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THE TRACE SPACE INVARIANT AND
UNITARY GROUP OF C*-ALGEBRA**

FANG Xiaochun*

Abstract

Let A be a unital C∗-algebra, n ∈ N ∪ {∞}. It is proved that the isomorphism ∆n :

Un
0 (A)/DUn

0 (A) 7→ AffT (A)/∆0
n(π1(Un

0 (A))) is isometric for some suitable distances. As

an application, the author has the split exact sequence 0 7→ AffT (A)/∆0
n(π1(Un

0 (A)))
iA7→

Un(A)/DUn(A)
πA7→ Un(A)/Un

0 (A) 7→ 0 with iA contractive (and isometric if n = ∞) under
certain condition of A.
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§1. Introduction and Preliminary

For more than ten years much progross has been made in the classification of simple

amenable separable C∗-algebras. Recently some work focus on the non-real rank zero case,

in which the trace space (or the affine space on trace space) is suggested to be considered as

an invariant. For this reason, the relations between the unitary group and the affine space on

trace space have been studied and applied, but only in the stable case. For more application

it is needed to consider the nonstale case (especially if the considered C∗-algebras are not

the inductive limits). In this note we investigate the nonstable relations between the unitary

group and the affine space on trace space by using some distances. The results in this note

can also be considered as the nonstable similarity and extension of stable case.

Let A be a unital C∗-algebra. For each integer k, we denote the unitary group ofMk(A) by

Uk(A), and the subgroup of Uk(A) consisting of all elements connected to the unit of Mk(A)

by Uk
0 (A) . Viewing Uk(A) (Uk

0 (A))as a subgroup of Uk+1(A) (Uk+1
0 (A)) by identifying

diag (u, 1) with u for any u ∈ Uk(A)(Uk
0 (A)), we let U∞(A) = lim

k→∞
Uk(A) as a topological

group with the inductive limit topology coming from the inclusion Uk(A) ⊆ Uk+1(A), and

similarly let U∞
0 (A) = lim

k→∞
Uk
0 (A) as a topological group with the inductive limit topology
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coming from the inclusion Uk
0 (A) ⊆ Uk+1

0 (A). For any n ∈ N ∪ {∞}, we let DUn(A) and

DUn
0 (A) denote the commutator subgroup of Un(A) and Un

0 (A) respectively.

Let AffT (A) denote the space of continuous affine real-valued function on the state space

T (A) of A. Let η : [0, 1] 7→ Un
0 (A) (n ∈ N ∪ {∞}) be a piecewise smooth path of unitaries

from 1. We define ∆1
n(η) ∈ AffT (A) by

∆1
n(η)(ω) =

1

2πi

∫ 1

0

ω(η′(t)η(t)∗)dt, ω ∈ T (A).

By [1, Lemma 3] (see also [11, §3]), ∆1
n(η) is homotopy invariant, and

∆1
n(η1η2) = ∆1

n(η1) + ∆1
n(η2).

So ∆1
n defines a homomorphism

∆0
n : π1(U

n
0 (A)) 7→ AffT (A),

where π1(U
n
0 (A)) is the first fundmental group of Un

0 (A). In particular,

∆0
∞(π1(U

∞
0 (A))) = ρ(K0(A)),

where ρ is the canonical homomorphism from K0(A) to AffT (A) (see [2, 10.10]). So ∆1
n

defines a group homomorphism (called the de la Harpe-skandalis determinant, if n = ∞)

∆n : Un
0 (A) 7→ AffT (A)/∆0

n(π1(Un
0 (A)))

by ∆n(u) = q(∆1
n(ηu)), where q is the quotient map from AffT (A) to

AffT (A)/∆0
n(π1(Un

0 (A)))

and ηu is any piecewise smooth path in Un
0 (A) from 1 to u.

