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Abstract

By using Darboux transformations, the authors give the explicit construction for local iso-
metric immersions of space forms Mn(c) into space forms M2n−1(c+ ε2) via purely algebraic
algorithm.
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§0. Introduction

Isometric immersions of space forms Mn(c) of curvature c into space forms MN (c̃) of
curvature c̃ have been studied by many geometers. Due to the complicated structure of
the integrability condition for isometric immersions, i.e., Gauss-Codazzi-Ricci equations,
over the past decades one focused mainly on the study of the nonexistence rather than
the explicit construction (see, e.g., [2, 6, 9, 15], etc.). Recently, it has been found that
these equations admit “Lax pairs”, i.e., they can be written as the condition for a family of
connections to be flat. This enable us to use the soliton theory to study some problems on
isometric immersions of space forms. In [11] the local isometric immersions fromMn(c) into
M2n(c) with flat normal bundle and linearly independent curvature normals were discussed.
The Darboux transformation for the explicit expressions of such isometric immersions was
given in [16]. A general soliton theory on isometric immersions of space forms Mn(c) into
MN (c̃) with flat normal bundle and 0 ̸= c ̸= c̃ ̸= 0 was proposed in [3]. When c > c̃, there
exists a standard isometric, totally umbilical embedding i0 : Mn(c) → Mn+1(c̃) (e.g., see
[8]). When c < c̃, it is proved by E.Cartan[1] that Mn(c) cannot be locally, isometrically,
immersed into M2n−2(c̃), but can be into M2n−1(c̃). Moreover, by the work of J.D.Moore[7]
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and E.Cartan[1], the isometric immersions Mn(c) → M2n−1(c̃) with c < c̃ must have flat
normal bundle and linearly independent curvature normals.

The purpose of this paper is to give the explicit expressions of the local isometric im-
mersions of the space form Mn(c) into the space form M2n−1(c + ε2) via the Darboux
transformation.

For this problem, the Lax pair has a twisted so(n) reduction described as in [16]. Here
we use the dressing action by two simple rational elements to express explicitly the Darboux
transformation instead of the singular Darboux transformation (a Darboux transformation
by a limit process[16]). A more general method to construct the Darboux matrix for the
twisted so(p, n− p)-hierarchy is proposed (Theorem 1.1).

Section 2 gives the Darboux transformatin for the local isometric immersion from Mn(c)
into M2n−1(c+ ε2), the Lax set of which was shown in [11]. We present the general explicit
expression of the transformation for the position vector ofMn(c) into R2n+1

c (Theorem 2.1),
where R2n+1

c denotes R2n+1 or R2n,1.
In Section 3, we give the concrete explicit expression for local isometric immersions of

Mn(c) into M2n−1(c + ε2) derived from trivial solutions. Some interesting examples are
given, including those corresponding to the well-known sine-Gordon equation and the wave
equation (see [4, 5, 10, 12]).

§1. Bäcklund and Darboux Transformations
for the Twisted so(p,N−p)-hierarchy

Let

J =

(
−Ip 0
0 IN−p

)
(p ∈ N; 0 ≤ p ≤ N − 1), (1.1)

where Ip and IN−p are identity matrices of orders p and N − p, respectively. We endow CN

the following J-Hermitian metric ⟨, ⟩J :
⟨w, z⟩J = ⟨w, Jz⟩, ∀w, z ∈ CN ,

where ⟨, ⟩ stands for the canonical Hermitian metric of CN . The isometric group U(p,N−p)
of (CN , ⟨, ⟩J) and its Lie algebra u(p,N − p) are respectively

U(p,N − p) = {y ∈ GL(N,C) | yJy∗ = J},
u(p,N − p) = {X ∈ gl(N,C) | XJ + JX∗ = 0}.

Consider the group SU(p,N − p) = {y ∈ U(p,N − p) | dety = 1} and its Lie algebra
su(p,N − p) = {X ∈ u(p,N − p) | trX = 0}. Clearly, as real forms of SU(p,N − p) and
su(p,N − p), SO(p,N − p) and so(p,N − p) can be expressed respectively as

G = SO(p,N − p) = {y ∈ SU(p,N − p) | y = y}, GC = SU(p,N − p),

g = so(p,N − p) = {X ∈ su(p,N − p) | X = X}, gC = su(p,N − p).
(1.2)

Let σ (̸= IN , J) be a diagonal matrix such that σ2 = IN , which induces an involution on
g, X 7→ σXσ. Thus, there is the Cartan decomposition g = K ⊕ P where K and P are the
+1 and −1 eigenspaces, respectively, satisfying

[K,K] ⊂ K, [K,P] ⊂ P , [P,P] ⊂ K.
Let K be the subgroup corresdonding to K. Then G/K is a symmetric space. An A(λ)
(∈ SL(N,C) for λ ∈ C) is said to satisfy the G/K-reality condition if

A(λ)JA(λ̄)∗ = J, A(λ̄) = A(λ), σA(λ)σ = A(−λ). (1.3)
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For a fixed a ∈ P, let

ga = {X ∈ g | [X, a] = 0}, g⊥a = {X ∈ g | tr(XY ) = 0, ∀Y ∈ ga},

∧σg =
{
A(λ) =

∑
k

Akλ
k | Ak ∈ g, σA(λ)σ = A(−λ)

}
.

