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§1. Introduction

The Lie superalgebras and their representations emerged naturally as the fundamental
algebraic structure behind several areas of mathematical physics, in 1970’s (see [1, 2, 4,
11]). In [4], Kac gave a comprehensive presentation of the mathematical theory of Lie
superalgebras and obtained an important classification theorem for finite-dimensional simple
Lie superalgebras over algebraically closed fields of characteristic zero. Lie superalgebras
closely depend on Lie algebras. In recent years, there have been many studies on Lie
superalgebras. Some theories of complete Lie algebras have recently been developed by
Meng et al. (see [5–10]). In [7, 8], Meng and Zhu developed a general theory on solvable
complete Lie algebras. They proved that all solvable Lie algebras of maximal rank are
complete, and they gave a classification theorem on solvable Lie algebras of maximal rank.
Complete Lie superalgebras have received some attention since 1990’s (see for example [3]).

Let F be a field, g = g0̄ ⊕ g1̄ be a Z2-graded algebra over F.
We call g a Lie superalgebra if the multiplication [ , ] satisfies the following identities:
(1) [xα, xβ ] = −(−1)αβ [xβ , xα],

(2) (−1)αγ [xα, [xβ , xγ ]] + (−1)βα[xβ , [xγ , xα]] + (−1)γβ [xγ , [xα, xβ ]] = 0,
for all xα ∈ gα, xβ ∈ gβ , xγ ∈ gγ ; α, β, γ ∈ {0̄, 1̄}.

A Lie superalgebra g is called complete if its center is zero, and its derivations are inner.
As in the Lie algebra case, a Lie superalgebra is called nilpotent (resp. solvable) if the

ideals in the lower (i.e., descending) central series (resp. in the derived series) vanish for
sufficiently large indices.
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§2. Main Results

Definition 2.1. Let n be a nilpotent Lie superalgebra, h be an abelian subalgebra of Dern
such that all elements of h are semisimple linear transformations of n. Such h is called a
torus on n. When h is a maximal torus on n, the dimension of h is called the rank of n,
denoted by rankn.

Therefore, if h is a maximal torus of n, then dim h = rank n. The Lie superalgebra n is
called a nilpotent Lie superalgebra of maximal rank, if dim h = dim n/[n, n].

Lemma 2.1. Let n be a nilpotent Lie superalgebra and t be a maximal torus of n. Then
we have

(1) g = t+ n is a solvable Lie superalgebra;
(2) The root space decomposition of n with respect to t is n =

∑
α∈t∗

nα, where nα = {x ∈

n | [t, x] = α(t)x,∀t ∈ t };
(3) There exists a minimal system of generators {x1, · · · , xn} of n such that xi ∈ nαi , 1 ≤

i ≤ n;
(4) Set ∆ = {α ∈ t∗ |nα ̸= 0}, then dim h = rank∆ ≤ dim n/[n, n].
Proof. (1) and (2) are obvious.
(3) Obviously, n is a completely reducible t-module, and [n, n] is a submodule. So there

is a submodule c such that n = c + [n, n]. Then c is also completely reducible. Therefore
there exists a basis of c, i.e., a minimal system of generators {x1, · · · , xn} of n, such that
(3) holds.

(4) If for all xi ∈ {x1, · · · , xn}, we have [T, xi] = 0, T ∈ t, then T = 0. Therefore,
dim t = rank {α1, · · · , αn} = rank∆ ≤ n, i.e. (4) holds.

Lemma 2.2. Let g be a Lie superalgebra, and dim g > 1. Then

C(g) ⊆ g(1) = [g, g] (2.1)

holds if and only if g cannot be decomposed into the direct sum of an abelian ideal and
another graded ideal of g.

Proof. Let a be an abelian ideal, g′ be another graded ideal of g such that g = a ⊕ g′.
Then a ⊆ C(g). So g(1) = [a⊕ g′, a⊕ g′] = (g′)(1) ⊆ g′. This implies that (2.1) fails.

Conversely, suppose that (2.1) fails. Denote by a the complementary subspace of C(g) ∩
[g, g] in C(g). So a is a nonzero abelian ideal of g. Let l be the complementary subspace of
a+ [g, g] in g and g′ = l+ [g, g]. Then g′ is a graded ideal of g, and g = a⊕ g′.