Let n ∈ N ∪ {∞}, q, q0, q′ be the quotient maps from AffT (A), Un
0 (A), and Un(A)

to AffT (A)/∆0
n(π1(Un

0 (A))), U
n
0 (A)/DUn

0 (A), and Un(A)/DUn(A) respectively. The dis-

tance DA on Un
0 (A)/DUn

0 (A) is defined by

DA(q
0(u), q0(v)) = inf{∥uv∗ − c∥ : c ∈ DUn

0 (A)}

for any u, v ∈ Un
0 (A), the distance D′

A on Un(A)/DUn(A) is defined by

D′
A(q

′(u), q′(v)) = inf{∥uv∗ − c∥ : c ∈ DUn(A)}

for any u, v ∈ Un(A), and the distance dA on AffT (A)/∆0
n(π1(Un

0 (A))) is defined by

dA(q(f), q(g)) =

{
2, if d(q(f), q(g)) ≥ 1

2 ,

|e2πi d(q(f),q(g)) − 1| if d(q(f), q(g)) < 1
2

for any f, g ∈ AffT (A), where

d(q(f), q(g)) = inf{∥f − g − h∥ : h ∈ ∆0
n(π1(Un

0 (A)))}.

For n < ∞, there are standard contractive mappings

(iA)n,m(n < m) :
Un(A)

DUn(A)
7→ Um(A)

DUm(A)
.

It is easy to see that U∞(A)

DU∞(A)
is the inductive limit of

(
Un(A)

DUn(A)
, (iA)n,m

)
and the quotient

distance on U∞(A)

DU∞(A)
defined above coincides with that defined by inductive limit. Similarly

for
U∞

0 (A)

DU∞
0 (A)

.
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§2. Main Theorem

Lemma 2.1.[11,Theotem 3.2.] For n ∈ N ∪ {∞}, ∆n induces a homeomorphic group iso-

morphism

∆n : Un
0 (A)/DUn

0 (A) 7→ AffT (A)/∆0
n(π1(Un

0 (A))).

In particular,

U∞
0 (A)/DU∞

0 (A) ∼= AffT (A)/ρ(K0(A)).

Proof. It is proved in [11]. For application, we write the inverse Φn of ∆n as follows:

By duality theorem, for any element ξ in AffT (A), we have a ∈ Asa with ξ(τ) = τ(a) for

any τ ∈ T (A), and so we can denote ξ by â. Then we define Φn(q(ξ)) = q0(e2πia) and this

Φn does the job.

Note. By the proof of [11, Theorem 3.2] we also have that for every a ∈ Mn(A)sa,

∆n(q
0(e2πia)) = q(â), where

â(ω) = (tr⊗ ω)(a) (∀ω ∈ T (A)), tr is the canonical trace state on Mn.

Theorem 2.1. Let ∆n : Un
0 (A)/DUn

0 (A) 7→ AffT (A)/∆0
n(π1(Un

0 (A))) be as above,

where A is a unital C∗-algebra. Then, with the distances defined in §1, ∆n is an isometric

group isomorphism.

Proof. The only part we need to prove is that ∆n is isometric. By Lemma 2.1, the

inverse map of ∆n is Φn with Φn(q(â)) = q0(e2πia), where â(ω) = ω(a), a = a∗ ∈ Asa,

ω ∈ T (A). Since

eiaeibe−i(a+b) = lim
n→∞

eiaeib(e−ia/ne−ib/n)n ∈ DU0(A)

(see [11, §1]), i.e. eiaeib = e−i(a+b) module DU0(A), we have

DA(q
0(e2πia), q0(e2πib))

= inf{∥e2πiae−2πib − u∥ : u ∈ DUn
0 (A)}

= inf{∥e2πi(a−b)w − u∥ : u ∈ DUn
0 (A)}

(where w is some element in DU0(A))

= inf{∥e2πi(a−b)u− 1∥ : u ∈ DUn
0 (A)}.