Clearly, A(λ) ∈ ∧σg if and only if Ak is in K when k is even, and is in P when k is odd.
Consider the following linear system:{

dΦλ = Φλ(λa+ [a, v]),

Φλ(0) = IN ,
(1.4)

where a is a P-valued 1-form, v : Rn → g⊥a ∩ P. Thus, [a, v] is a (g⊥a ∩ K)-valued 1-form,
and (λa+ [a, v]) is a ∧σg-valued 1-form. Suppose that Φ(x, λ) = Φλ(x), a solution to (1.4),
is holomorphic with respect to λ ∈ C. By the uniqueness of the solution to (1.4), we see
that Φλ satisfies the G/K-reality condition (1.3).

Let O∞ be an open subset near ∞ in S2 = C ∪ {∞}, and let

G+ = {f : C → GL(N,C) | f is holomorphic, f(λ)Jf(λ̄)∗ = J},
G− = {f : O∞ → GL(N,C) | f is holomorphic, f(λ)Jf(λ̄)∗ = J, f(∞) = IN},
Gm

− = {f(λ) ∈ G− | f(λ) is a rational faction},
(Gm

− )σ = {f(λ) ∈ Gm
− | f(λ) satisfies G/K-reality condition (1.3)}.

Suppose that π is a J-Hermitian projection in CN , i.e., π satisfies π2 = π, π∗ = JπJ. Let
π⊥ = I−π be the complementary J-orthogonal projection (with respect to the J-Hermitian
metric ⟨, ⟩J). Then a simple element of Gm

− is

ξα,π(λ) = π +
λ− α

λ− ᾱ
π⊥ = I − α− ᾱ

λ− ᾱ
π⊥ (1.5)

for a parameter α ∈ C. Obviously, we have ξ−1
α,π = ξᾱ,π, ξ−α,π(λ) = ξα,π(−λ). By using

the method of the proof of Theorem 5.4 in [14], one can prove that Gm
− is generated by

simple elements formed as (1.5). Thus, we need only consider the dressing actions of simple
elements.[13] Let π̃ be a J-Hermitian projection in the trivial bundle Rn × CN , and let
π̃ = Rn × (Imπ̃).

Lemma 1.1. Let Φλ : Rn → G+ be a solution to (1.4), and ξᾱ,π a simple element.
Suppose that π is a J-Hermitian projection in CN . Set

π̃ = Φ−1
α π = JΦ∗

ᾱJπ, Φ̃λ = ξᾱ,πΦλξα,π̃.

Then there is an open neighborhood U near the origin 0 in Rn such that Φ̃λ : U → G+

satisfies the following system{
dΦ̃λ = Φ̃λ(λa+ [a, v + (ᾱ− α)π̃⊥]),

Φ̃λ(0) = IN .
(1.6)

Proof. By Proposition 4.2 and the proof of Theorem 4.3 in [13], we see that there is an
open neighborhood U near the origin of Rn such that on U the J-orthogonal complementary
subbundle of π̃ is

π̃⊥ = Φ−1
ᾱ π⊥ = JΦ∗

αJπ
⊥.

Thus, Φ̃λ : U → G+ and Φ̃−1
λ dΦ̃λ is holomorphic with respect to λ ∈ C. The asymptotic

expansion of ξα,π̃ at ∞ is

ξα,π̃ ∼ I + (ᾱ− α)λ−1π̃⊥ +O(λ−2).
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We then have

Φ̃−1
λ dΦ̃λ = ξ−1

α,π̃(Φ
−1
λ dΦλ)ξα,π̃ + ξ−1

α,π̃d(ξα,π̃)

= λa+ [a, v + (ᾱ− α)π̃⊥] +O(λ−1).

Since Φ̃−1
λ dΦ̃λ is holomorphic in C, then O(λ−1) = 0, which implies (1.6)1. The condition

(1.6)2 follows directly from the fact that π̃(0) = π.

As in Lemma 1.1, Φ̃λ = ξᾱ,πΦλξα,π̃ is called the dressing action by the simple element
ξα,π in [13].

By Lemma 1.1 and the uniqueness of the Birkhoff factorization, we have immediatly the
following Bäcklund transformation.[13]

Proposition 1.1. Let Φλ be a solution to (1.4), and f(λ) ∈ (Gm
− )σ. Then there are an

open neighborhood U near the origin 0 in Rn and a unique smooth map D : U → (Gm
− )σ

such that Φ̃λ = f(λ)ΦλDλ satisfies the following system:{
dΦ̃λ = Φ̃λ(λa+ [a, ṽ]),

Φ̃λ(0) = IN ,
(1.7)

where ṽ = v + (d1)g⊥
a

∈ g⊥a ∩ P, d1 is the coefficient of the term λ−1 in the asymptotic
expansion of Dλ at ∞.

In order to express explicitly the Bäcklund transformation in Proposition 1.2, we consider
the dressing action by two simple elements of (Gm

− )σ because there is no non-trivial simple
element in (Gm

− )σ. Let τ be a diagonal complex matrix such that τ2 = σ. Note that
τ−1 = τ∗ = τ̄ = τ3.