If g′ ̸= 0, then g is decomposed into the direct sum of the abelian ideal a and the graded
ideal g′.

If g′ = 0, then g is an abelian Lie superalgebra. Since dim g > 1, g is decomposable, and
any ideal is abelian.

Lemma 2.3. Let g be a Lie superalgebra with C(g) ̸= 0, and a be a graded ideal satisfying
codim a = 1, C(g) ⊆ a. Then [g, C(a)] is a proper subset of C(a), i.e., [g, C(a)] ⊂ C(a).

Proof. Since codima = 1, we can choose e ∈ g so that g = Fe+̇a. So [g, C(a)] =
[Fe, C(a)]. Since C(g) ⊆ a, we have C(g) ⊆ C(a). Therefore we have ker(ade|C(a)) ⊇
C(g) ̸= 0. Thus dimC(a) > dim [e, C(a)].

Lemma 2.4. Let g be a Lie superalgebra satisfying

[g, g]0̄ ̸= g0̄, (2.2)

C(g) ̸= 0. (2.3)

Then Der g ̸= ad g. If g has a decomposition into a direct sum of ideals as follows

g = Fe⊕ g′, e ∈ g0̄, (2.4)

[g′, g′] = g′, (2.5)

C(g′) = 0, (2.6)
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then there exist semisimple outer derivations of g. One of (2.5) and (2.6) fails, there is an
outer derivation D such that D2 = 0.

Proof. We first show that if g satisfies (2.4), (2.5) and (2.6), then there exist semisimple
outer derivations of g.

Let D be a linear transformation by setting D(λe+x) = λe for λ ∈ F, x ∈ g′. Obviously,
D is a semisimple outer derivation of g. In this case, clearly g satisfies (2.2), (2.3) and
C(g) ̸⊆ g(1).

In the general case, suppose g satisfies (2.2), (2.3). We shall consider the following two
cases.

(1) C(g) ̸⊆ g(1).
By Lemma 2.2, g has the decomposition (2.4). If (2.5) fails, then we can choose D such

thatD(g′) = Fe, D(Fe+(g′)(1)) = 0. Obviously, we haveD2 = 0, [D(g), g] = D([g, g]) = 0.
Then D ∈ Der g, but for x, y ∈ g, adx(y) ∈ g(1) = (g′)(1). Therefore D ̸∈ ad g.

If (2.6) fails, we fix x0 ∈ C(g′), x0 ̸= 0. Define D by setting D(λe + x) = λx0, ∀x ∈
g′, λ ∈ F. Obviously, D2 = 0, and since C(g′) ⊆ C(g), g(1) = (g′)(1), we have D ∈ Der g.
Clearly D is an outer derivation by the fact that e ∈ C(g).

(2) C(g) ⊆ g(1).
In this case, (2.2) implies that there exists a graded ideal a of g satisfying codim a = 1.

Hence a ⊇ g(1) ⊇ C(g). By Lemma 2.3, we have [g, C(a)] ⊂ C(a).
For all x ∈ g, we shall always write x = x0 + x1, where x0 ∈ g0̄, x1 ∈ g1̄.
Since g satisfies (2.2), we can choose e ∈ g0̄ such that e ̸∈ a, and z ∈ C(a)\[g, C(a)]

and we can define a linear transformation D such that De = z, D(a) = 0. Let D0(e) =
z0, D1(e) = z1, where D = D0 + D1. Then D2 = 0. For x, y ∈ a, λ, µ ∈ F, we have
D([λe+x, µe+y]) = 0 and [D0(λe+x), µe+y]+[λe+x,D0(µe+y)] = [λz0, µe+y]+[λe+x, µz0]
= λµ[z0, e] + λµ[e, z0] = 0, and

[D1(λe+ x0), µe+ y] + [λe+ x0, D1(µe+ y)] + [D1(x1), µe+ y]− [x1, D1(µe+ y)]

= [λz1, µe+ y] + [λe+ x0, µz1] + [0, µe+ y]− [x1, µz1]

= λµ([z1, e] + [e, z1]) = 0.

