be a real constant s X (2n + 1) matrix. Set
h=Qrd;,, I = % =iQTd;,.

Since 7®;,,7 is a real matrix, both hr and h'7 are real matrices. If we write ht = (=&, -7, (),
then h = (i&,in, ), b’ = (i¢',in’, ('), where &, n,  satisfy

d¢ = nébT,
dn = —c&bd + nw — pdo, (2.12)
d¢ = —und + 6.
By Lemma 2.1 and Theorem 1.1, if we choose () such that
QJ.oQ" =0,  det(QJ.QT) #0,  QWH(0)" +pM =0, (2.13)

then there exists an open neighborhood U at = 0 such that on U we have
hdeoh* = (T — " — 6T =0,
det(hJ.h*) # 0, (2.14)
¢ + g =0.
Moreover, Dy and d; defined in (1.9) and (1.10) can be expressed explicitly as
pest (A —pp) =t pegT (A —pp)~tn Ae€T(A+ pp)~'¢

Dy=1-57 " /mTT(A - up)‘_llﬁ /mTT(A - up)‘_l? An;(A + up):C :
A (A = pp) ™ AT (A= pp) Ty uCt (A + pp)IC J(2.15)
0 0 —c€" (A + pp) ¢
dy = 2p 0 0 =" (A+pp)C |,
CT(A—pp)™te (T(A—pp)~'n 0
where
A= %hjch* = ¢t =t 4 et (2.16)

p=—Halh” = €€ 4y’ — (T = (&g +myT - ().
Let &\ = &,D,. Then, by Theorem 1.1, ®, satisfies
d®y = ®\(\a + [a, 7)),
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where ¥ = v + (d1),1 and (Aa + [a, 7]) is a Ayg-valued 1-form. Then we have

F =95 = F 4 2u(¢"(A = pp) "' n)os,
b= (03N = b+ 2u" (A + pp) ¢, (2.17)
A=A0)0 = ADF® = A - 24¢T(A + pp) ¢,
where ()ogr denotes the matrix without diagonal elements.
Noting that b¢7 + uéT = 0 and A = ¢¢7', we have
bb" = bb" + 27T {2(A + pp) AN — pp) T = (A = pp) Tt — (At pp) T IE
=" =1.
Moreover, it is easy to see that A € O(n) and E,A=0b-— 20CT (A + pup)~1¢ = b. Hence, by
Proposition 2.1, we have proved the following theorem.
Theorem 2.1. Let p : M"(c) — M?"1(c+¢e2) be a local isometric immersion, and ®y
a solution of (2.11). Let u € R\ {0}, and Q be a real constant s x (2n+ 1) matriz satisfying
(2.13). Set h = Q7P;, = (i&,in,(), Pr = ®rDx where Dy is the Darboux matriz (2.15)
determined by h. If b;(0) # 0 for all j, then there exist an open neighborhood U at x = 0

and a local isometric immersion @ : U — M*"T1(c+¢?) such that ¥ = r.0igo @ is expressed
expicitly via r =r.01i90 ¢ as

- T(A— up )7
=" =o_pW=— 2+u Z a;r;

b CL (A — pp)~ 15 0 (A —pp)~'e
EINEE St e

2u2c
+ {1 E 567 (A — pp)” 15}
where ( = (C1,++ , o) and n = (N1, ,1n). )

Remark 2.1. The above process Q — h — D), — ®, by making use of the Darboux
transformation is a purely algebraic algorithm. Starting from a special solution @) of (2.11),

even if @92 = r is degenerate, we can obtain a series of new solutions to (2.11): &) —

By =Py — - by iterating such construction, so that we obtain a series of local isometric
immersions from M"(c) into M~ 1(c + £2).

The Darboux transformation can also be realized by solving directly the system (2.12)
of ordinary differential equations with restricted conditions (2.14). It is equivalent to relin-
quishing the normalization condition in (2.11). The solutions obtained in such a way are
the same as that in the above process when ¢ # 0. In the case that ¢ = 0, we may obtain
more solutions.