Lemma 1.2. Let π0 be a real J-Hermitian projection in CN , i.e., π̄0 = π0, such that
σπ0σπ0 = π0σπ0σ. Set π = τ−1π0τ . Then, f(λ) = ξα,πξ−α,σπσ is in (Gm

− )σ for α ∈ iR.
Proof. It is clear that σπσπ = πσπσ and π̄ = σπσ. Then we have

σf(λ)σ = ξα,σπσ(λ)ξ−α,π(λ) = ξα,π(−λ)ξ−α,σπσ(−λ) = f(−λ),

f(λ̄) = ξᾱ,π̄(λ)ξ−ᾱ,σπ̄σ(λ) = ξ−α,σπσ(λ)ξα,π(λ) = f(λ).

In fact, if σπσπ = πσπσ, then (σπ⊥σ)π⊥ = π⊥(σπ⊥σ), which yields that π⊥ can be
decomposed as π1

⊥ ⊕ π2
⊥ such that π⊥

1 π
⊥
2 = 0, π⊥

1 σπ
⊥
1 = 0 and σπ⊥

2 σ = π⊥
2 . By using

a direct computation, we can see that ξα,πξ−α,σπσ = ξα,π1ξ−α,σπ1σ. Hence, without loss of
generality, we need only consider the case that π satisfies π⊥σπ⊥ = 0.

Let Q be a real constant s×N matrix satisfying that QJσQT = 0, det(QJQT ) ̸= 0. On
putting

π⊥
0 = JQT (QJQT )−1Q, π⊥ = τ−1π⊥

0 τ, (1.8)

we see easily that π⊥σπ⊥ = 0. Set

h = QτΦα, π̃⊥
1 = Jh∗(hJh∗)−1h,

Φ̂λ = ξᾱ,πΦλξα,π̃1 , h̃ = QτσΦ̂−α, π̃⊥
2 = Jh̃∗(h̃Jh̃∗)−1h̃.

For α ∈ iR, we have

Φ̂−α = Φ̂ᾱ = πΦᾱ + π⊥Φᾱπ̃
⊥
1 − 2απΦ̇ᾱπ̃

⊥
1 ,

h̃ = QτσΦᾱ − 2αQτσΦ̇ᾱπ̃
⊥
1 = hσ + iαρ∆−1h,

where Φ̇ᾱ = (dΦλ/dλ)|λ=ᾱ, ρ = iQτσΦ̇ᾱJh
∗, ∆ = 1

2hJh
∗. Since

Φ̇ᾱ = −σΦ̇ασ, Φ̇αJΦ
∗
ᾱ = −ΦαJ(Φ̇ᾱ)

∗,
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noting that τΦατ and iτ Φ̇ατ are real we have

ρ = iQτσΦ̇ᾱJΦ
∗
ατ

∗QT = iQ(τΦατ)J(τ Φ̇ᾱτ)
∗σQT = −ρ∗ = −ρT ,

which means that ρ is a real skew-symmetric s× s matrix.

Let ∆̃ = 1
2 h̃ Jh̃

∗. Then it is easy to see that ∆̃ = ∆+ α2ρ∆−1ρ. It follows that

Dλ := ξα,π̃1ξ−α,π̃2 =
(
I − 2α

λ+ α
π̃⊥
1

)(
I +

2α

λ− α
π̃⊥
2

)
= I − α

λ+ α
Jh∗∆−1h

+
α

λ− α
J(σh∗ − iαh∗∆−1ρ)(∆ + α2ρ∆−1ρ)−1(hσ + iαρ∆−1h)

+
2iα3

λ2 − α2
Jh∗∆−1ρ(∆ + α2ρ∆−1ρ)−1(hσ + iαρ∆−1h).

(1.9)

d1 =
dDλ−1

dλ

∣∣∣
λ=0

= 2α(π̃⊥
2 − π̃⊥

1 )

= αJ{(σh∗ − iαh∗∆−1ρ)(∆ + α2ρ∆−1ρ)−1(hσ + iαρ∆−1h)− h∗∆−1h}.
(1.10)

If s = 1, i.e., Q is a nonzero row vector in Rn, then we have ρ = 0, h̃ = hσ, i.e., π̃⊥
2 = σπ̃⊥

1 σ.
In such a case, (1.9) and (1.10) are reduced to

Dλ = I − α

∆
J

{
h∗h

λ+ α
− σh∗hσ

λ− α

}
, d1 =

α

∆
Jσ[h∗h, σ],

which have been shown in [16] in a different way.

Summing up, we have proved the following

Theorem 1.1. Let Φλ be a solution to (1.4), and Q a real constant s × N matrix
satisfying that QJσQT = 0 and det(QJQT ) ̸= 0. Set h = QτΦα for α ∈ iR and α ̸= 0.

Then Φ̃λ = Dλ(0)
−1ΦλDλ is a solution to (1.7), where Dλ and d1 are given respactively by

(1.9) and (1.10), and ṽ = v + (d1)g⊥
a
.

Remark 1.1. If we take Φ̃λ = ΦλDλ in Theorem 1.1, then Φ̃λ satisfies the equation
(1.7)1. Hence, Dλ defined by (1.9) is a Darboux matrix of order two. Such Φ̃λ without the
normarized condition (1.7)2 may have polar points.