On the other hand, let sup{|ω(a)| : ω ∈ T (A)} = ∥â∥ (a ∈ Asa), and

A0 =
{
x− y| ∃{ci} ⊆ A s.t. x =

∑
i

cic
∗
i , and y =

∑
i

c∗i ci

}
,

then ∥â∥ = inf{∥a− x∥ |x ∈ A0} by the proof of [11, Lemma 3.1]. So, if d(q(â), q(b̂)) < 1/2,
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then

dA(q(â), q(b̂)) = |e2πid(q(â),q(b̂)) − 1|

= inf{|e2πi∥â−b̂−ĉ∥ − 1| : c ∈ Asa and ĉ ∈ ∆0
n(π1(Un

0 (A)))}

= inf{|e2πi∥a−b−c−x∥ − 1| : c, x ∈ Asa, ĉ ∈ ∆0
n(π1(Un

0 (A))),

x =
∑
i

cic
∗
i −

∑
i

c∗i ci}

= inf{|e2πi∥a−b−d∥ − 1| : d ∈ Asa, d̂ ∈ ∆0
n(π1(Un

0 (A)))},

(since x̂ = 0, x̂ ∈ ∆0
n(π1(Un

0 (A)))

= inf{|e2πi∥a−b−d∥ − 1| : d ∈ Asa, e2πid ∈ DUn
0 (A)},

(since d̂ ∈ ∆0
n(π1(Un

0 (A))) iff e2πid ∈ DUn
0 (A) by Lemma 2.1 )

= inf{∥e2πi(a−b−d) − 1∥ : d ∈ Asa, e2πid ∈ DUn
0 (A)}

(since d(q(â), q(b̂)) < 1/2, and by the simple spectrum computation).

So, if d(q(â), q(b̂)) < 1/2, then for any ε > 0, we can take d ∈ Asa with e2πid ∈ DUn
0 (A))

and

dA(q(â), q(b̂)) ≥ ∥e2πi(a−b−d) − 1∥ − ε.

Since there is w ∈ DU0(A) ⊆ DUn
0 (A) such that

e2πi(a−b)e−2πidw = e2πi(a−b−d),

and since e2πid ∈ DUn
0 (A), we have

DA(q
0(e2πia), q0(e2πib)) ≤ ∥e2πi(a−b)e−2πidw − 1∥ = ∥e2πi(a−b−d) − 1∥

≤ dA(q(â), q(b̂)) + ε.

Since

DA(q
0(e2πia), q0(e2πib)) ≤ 2, DA(q

0(e2πia), q0(e2πib)) ≤ dA(q(â), q(b̂)).

If DA(q
0(e2πia), q0(e2πib)) < 2, for any 0 < ε < 2 − DA(q

0(e2πia), q0(e2πib)), there is

u0 ∈ DUn
0 (A) such that

∥e2πi(a−b)u0 − 1∥ ≤ DA(q
0(e2πia), q0(e2πib)) + ε < 2.

Let e2πic = e2πi(a−b)u0 with ∥c∥ < 1
2 , and d = a − b − c (the existence of c is given by the

inequality above), where c ∈ Mn(A)sa. Then

q(d̂) = q(â− b̂− ĉ) = q(â− b)− q(ĉ)

= ∆n(q
0(e−2πice2πi(a−b)) = ∆n(q

0(u∗
0))

= −∆n(q
0(u0)) = 0.

So d̂ ∈ ∆0
n(π1(Un

0 (A))). Therefore

dA(q(â), q(b̂)) ≤ ∥e2πi(a−b−d) − 1∥ = ∥e2πi(a−b)u0 − 1∥
≤ DA(q

0(e2πia), q0(e2πib)) + ε < 2,

since it implies that

d(q(â), q(b̂)) ≤ ∥(̂a− b)− d̂∥ ≤ ∥a− b− d∥ <
1

2
.
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So if DA(q
0(e2πia), q0(e2πib)) < 2, then

dA(q(â), q(b̂)) ≤ DA(q
0(e2πia), q0(e2πib)).

If DA(q
0(e2πia), q0(e2πib)) = 2, then dA(q(â), q(b̂)) = 2, since, otherwise,

DA(q
0(e2πia), q0(e2πib)) ≤ dA(q(â), q(b̂)) < 2

by the discussion above.