¢3. Local Isometric Immersions of Space
Forms Derived from Trivial Solutions

We take a trivial solution of (2.9) as F =0, A=1,, b= (0,0,---,0,1). Let

0 0 0 0 —cb
a; = 0 0 EZ 5 B= bT 0
0 —-E; O 0 0

o O O
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where E; is defined by (2.10). Then the system (2.11) can be written as

8QCDA = )\<I>>\am
On®y = <I>>\()\an + B), (31)
,(0) = J2.

n
We solve (3.1) to get &) = erxp{)\ > ajm; + Bacn}. Written concretely, it is
i=1

S(eX,+22) 0 -0 -ty 0 -0 26(X,-1)
0 X1 Y1
0 Xn—l Yn—l
0 -V X,
0 —In—-1 anl
25(Xn — 1) -2y, S (A2 X, + )
where

v=v(A)=vVA+e¢ X,=cos(\x,), X, =cos(va,), Y, =sin(Az,), Y, =sin(vz,).
Choose 1 € R and [ = (lg,l1, -+ ,l2,) € R?"F! such that

SR =YBHdi#0,  lyn+ Py =0, (3.3)
i j

It is easily seen that h = I7®;, = (lT@gi),lT@gi),lT@gi)) = (i€,1in, () satisfies (2.12) and
(2.14), where

¢ = Plgcos(iyry) — lnlsin(ivxn),
v
Na = —lntash(pra) + lach(pz,),

Np = lgnﬂsin(ivxn) + lycos(iyey,),
1

(3.4)
Co = lntach(pza) — lash(pza),
Cn = lopcos(iyey,) + ln%sin(i’yxn) = —pué,
Y
y=+v/p2—c €R (for y* > ¢) or iR (for u? < c).
Here when u? =c, i.e., v = 0, we have
§= 62107 Cn =l = —pi€.
From (3.2), (2.15), (2.16) and (2.17) we know that
r= <I>(_15)
2 (ccos(v(e)xy) +€2) sin(v(e)xn) e(1 — cos(v(e)xy)) ’
= 2 307"'30773();"'703 2 )
(v(¢)) v(e) (v(€))
1 T
p) = [ERRTY (€% + A = 2¢C2, 2uCan™ , 26¢aCT) (3.5)
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¢’¢
A —_— I - QT,
b= % (—%cm--- s =260-1Gny Y G2 —ci) : (3.6)

It is obvious that r is degenerated as a curve in M?" 1(c + £2). So we can not use
(2.18) to get a new immersion ¥. We should use directly the formula ¥ = <I>_5D(_15) in a
neighborhood U of the origin. Such t is nondegenerate only if there exists a point & € U
such that l;](;%) # 0 for all j. For this aim, we need only to choose suitably [ such that

(nCa(Z) # 0 and 3. ¢2(2) — C2(2) # 0. Then there exists an open neighborhood U of &

such that r is nondegenerate in U , which implies that there is a local isometric immersion
@ : U — M?"~ (¢ + €?). Moreover, by using ®, we can obtain a new solution ®y of (2.11).
Continuing this process, a series of immersions are obtained by an algebraic algorithm. In
the following, we consider two cases respectively.

Case (i) ¢ #0, i.e., ¢ = 1.

For p? > ¢, we take | = (—pu Y, Iy, lne1, Y My lay - -+, 1) with 1 # 0 for all 4. Tt
is clear that (3.3) is satisfied. Then we have from (3.4) and (3.6)

ln 1
§ =——e 7 = _74_717 Na = lae_’””‘*_W" = Ca,
H Hw
~ 2
Np = llne_w", by = _Zlalne_’m“_w”,
~ 1

where A is defined by (2.16). Since [; # 0 for all j, we have b, (0) # 0. If [ is chosen suitably
such that Y12 # (2, then b, (0) # 0.