§2. Local Isometric Immersions of Space Forms into Space Forms

Consider local isometric immersions from an n-dimensional space formMn(c) of constant
curvature c into a (2n−1)-dimensional space formM2n−1(c+ε2) of constant curvature c+ε2

with ε ∈ R \ {0}. Without loss of generality, we can assume that c = 0,±1. Let U ⊂Mn(c)
be a simply connected open subset of Mn(c), and φ : U →M2n−1(c+ ε2) a local isometric
immersion. By the work of J.D.Moore[7] and E. Cartan[1], it is known that the normal
bundle of φ is flat, and there exist a line of curvature coordinates (x1, · · · , xn) on U such
that the first and second fundamental forms of the immersion φ are given by

I =
∑
i

b2i dx
2
i , II =

∑
α,i

εaαibidx
2
inα, (2.1)

where {n1, · · · ,nn−1} is a parallel normal frame field. Here and from now on, we use the
following convention on ranges of indices unless otherwise stated:

1 ≤ i, j, k, · · · ≤ n; 1 ≤ α, β, · · · ≤ n− 1.
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It is known from [11] and [10] that

A = (aij) : U → O(n) with anj = bj (2.2)

is a smooth map.
Let i0 :M2n−1(c+ ε2) →M2n(c) be the standard isometric, totally umbilical embedding

(see [8]), and rc :M
2n(c) → R2n+1

c the standard isometric embedding given by

M2n(0) = {(x0, x1, · · · , x2n) ∈ R2n+1 | x0 = 0},
M2n(1) = {(x0, x1, · · · , x2n) ∈ R2n+1 | x21 + · · ·+ x22n + x20 = 1},

M2n(−1) = {(x0, x1, · · · , x2n) ∈ R2n,1 | x21 + · · ·+ x22n − x20 = −1}.
Then the compositon map r = rc ◦ i0 ◦ φ : U → R2n+1

c , i.e.,

r : U ⊂Mn(c)
φ−→M2n−1(c+ ε2)

i0−→M2n(c)
rc−→ R2n+1

c (2.3)

is a local isometric immersion into R2n+1
c with flat normal bundle.

Set Jc =

(
c 0
0 I2n

)
. Then we have rJcr

T = c for c = ±1, and r ∈ R2n for c = 0. On

putting ri = ∂ir where ∂i = ∂/∂xi, we see the structure equations of immersions (2.3) are

∂jri =
∂jbi
bi

ri +
∂ibj
bj

rj (i ̸= j)

∂iri = −
∑
k ̸=i

bi∂kbi
b2k

rk +
∂ibi
bi

ri + εbiaαinα + εb2inn − cb2i r,

∂inα = − ε

bi
aαiri, ∂inn = −εri,

(2.4)

where nn is the normal frame field of the immersion i0 :M2n−1(c+ ε2) →M2n(c).
Let

e0 = r, ei = b−1
i ri, en+i =

∑
j

ajinj , (2.5)

and set

b = (b1, · · · , bn)(∈ Sn−1), δ = diag(dx1, · · · , dxn),
Ξ = (e0, e1, · · · , e2n) with Ξ(0) = J2

c ,

F = (fij) ∈ gl(n)∗ = {Y = (yij) ∈ gl(n) | yii = 0}, where fij =
∂jbi
bj

(i ̸= j).

(2.6)

For simplisity, we write an m× (2n+ 1) matrix Ψ as a row matrix

1 n n

Ψ = (Ψ(1) Ψ(2) Ψ(3) ) .

In particular, we write a (2n+ 1)× (2n+ 1) matrix Ψ as a block matrix

1 n nΨ(1,1) Ψ(1,2) Ψ(1,3)

Ψ(2,1) Ψ(2,2) Ψ(2,3)

Ψ(3,1) Ψ(3,2) Ψ(3,3)

 1
n
n

If we take

a =

 0 0 0
0 0 δ
0 −δ 0

 , v =

 0 0 −cb
0 0 −FT

bT F 0

 , [a, v] =

 0 −cbδ 0
δbT ω 0
0 0 θ

 , (2.7)
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where θ = δFT − Fδ, ω = δF − FT δ, then the system (2.4) can be written as

dΞ = Ξ(−εa+ [a, v]). (2.8)

Clearly, r = Ξ(1), bT = v(3,1), F = v(3,2). Then the Gauss-Codazzi-Ricci equation of the
immersion, i.e., the integrability condition of (2.8), is a system for (A,F ) :

dA = Aθ,

dω + ω ∧ ω − cδbT ∧ bδ = 0,

b = EnA,

(2.9)

where

Ei = diag(0, · · · , 0︸ ︷︷ ︸
(i−1)

, 1, 0, · · · , 0). (2.10)

Consider the following Lax set for (2.8):{
dΦλ = ΦλΘλ, where Θλ = aλ+ [a, v],

Φλ(0) = J2
c .

(2.11)

Clearly, Ξ = Φ−ε, A = A(0)Φ
(3,3)
0 .

Let soex(p, q, r) = {X ∈ sl(p+ q + r,R) | XJ̃ + J̃XT = 0}, where

J̃ = diag(0, · · · , 0︸ ︷︷ ︸
p

,−1, · · · ,−1︸ ︷︷ ︸
q

, 1, · · · , 1︸ ︷︷ ︸
r

).

Obviously, soex(0, 0, r) = so(r) and soex(0, 1, r) = so(1, r). Let

g =


soex(1, 0, 2n) for c = 0,

so(2n+ 1) for c = 1,

so(1, 2n) for c = −1.