Corollary 2.1. With the notation as above, if the natural map from π1(U
n
0 (A)) to

π1(U
∞
0 (A)) = K0(A) is surjective, then, for each k with k ≥ n and k ∈ N, the following

natural maps are isometric group isomorphisms:

Un
0 (A)

DUn
0 (A)

∼=
Uk
0 (A)

DUk
0 (A)

∼=
AffT (A)

ρ(K0(A))
.

Lemma 2.2. With the notation as in §1, for any n ∈ N ∪ {∞}, we have that

DUn
0 (A) ⊆ DUn(A) ∩ Un

0 (A), DUn
0 (A) ⊆ DUn(A) ∩ Un

0 (A);

and that

DUn(A) ⊆ DU4n
0 (A), DUn(A) ⊆ DU4n

0 (A).

In particular, we have

DU∞
0 (A) = DU∞(A), and DU∞

0 (A) = DU∞(A).

Proof. Clearly DUn
0 (A) ⊆ DUn(A) ∩ Un

0 (A) and

DUn
0 (A) ⊆ DUn(A) ∩ Un

0 (A)

by the definition. Let u, v ∈ Un(A). We have

diag (u−1v−1uv, 1, 1, 1)

= diag (u−1, 1, 1, 1)diag (v−1, 1, 1, 1)diag (u, 1, 1, 1)diag (v, 1, 1, 1)

= diag (u−1, u, 1, 1)diag (v−1, 1, v, 1)diag (u, u−1, 1, 1)diag (v, 1, v−1, 1).

So diag (u−1v−1uv, 1, 1, 1) ∈ DU4n
0 (A), and therefore

DUn(A) ⊆ DU4n
0 (A), and DUn(A) ⊆ DU4n

0 (A).

Corollary 2.2. With the notation as above, if the natural map from π1(U
n
0 (A)) to

π1(U
∞
0 (A)) = K0(A) is surjective, then, for each k, n with k ≥ n and k ∈ N,

Uk
0 (A) ∩DUk(A) = DUk

0 (A).

Proof. It is enough to prove that

Uk
0 (A) ∩DUk(A) ⊆ DUk

0 (A).

In fact, for any x ∈ Uk
0 (A) ∩ DUk(A), x ∈ DU4k

0 (A) ∩ Uk
0 (A) by Lemma 2.2. Therefore

x ∈ DUk
0 (A) by Corollary 2.1.

The following Lemma 2.3 is known to experts. Since no reference including its proof is

known to me, and the concrete isomorphism is needed, we include its proof here.

Lemma 2.3. Let A be a unital C∗-algebra, SA be the suspension C∗-algebra of A. For

any integer n,

π1(U
n
0 (A))

∼= Un(S̃A)/Un
0 (S̃A).
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Proof. Let F (n,A) = {f : T → Un(A)|f(1) = 1Mn(A)}. For any f , g ∈ F (n,A), we

define f ∼ g iff f is homotopic to g with 1 ∈ T fixed. Then ∼ is an equivalence relation,

and π1(U
n
0 (A)) = F (n,A)/ ∼. Since A has a unit 1A, it is easy to see

S̃A = {f ∈ C(T, A)|f(1) ∈ C1A}
by identifying g + α1 with g + αe, where α ∈ C, g ∈ SA, 1 is the added unit of S̃A, and e

is the unit of C(T, A). So we view S̃A as a subset of C(T, A) later. Now we define

Ψ : π1(U
n(A)) = F (n,A)/ ∼ 7→ Un(S̃A)/Un

0 (S̃A), Ψ([f ]) = [(xij)],

where f ∈ F (n,A), (xij) ∈ Un(S̃A), xij(t) = f(t)ij ( the (i, j)-th element of matrix f(t) ∈
Un(A)). Since xij(1) = f(1)ij = 1Aδij , xij ∈ S̃A. Let x′

ij(t) = (f(t)∗)ij = (f(t)ji)
∗. Then

(xij)(x
′
ij) = (x′

ij)(xij) = 1
Mn(S̃A)

,

and so (xij) ∈ Un(S̃A). First we note that Ψ is well-defined. In fact, let [f ] = [g], then

there is an F : [0, 1]×T 7→ Un(A) which is continuous and satisfies

F (0, t) = f(t), F (1, t) = g(t), F (s, 1) = 1Mn(A)(∀s ∈ [0, 1], t ∈ T).