For y? < ¢ = 1, we can take | = (lo,l1, * ,ln—2,0,0,11, - ,ln_2,ivly, —uly), where
n—2
lo—1 # 0 for all a, and Y7 15 + (1 — 2p%)lg # 0. The remainder is similar to the above.
j=1

Example 3.1. ¢ = —1, ¢ = 1. This is the isometric immersion M"(—1) — R?"~! as in
[12]. We have

1 ./ - 1 oz
§=——lpe wAtlen :_;Cna Na = Ca = lae™H",

n

)%
VAT / /
— /’LM+ ln€7 I—L2+11n’ A = Z liefzufba 4 136—2 #2+1In7
[e3%
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Yo (b + e + (i + 3)IF e 2Vt
2y l,e~ P =V AT (cong — sina)

_ _ 2 .
2,1l HEn—1= VIS (hcosy, | — sing, 1)

- 1
STy 2/ Tl 7
2llln6_“’”1_\/m““ (coszy + psinzy)
2ln,1lne’“r"—1*\/“27+1"3" (coszp_1 + psinz, 1)
2126—2\//@—}-1377,,
An —2llge—ml@rte) L _9p 1 emhri—\/pi e,
,2111267u(z1+x2) 12122 R /21
~ 1 . . ... .
A=—
A .
—2041,,_ e HlE1tTn_1) . e .
21, eV : . i,
with

A’Ziaoz = Z Z%G*Qp,zﬁ — lgle*zﬂza + 13672\/174493”7
fa
Ann = ZI%G_QMZB — 126_2\/“27“3”.
B

It is known that A and F = %" (¢T'n)of satisfy the GSGE (generalized Sine-Gordon equation)
(2.9).
In particular, if n = 2 and we set

1 el 2 ey
cosp = K(l%eﬂ‘“l - 15672 “2+1:”2), sing = lelge*“‘“* “2“"”2,
then ¢(x1,x2) satisfies the well-known Sine-Gordon equation ¢y, — @rye, = —SINGCOSP.
Example 3.2. n=2. c=¢ =y = 1. Then we have
E=—G=—l, m=G=he™, =0, (I,lb#0, [§]—13#0).

SL3(cosv2xy — 1) + e~ 21 (cosv/2zs + 1)
l1loe™*t (cosx; — sinxq)

F= o 1 (siny/2) (e — I3) 7
l1loe™** (cosx + sinzq)
113(cosv2xs + 1) + $13e 2% (cosv/2z5 — 1)
- 1 (l% — 3e2m —2lylpe™™ )
A\ —2l1lge™ %1 l%e‘”1 — l% ’

where A = (fe72*1 + 12, If we set cosyy = x (Ife™2*1 —13), singy = Zlyle™"*, then ¢ (21, z2)
satisfies the sine-Gordon equation 9z, 2, — VYz,2, = sinycosy.

Case (ii) ¢ =0.

It follws from (3.3) and (3.4) that v =\, v = p, la, = 0 and

CnCo = lnsh(pay) (lntach(pzs) — lash(ux,)),
Z Ci - <721 = Z(ln-&-aCh(Nma) - laSh(Nxa))2 - liShQ(Uzn)-

[
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Thus, we need only to take [ such that [,, # 0 and [2 +12, , # 0 for all . Then there exists

n+ao

a point & in a neighborhood of the origin such that ZN)J(i) # 0 for all j.
On the other hand, we can directly solve systems (2.12) and (2.14) and obtain

C
E=—— e =G =G,

where C; (1 < j < n) are real constants. If C; # 0 for all j, and 3. C2 # C2, then b;(0) # 0
for all j. :
Example 3.3. n=2. ¢=0,c=pu=1. We have

0
Cy Cye~(@1+22) (cosxy — sinzy)

1
r= X C2e2%2 (cosxy — sinzg) + Asinzy ,
C1 Cye~(@1H22) (cosxy + sinzy)
C2e=2%2(coswg + sinzy) + A(sinzg — 1)
~ 1
b= R (-2C1Coe™ ("772), CFe™2 — CFem).

If we set

—2 1
costp = K01()26*@01“6’2), sing = +(Ce ™" — Cfe™™"),

then 9 (x1,x2) satisfies the homogeneous wave equation ¥z, — Yeyz, = 0.