Set

σ =

(
−In+1 0

0 In

)
, K =


 0 −cξ 0
ξT Y 0
0 0 X

∣∣∣X,Y ∈ so(n), ξ ∈ Rn

 ,

P =


 0 0 −cξ

0 0 −X
ξT XT 0

∣∣∣X ∈ gl(n,R), ξ ∈ Rn

 .

Clearly, a is a P-valued 1-form, and v(x) ∈ P∩g⊥a , i.e., Θλ is a ∧σg-valued 1-form. When
c ̸= 0, (2.9) holds if and only if the system (2.11) has a unique solution Φλ satisfying that
Φλ(x) ∈ ∧σG, b(x) ∈ Sn−1. When c = 0, the (2.9) holds if and only if the system (2.11) has
a unique solution Φλ such that Φλ satisfies (1.3) and b(x) ∈ Sn−1. Hence, in the following,
we give a unified treatment for the cases that c ̸= 0 and c = 0. The following result can be
found in [11] and [10].

Proposition 2.1.[11,10] Let U ⊂ Mn(c) be a simply connected open neighborhood at
x0 = 0, and φ : U →M2n−1(c+ε2) a local isometric immersion. Then there exists a smooth
map (F, b) : U → gl(n)∗×Sn−1 such that Θλ defind in (2.11) is a flat connection, i.e., there

exists a unique solution Φλ to (2.11) such that Φ
(1)
−ε = rc ◦ i0 ◦φ. Conversely, if Φλ for some

(F, b) : Rn → gl(n)∗ × Sn−1 is a unique solution to (2.11), then there exists a smooth map
A = (aij) : Rn → O(n) such that b = EnA. Moreover, if U = {x ∈ Rn | bi(x) ̸= 0 for all i}
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is not empty, then there exists a local isometric immersion φ : U → M2n−1(c + ε2) such

that the first and second fundamental forms for φ are given by (2.1), and rc ◦ i0 ◦ φ = Φ
(1)
−ε.

We now consider Darboux transformations preserving b(x) ∈ Sn−1 for solutions to (2.11).

Lemma 2.1. Let Φλ be a solution of (2.11) with b(x) = EnA ∈ Sn−1, and Q a complex
constant s×(2n+1) matrix. Set λ0 ∈ C, h = QΦλ0 = (ξ, η, ζ). Then we have d(ζbT −λ0ξ) =
0.

Proof. From (2.11) it follows that dh = hΘλ0 , i.e.,

dξ = ηδbT , dη = −cξbδ + ηω − λ0ζδ, dζ = λ0ηδ + ζθ.

On the other hand, we see from (2.9) that db = bθ. Hence, we have

d(ζbT − λ0ξ) = (dζ)bT + ζdbT − λ0dξ

= ζθbT + λ0ηδb
T + ζθT bT − λ0ηδb

T = 0.

Let µ ∈ R \ {0}, and Q be a real constant s× (2n+ 1) matrix. Set

h = QτΦiµ h′ =
dh

dµ
= iQτ Φ̇iµ.

Since τΦiµτ is a real matrix, both hτ and h′τ are real matrices. If we write hτ = (−ξ,−η, ζ),
then h = (iξ, iη, ζ), h′ = (iξ′, iη′, ζ ′), where ξ, η, ζ satisfy

dξ = ηδbT ,

dη = −cξbδ + ηω − µζδ,

dζ = −µηδ + ζθ.

(2.12)

By Lemma 2.1 and Theorem 1.1, if we choose Q such that

QJcσQ
T = 0, det(QJcQ

T ) ̸= 0, Q(3)b(0)T + c2µQ(1) = 0, (2.13)

then there exists an open neighborhood U at x = 0 such that on U we have
hJcσh

∗ = ζζT − ηηT − cξξT = 0,

det(hJch
∗) ̸= 0,

ζbT + µξ = 0.

(2.14)

Moreover, Dλ and d1 defined in (1.9) and (1.10) can be expressed explicitly as

Dλ = I − 2µ

λ2 + µ2

 µcξT (∆− µρ)−1ξ µcξT (∆− µρ)−1η λcξT (∆ + µρ)−1ζ
µηT (∆− µρ)−1ξ µηT (∆− µρ)−1η ληT (∆ + µρ)−1ζ
−λζT (∆− µρ)−1ξ −λζT (∆− µρ)−1η µζT (∆ + µρ)−1ζ

 ,
(2.15)

d1 = 2µ

 0 0 −cξT (∆ + µρ)−1ζ
0 0 −ηT (∆ + µρ)−1ζ

ζT (∆− µρ)−1ξ ζT (∆− µρ)−1η 0

 ,

where

∆ =
1

2
hJch

∗ = ζζT = ηηT + cξξT , (2.16)

ρ = −h′σJch∗ = cξ′ξT + η′ηT − ζ ′ζT = −(cξξ′T + ηη′T − ζζ ′T ).

Let Φ̃λ = ΦλDλ. Then, by Theorem 1.1, Φ̃λ satisfies

dΦ̃λ = Φ̃λ(λa+ [a, ṽ]),
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where ṽ = v + (d1)g⊥
a

and (λa+ [a, ṽ]) is a ∧σg-valued 1-form. Then we have

F̃ = ṽ(3,2) = F + 2µ(ζT (∆− µρ)−1η)off,

b̃ = (ṽ(3,1))T = b+ 2µξT (∆ + µρ)−1ζ,

Ã = A(0)Φ̃
(3,3)
0 = AD

(3,3)
0 = A− 2AζT (∆ + µρ)−1ζ,

(2.17)

where ( )off denotes the matrix without diagonal elements.