Let (x′
ij) ∈ Un(S̃A), x′

ij(t) = g(t)ij , and (zsij) ∈ Un(S̃A), zsij(t) = F (s, t)ij . Then s → (zsij)

is continuous. Since F is continuous, therefore uniformly continuous on [0, 1] × T, (zsij) is

a continuous path in Un(S̃A) connecting (z0ij) = (xij) to (z1ij) = (x′
ij). Therefore [(xij)] =

[(x′
ij)], i.e. Ψ([f ]) = Ψ([g]). It is well known that [f ]× [g] = [f ·g], where (f ·g)(t) = f(t)g(t),

and × is the standard multiplication on elementary group by connecting two paths from and

to 1 into one path from and to 1. From this, it is easy to see Ψ is a group homomorphism.

Let (xij) ∈ Un(S̃A). Then (xij) = (yij) + (αije), where yij ∈ SA, (αij) ∈ Un(C). Let

(αij)
∗(yij) = (zij). Then

(xij) = (αij)((zij) + 1
Mn(S̃A)

).

Since Un(C) is path connected, [(xij)] = [(zij) + 1
Mn(S̃A)

] in Un(S̃A)/Un
0 (S̃A). Now we

define

Φ : Un(S̃A)/Un
0 (S̃A) 7→ π1(U

n(A)) = F (n,A)/ ∼, Φ([(xij)]) = [f ],

where f(t) = zij(t) + 1Mn(A) ∈ Un(A). If (x′
ij) = (y′ij) + (α′

ije) ∈ Un(S̃A) such that

[(x′
ij)] = [(xij)], then there is a continuous path (xs

ij) ∈ Un(S̃A) (0 ≤ s ≤ 1) from (xij) to

(x′
ij). Let (x

s
ij) = (ysij) + (αs

ije). Since Mn(C) ∼= Mn(S̃A)/Mn(SA), (αs
ij) is the continuous

path from (αij) to (α′
ij), and

(zsij) = (αs
ij)

∗(ysij) = (αs
ij)

∗((xs
ij)− (αs

ije))

is the continuous path in Mn(SA) from (zij) to (z′ij). Let

F : [0, 1]×T → Un(A), F (s, t) = (zsij(t)) + 1Mn(A)).

Clearly F is continuous. Let f ′ ∈ F (n,A), f ′(t) = z′ij(t) + 1Mn(A). Then F (0, ·) = f ,

F (1, ·) = f ′, so [f ] = [f ′]. Therefore Φ is well-defined. It is not difficult to check that

ΨΦ = id and ΦΨ = id, which completes the proof.

Corollary 2.3. Let A be a unital C∗-algebra, SA be the suspension C∗-algebra of A. If

there is an integer k > 0 such that

Uk(S̃A)/Uk
0 (S̃A) 7→ K1(SA) (∼= K0(A))
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is surjective, then for every n ≥ k,

π1(U
n
0 (A)) (= π1(U

n(A))) 7→ π1(U
∞
0 (A)) (∼= K0(A))

is surjective.

Proof. Clearly for every n ≥ k, the natural map

in : Un(S̃A)/Un
0 (S̃A) 7→ K1(SA)

is surjective. Let jn be the homomorphism

π1(U
n
0 (A)) (= π1(U

n(A))) 7→ π1(U
∞
0 (A)) (∼= K0(A)).

Then, by the proof of Lemma 2.3, it is easy to check that jn = inΨ. Therefore jn is

surjective.