Example 3.4. ¢ = 0. We take b = ﬁ(l, -++,1), A € O(n) constant such that b = E, A,
and F' = 0. Then we have

0 0 0

1 . .
—/\ﬁsm)\ml COSAT1 sin\x

1 . .
O, msm)\xn COSAZ,, sin\z,,

1 .
/\\/ﬁcos/\xl sin\zq COSAT

1 .
A—\/ﬁcos)\xn —sinAx, COSATy,

Set ¢ = 1/4/n. Then r = (O,Sin%,--~ ,Sin%,—cos%,“'
n-torus T™ in R?" and T" — S?"~1(\/n) C R?".
A solution of (2.12) and (2.14) is

~1
pn £

— 2Zp \T 3
, cosﬁ) is a standard

By making the Darboux transformation, we get a new flat submanifold in S?*~1(\/n), of
which the position vector is

r= (07f17"' af-2n>7
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where
- 2K T x;
rjimll (fﬂcos%fsmT)Jrsmf
- 2K s x;
rn+j:mlje #J( T—}—fﬂsm%)—cosf
K = Z le 1ok, A= Zlie‘Q““.
k k
On putting
.
/’[’ - \/ﬁ’ y_] - \/ﬁ?
we have
= (0, glle’yl (cosy; —sinyy) +sinyy, -+, glle’yl (cosys +siny;) — cosyq, - - ~),

on which the induced metric is

ds* = Z (1 - %ljefyj)Q(dyj)Q.

J
REFERENCES

[1] Cartan, E., Sur les variétés de courbure constante d’un espace euclidien ou noneuclidien, Bull. Soc.
Math. France, 47(1919), 132-208.

[2] Chern, S. S. & Kuiper, N. H., Some theorems on the isometric embedding of compact Riemannian
manifolds in Euclidean space, Ann. of Math., 56(1952), 422-430.

[3] Ferus, D. & Pedit, F., Isometric immersions of space forms and soliton theorey, Math. Ann., 305(1996),
320-343.

[4] Gu, C. H. & Hu, H. S., Explicit solutions to the intrinsic generalization for the wave and sine-Gordon
equations, Lett. Math. Phys., 29(1993), 1-11.

[5] Gu, C. H,, Hu, H. S. & Zhou, Z. X., Darboux transformation in soliton theory and its geometric
apphcatlons Shanghai Sci. & Tech. Publ., Shanghai, 1999.

[6] Hilbert, D., Uber Flichen von konstanter Gausscher Kriimmung, Trans. AMS, 2(1901), 87-99.

[7] Moore, J. D Isometric immersions of space forms in space forms, Pacific J. Math., 40(1972), 157-166.

[8] Palais, R. S. & Terng, C. L., Critical point theory and submanifold geometry, Lect. Notes in Math.
1353, Springer-Verlag, 1988.

[9] Pedit, F., A non-immersion theorem for space forms, Comment. Math. Helv., 63(1988), 672-674.

[10] Tenenblat, K., Backlund’s theorem for submanifolds of space forms and a generalized wave equation,
Bol. Soc. Brasil. Mat., 16(1985), 67-92.

[11] Terng, C. L., Soliton equations and differential geometry, J. Diff. Geom., 45(1997), 407-445.

[12] Terng, C. L., A higher dimensional generalization of the sine-Gordon equation and its soliton theory,
Ann. of Math., 111(1980), 491-510.

[13] Terng, C. L. & Uhlenbeck, K., Backlund transformations and loop group actions, Communi. Pure and
Appl. Math., 53(2000), 1-75.

[14] Uhlenbeck, K., Harmonic maps into Lie groups (classical solutions of the Chiral model), J. Diff. Geom.,
30(1989), 1-50.

[15] Xavier, F., A non-immersion theorem for hyperbolic manifolds, Comment. Math. Helv., 60(1985), 280—
283.

[16] Zhou, Z. X., Darboux transformations for the twisted so(p, ¢) system and local isometric immersion of
space forms, Inverse Problems, 14(1998), 1353-1370.