Noting that bζT + µξT = 0 and ∆ = ζζT , we have

b̃b̃T = bbT + 2µ2ξT {2(∆ + µρ)−1∆(∆− µρ)−1 − (∆− µρ)−1 − (∆ + µρ)−1}ξ
= bbT = 1.

Moreover, it is easy to see that Ã ∈ O(n) and EnÃ = b− 2bζT (∆ + µρ)−1ζ = b̃. Hence, by
Proposition 2.1, we have proved the following theorem.

Theorem 2.1. Let φ :Mn(c) →M2n−1(c+ ε2) be a local isometric immersion, and Φλ

a solution of (2.11). Let µ ∈ R \ {0}, and Q be a real constant s× (2n+1) matrix satisfying

(2.13). Set h = QτΦiµ = (iξ, iη, ζ), Φ̃λ = ΦλDλ where Dλ is the Darboux matrix (2.15)

determined by h. If b̃j(0) ̸= 0 for all j, then there exist an open neighborhood U at x = 0
and a local isometric immersion φ̃ : U →M2n+1(c+ε2) such that r̃ = rc ◦ i0 ◦ φ̃ is expressed
expicitly via r = rc ◦ i0 ◦ φ as

r̃ = Φ̃
(1)
−ε = Φ−εD

(1)
−ε = − 2µ

ε2 + µ2

∑
j

ζTj (∆− µρ)−1ξ

bj
∂jrj

− 2µ

ε2 + µ2

∑
j

{∑
k

∂jbkζ
T
k (∆− µρ)−1ξ

b2j
+ µ

ηTj (∆− µρ)−1ξ

bj

}
rj

+
{
1− 2µ2c

ε2 + µ2
ξT (∆− µρ)−1ξ

}
r,

(2.18)

where ζ = (ζ1, · · · , ζn) and η = (η1, · · · , ηn).
Remark 2.1. The above process Q → h → Dλ → Φ̃λ by making use of the Darboux

transformation is a purely algebraic algorithm. Starting from a special solution Φλ of (2.11),

even if Φ
(1)
−ε = r is degenerate, we can obtain a series of new solutions to (2.11): Φλ →

Φ̃λ → ˜̃Φλ → · · · by iterating such construction, so that we obtain a series of local isometric
immersions from Mn(c) into M2n−1(c+ ε2).

The Darboux transformation can also be realized by solving directly the system (2.12)
of ordinary differential equations with restricted conditions (2.14). It is equivalent to relin-
quishing the normalization condition in (2.11). The solutions obtained in such a way are
the same as that in the above process when c ̸= 0. In the case that c = 0, we may obtain
more solutions.

§3. Local Isometric Immersions of Space
Forms Derived from Trivial Solutions

We take a trivial solution of (2.9) as F = 0, A = In, b = (0, 0, · · · , 0, 1). Let

ai =

 0 0 0
0 0 Ei

0 −Ei 0

 , B =

 0 −cb 0
bT 0 0
0 0 0

 ,
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where Ei is defined by (2.10). Then the system (2.11) can be written as
∂αΦλ = λΦλaα,

∂nΦλ = Φλ(λan +B),

Φλ(0) = J2
c .

(3.1)

We solve (3.1) to get Φλ = J2
c exp

{
λ

n∑
i=1

aixi +Bxn

}
. Written concretely, it is

Φλ =



c2

ν2 (cXn + λ2) 0 · · · 0 − c
νYn 0 · · · 0 λc

ν2 (Xn − 1)

0 X1 Y1
·
0 Xn−1 Yn−1

1
νYn Xn

λ
ν Yn

0 −Y1 X1

·
0 −Yn−1 Xn−1

λ
ν2 (Xn − 1) −λ

ν Yn
1
ν2 (λ

2Xn + c)


, (3.2)

where

ν = ν(λ) =
√
λ2 + c, Xα = cos(λxα), Xn = cos(νxn), Yα = sin(λxα), Yn = sin(νxn).

Choose µ ∈ R and l = (l0, l1, · · · , l2n) ∈ R2n+1 such that∑
j

l2n+j =
∑
j

l2j + cl20 ̸= 0, l2n + c2µl0 = 0. (3.3)

It is easily seen that h = lτΦiµ = (lτΦ
(1)
iµ , lτΦ

(2)
iµ , lτΦ

(3)
iµ ) = (iξ, iη, ζ) satisfies (2.12) and

(2.14), where

ξ = c2l0cos(iγxn)− ln
i

γ
sin(iγxn),

ηα = −ln+αsh(µxα) + lαch(µxα),

ηn = l2n
iγ

µ
sin(iγxn) + lncos(iγxn),

ζα = ln+αch(µxα)− lαsh(µxα),

ζn = l2ncos(iγxn) + ln
iµ

γ
sin(iγxn) = −µξ,

γ =
√
µ2 − c ∈ R (for µ2 > c) or iR (for µ2 < c).