For a C∗-algebra A, if n ≥ csr(S̃A) (the central stable rank of S̃A), by [8, 10.10], then

the natural map of GL(n − 1, S̃A)/GL0(n − 1, S̃A) to K1(SA)(= K1(S̃A)) is surjective,

and also by [8, 10.12], if n ≥ Bsr(S̃A) + 2 (where Bsr(A) is the Bass stable rank of A),

then the natural map of GL(n, S̃A)/GL0(n, S̃A) to K1(SA)(= K1(S̃A)) is isomorphic. It is

well-known that

GL(n, S̃A)/GL0(n, S̃A) ∼= Un(S̃A)/Un
0 (S̃A).

Since csr(S̃A) − 1 ≤ Bsr(S̃A) ≤ str(S̃A) = str(SA) by [8, 4.10], we have the following

theorem by Corollary 2.3.

Theorem 2.2. For a unital C∗-algebra A, if SA is of stable rank n, then we get

that the natural map π1(U
n(A)) 7→ K1(SA) = K0(A) is surjective, and the natural map

π1(U
n+2(A)) 7→ K1(SA) = K0(A) is isomorphic, therefore

Un
0 (A) ∩DUn(A) = DUn

0 (A)

by Corollary 2.2.

Theorem 2.3. (1) For a unital C∗-algebra A with Un
0 (A)∩DUn(A) = DUn

0 (A) (n ∈ N)

(In particular, when SA is of stable rank n by the Theorem 2.2), we have a split exact

sequence

0 7→ AffT (A)/∆0
n(π1(Un

0 (A)))
iA7→ Un(A)/DUn(A)

πA7→ Un(A)/Un
0 (A) 7→ 0,

where iA is contractive with the quotient distance D′
A on AffT (A)/∆0

n(π1(Un
0 (A))) ∼=

Un(A)/DUn(A) and the distance dA on Un
0 (A)/DUn

0 (A).

(2) For any unital C∗-algebra A, we have a split exact sequence

0 7→ AffT (A)/ρ(K0(A))
iA7→ U∞(A)/DU∞(A)

πA7→ K1(A) 7→ 0

with iA isometric.

Proof. First let n ∈ N. Since eiaeib = ei(a+b) module DUn
0 (A) with a, b ∈ Mn(A)sa,

disscused as above, and any element in Un
0 (A) is of form eia1eia2 · · · eian with a1, a2, · · · , an ∈

Mn(A)sa,
Un

0 (A)

DUn
0 (A)

is a divisible subgroup of Un(A)

DUn(A)
by

Un
0 (A) ∩DUn(A) = DUn

0 (A).

Therefore there is a split exact sequence

0 7→ Un
0 (A)

DUn(A) ∩ Un
0 (A)

jA7→ Un(A)

DUn(A)

πA7→ Un(A)

Un
0 (A)

7→ 0.
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So, by Un
0 (A)∩DUn(A) = DUn

0 (A) and Theorem 2.1 we get the desired split exact sequence

with iA = jA(∆n)
−1. It is clear that jA is contractive, so is iA. Now let n = ∞. Since

U∞(A)

DU∞(A)
and

U∞
0 (A)

DU∞
0 (A)

are the inductive limits of
( Un(A)

DUn(A)
, (iA)n,m

)
and

( Un
0 (A)

DUn
0 (A)

, (iA)n,m
)

respectively,
U∞

0 (A)

DU∞
0 (A)

is a divisible subgroup of U∞(A)

DU∞(A)
by Lemma 2.2. Therefore, by Lemma

2.2 again, we have a split sequence

0 7→ U∞
0 (A)

DU∞
0 (A)

jA7→ U∞(A)

DU∞(A)

πA7→ U∞(A)

U∞
0 (A)

7→ 0.

Similarly, by Theorem 2.1,

U∞(A)

U∞
0 (A)

∼= K1(A) and ρ(K0(A) ∼= ∆0
∞(π1(U∞

0 (A))),

we get the desired split exact sequence with iA = jA(∆∞)−1 isometric.
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