Therefore, D ∈ Der g.
IfD ∈ ad g, then there exist λ ∈ F and x ∈ a such thatD = ad (λe+x). But fromDx = 0,

we obtain λ[e, x] = [λe+ x, x] = Dx = 0. If λ ̸= 0, then [e, x] = 0. So De = [λe+ x, e] = 0.
We arrive at a contradiction with De = z ̸= 0. If λ = 0, then D = adx. Since D(a) = 0, we
have x ∈ C(a). Then z = De = [x, e] ∈ [g, C(a)]. Again, this gives us a contradiction with
z ∈ C(a)\[g, C(a]. So D is an outer derivation of g.

Remark 2.1. Lemma 2.4 does not necessarily hold if the condition (2.2) is changed to
[g, g] ̸= g.

Example 2.1. Let g = Fc+̇Fe+̇Ff be the three-dimensional Heisenberg superalgebra,
where c ∈ g0̄, f, e ∈ g1̄, [e, f ] = c, [e, e] = [f, f ] = [c, e] = [c, f ] = 0. Then g is nilpotent,
and g(1) = Fc = (g(1))0̄ = g0̄.

Let D ∈ (Der g)0̄. Then we have D(c) = αc, D(e) = βe, D(f) = γf , where α = β + γ.
But D2 = 0 if and only if D = 0. Let D ∈ (Der g)1̄. Then we have D(c) = 0, D(e) =
αc, D(f) = βc, α, β ∈ F. So D = ad (αf + βe) ∈ ad g.

Hence, there does not exist an outer derivation D of g such that D2 = 0.
Theorem 2.1. Let g be a Lie superalgebra, and (g(1))0̄ ̸= g0̄. Then g is a complete Lie

superalgebra if and only if Der g = ad g.
Proof. By the definition of complete Lie superalgebras, g is complete, then Der g = ad g.
Conversely, suppose Der g = ad g. If C(g) ̸= 0, then by Lemma 2.4, Der g ̸= ad g. This

contradicts the hypothesis. So g is a complete Lie superalgebra.
Let n be a nilpotent Lie superalgebra, h be a maximal torus on n.



114 CHIN. ANN. MATH. Vol.24 Ser.B

Definition 2.2. A minimal system of generators which consists of root vectors for h is
called a h-msg.

Lemma 2.5. Let l = h+ n be a solvable Lie superalgebra of maximal rank, and a direct
sum of root spaces of l for h is l = h +

∑
α∈∆

nα, where ∆ ⊂ h∗, nα = {x ∈ n | [h, x] =

α(h)x,∀h ∈ h}. Then
(1) There exists a h-msg {x1, · · · , xn} of n and a subset Π = {α1, · · · , αn} of ∆ such that

[h, xi] = αi(h)xi, ∀h ∈ h.
(2) Π is a basis of h∗.

(3) If α ∈ ∆, then there is a unique n-tuple {k1, · · · , kn}, ki ∈ Z+, such that α =
n∑

i=1

kiαi.

Thus ∆ ⊂ h∗\{0}.
(4) Let |α| =

n∑
i=1

ki, p is the nilpotency of n (i.e. p safeties np−1 ̸= 0, np = 0). Then

1 ≤ |α| ≤ p.
(5) dim nαi = 1, i = 1, · · · , n.
Proof. (1) This results from Lemma 2.1.
(2) Since l is of maximal rank, we have dim h = dim n/[n, n].
Because h is a maximal torus, and {x1, · · · , xn} is a h–msg of n, we have h ∈ h, h = 0 if

and only if [h, xi] = 0, 1 ≤ i ≤ n, if and only if αi(h) = 0, 1 ≤ i ≤ n. So Π is a basis of h∗.
(2.3) and (2.5) hold since Π is a basis of h∗ and {x1, · · · , xn} is a h–msg.
(2.4) is known from the definition of the nilpotency of n.
Theorem 2.2. Let n be a nilpotent Lie superalgebra of maximal rank, h be a maximal

torus on n. Then l = h+ n is a solvable complete Lie superalgebra.
Proof. By (2.3), (2.5) of Lemma 2.5, we have 0 ̸∈ ∆, {α1, · · · , αn} ∩∆0 ∩∆1 = ∅.
Therefore, l satisfies conditions (2.1)–(2.5) of Theorem 1.5 in [13], so l is a complete Lie

superalgebra.
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