(3.4)

Here when µ2 = c, i.e., γ = 0, we have

ξ = c2l0, ζn = l2n = −µξ.
From (3.2), (2.15), (2.16) and (2.17) we know that

r = Φ
(1)
−ε

=

(
c2(ccos(ν(ε)xn) + ε2)

(ν(ε))2
, 0, · · · , 0, sin(ν(ε)xn)

ν(ε)
, 0, · · · , 0, ε(1− cos(ν(ε)xn))

(ν(ε))2

)T

,

D
(1)
−ε =

1

(ε2 + µ2)∆

(
(ε2 + µ2)∆− 2cζ2n, 2µζnη

T , 2εζnζ
T
)T
, (3.5)
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Ã = I − 2
ζT ζ

∆
,

b̃ =
1

∆

(
−2ζ1ζn, · · · ,−2ζn−1ζn,

∑
α

ζ2α − ζ2n

)
. (3.6)

It is obvious that r is degenerated as a curve in M2n−1(c + ε2). So we can not use

(2.18) to get a new immersion r̃. We should use directly the formula r̃ = Φ−εD
(1)
−ε in a

neighborhood U of the origin. Such r̃ is nondegenerate only if there exists a point x̂ ∈ U
such that b̃j(x̂) ̸= 0 for all j. For this aim, we need only to choose suitably l such that

ζnζα(x̂) ̸= 0 and
∑
α
ζ2α(x̂) − ζ2n(x̂) ̸= 0. Then there exists an open neighborhood Ũ of x̂

such that r̃ is nondegenerate in Ũ , which implies that there is a local isometric immersion
φ̂ : Ũ →M2n−1(c+ ε2). Moreover, by using Φλ, we can obtain a new solution Φ̃λ of (2.11).
Continuing this process, a series of immersions are obtained by an algebraic algorithm. In
the following, we consider two cases respectively.

Case (i) c ̸= 0, i.e., c = ±1.

For µ2 ≥ c, we take l = (−µ−1ln, l1, · · · , ln−1, γµ
−1ln, l1, · · · , ln) with lj ̸= 0 for all j. It

is clear that (3.3) is satisfied. Then we have from (3.4) and (3.6)

ξ = − ln
µ
e−γxn = − 1

µ
ζn, ηα = lαe

−µxα−γxn = ζα,

ηn =
γ

µ
lne

−γxn , b̃α = − 2

∆
lαlne

−µxα−γxn ,

b̃n =
1

∆

(∑
α

l2αe
−2µxα − l2ne

−2γxn

)
,

where ∆ is defined by (2.16). Since lj ̸= 0 for all j, we have b̃α(0) ̸= 0. If l is chosen suitably

such that
∑
α
l2α ̸= l2n, then b̃n(0) ̸= 0.

For µ2 < c = 1, we can take l = (l0, l1, · · · , ln−2, 0, 0, l1, · · · , ln−2, iγl0,−µl0), where

lα−1 ̸= 0 for all α, and
n−2∑
j=1

l2j + (1− 2µ2)l20 ̸= 0. The remainder is similar to the above.

Example 3.1. c = −1, ε = 1. This is the isometric immersion Mn(−1) → R2n−1 as in
[12]. We have

ξ = − 1

µ
lne

−
√

µ2+1xn = − 1

µ
ζn, ηα = ζα = lαe

−µxα ,

ηn =

√
µ2 + 1

µ
lne

−
√

µ2+1xn , ∆ =
∑
α

l2αe
−2µxα + l2ne

−2
√

µ2+1xn ,
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r̃ =
1

∆(µ2 + 1)



∑
α(µ

2 + 1)l2αe
−2µxα + (µ2 + 3)l2ne

−2
√

µ2+1xn

2l1lne
−µx1−

√
µ2+1xn(µconx1 − sinx1)

· · ·
2ln−1lne

−µxn−1−
√

µ2+1xn−1(µcosxn−1 − sinxn−1)

2
√
µ2 + 1l2ne

−2
√

µ2+1xn

2l1lne
−µx1−

√
µ2+1xn(cosx1 + µsinx1)

· · ·
2ln−1lne

−µxn−1−
√

µ2+1xn(cosxn−1 + µsinxn−1)

2l2ne
−2

√
µ2+1xn


,

Ã =
1

∆



Ã11 −2l1l2e
−µ(x1+x2) · · · −2l1lne

−µx1−
√

µ2+1xn

−2l1l2e
−µ(x1+x2) Ã22 · · · −2l2lne

−µx2−
√

µ2+1xn

· · · · · ·
· · · · · ·

−2l1ln−1e
−µ(x1+xn−1) · · · · ·

−2l1lne
−µx1−

√
µ2+1xn · · · · Ãnn


with

Ãαα =
∑
β ̸=α

l2βe
−2µxβ − l2αe

−2µxα + l2ne
−2

√
µ2+1xn ,

Ãnn =
∑
β

l2βe
−2µxβ − l2ne

−2
√

µ2+1xn .

It is known that Ã and F̃ = 2µ
∆ (ζT η)off satisfy the GSGE (generalized Sine-Gordon equation)

(2.9).
In particular, if n = 2 and we set

cosϕ =
1

∆
(l21e

−2µx1 − l22e
−2

√
µ2+1x2), sinϕ =

2

∆
l1l2e

−µx1−
√

µ2+1x2 ,

then ϕ(x1, x2) satisfies the well-known Sine-Gordon equation ϕx1x1 − ϕx2x2 = −sinϕcosϕ.
Example 3.2. n = 2. c = ε = µ = 1. Then we have

ξ = −ζ2 = −l2, η1 = ζ1 = l1e
−x1 , η2 = 0, (l1, l2 ̸= 0, l21 − l22 ̸= 0).

r̃ =
1

∆


−1
2 l

2
2(cos

√
2x2 − 1) + 1

2 l
2
1e

−2x1(cos
√
2x2 + 1)

l1l2e
−x1(cosx1 − sinx1)

1√
2
(sin

√
2x2)(l

2
1e

−2x1 − l22)

l1l2e
−x1(cosx1 + sinx1)

1
2 l

2
2(cos

√
2x2 + 1) + 1

2 l
2
1e

−2x1(cos
√
2x2 − 1)

 ,

Ã =
1

∆

(
l22 − l21e

−2x1 −2l1l2e
−x1

−2l1l2e
−x1 l21e

−2x1 − l22

)
,

where ∆ = l21e
−2x1 + l22. If we set cosψ = 1

∆ (l21e
−2x1 − l22), sinψ = 2

∆ l1l2e
−x1 , then ψ(x1, x2)

satisfies the sine-Gordon equation ψx1x1 − ψx2x2 = sinψcosψ.
Case (ii) c = 0.
It follws from (3.3) and (3.4) that ν = λ, γ = µ, l2n = 0 and

ζnζα = lnsh(µxn)(ln+αch(µxα)− lαsh(µxα)),∑
α

ζ2α − ζ2n =
∑
α

(ln+αch(µxα)− lαsh(µxα))
2 − l2nsh

2(µxn).



No.1 HE, Q. & SHEN, Y. B. EXPLICIT CONSTRUCTION FOR ISOMETRIC IMMERSIONS 109

Thus, we need only to take l such that ln ̸= 0 and l2α + l2n+α ̸= 0 for all α. Then there exists

a point x̂ in a neighborhood of the origin such that b̃j(x̂) ̸= 0 for all j.

On the other hand, we can directly solve systems (2.12) and (2.14) and obtain

ξ = −Cn

µ
e−µxn , ηj = ζj = Cje

−µxj ,

where Cj (1 ≤ j ≤ n) are real constants. If Cj ̸= 0 for all j, and
∑
α
C2

α ̸= C2
n, then b̃j(0) ̸= 0

for all j.

Example 3.3. n = 2. c = 0, ε = µ = 1. We have

r̃ =
1

∆


0

C1C2e
−(x1+x2)(cosx1 − sinx1)

C2
2e

−2x2(cosx2 − sinx2) + ∆sinx2
C1C2e

−(x1+x2)(cosx1 + sinx1)
C2

2e
−2x2(cosx2 + sinx2) + ∆(sinx2 − 1)

 ,

b̃ =
1

∆
(−2C1C2e

−(x1+x2), C2
1e

−2x1 − C2
2e

−2x2).

If we set

cosψ =
−2

∆
C1C2e

−(x1+x2), sinψ =
1

∆
(C2

1e
−2x1 − C2

2e
−2x2),

then ψ(x1, x2) satisfies the homogeneous wave equation ψx1x1 − ψx2x2 = 0.

Example 3.4. c = 0. We take b = 1√
n
(1, · · · , 1), A ∈ O(n) constant such that b = EnA,

and F = 0. Then we have

Φλ =



0 0 0
1

λ
√
n
sinλx1 cosλx1 sinλx1
· · ·
· · ·

1
λ
√
n
sinλxn cosλxn sinλxn

1
λ
√
n
cosλx1 −sinλx1 cosλx1
· · ·
· · ·

1
λ
√
n
cosλxn −sinλxn cosλxn


.

Set ε = 1/
√
n. Then r = (0, sin x1√

n
, · · · , sin xn√

n
,−cos x1√

n
, · · · ,−cos xn√

n
)T is a standard

n-torus Tn in R2n and Tn → S2n−1(
√
n) ⊂ R2n.

A solution of (2.12) and (2.14) is

ξ =
−1

µ
√
n

∑
j

lje
−µxj , ηj = ζj = lje

−µxj .

By making the Darboux transformation, we get a new flat submanifold in S2n−1(
√
n), of

which the position vector is

r̃ = (0, r̃1, · · · , r̃2n),
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where

r̃j =
2κ

(1 + nµ2)∆
lje

−µxj

(√
nµ cos

xj√
n
− sin

xj√
n

)
+ sin

xj√
n
,

r̃n+j =
2κ

(1 + nµ2)∆
lje

−µxj

(
cos

xj√
n
+
√
nµ sin

xj√
n

)
− cos

xj√
n
,

κ =
∑
k

lke
−µxk , ∆ =

∑
k

l2ke
−2µxk .

On putting

µ =
1√
n
, yj =

xj√
n
,

we have

r̃ =
(
0,
κ

∆
l1e

−y1(cos y1 − sin y1) + sin y1, · · · ,
κ

∆
l1e

−y1(cos y1 + sin y1)− cos y1, · · ·
)
,

on which the induced metric is

ds2 =
∑
j

(
1− 2κ

∆
lje

−yj

)2
(dyj)

2.
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