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GEOMETRY OF COMPLETE HYPERSURFACES
EVOLVED BY MEAN CURVATURE FLOW**
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Abstract

Some geometric behaviours of complete solutions to mean curvature flow before the singu-

larities occur are studied. The author obtains the estimates of the rate of the distance between
two fixed points and the derivatives of the second fundamental form. By use of a new maximum
principle, some geometric properties at infinity are obtained.
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LetM be a complete n-dimensional manifold without boundary, and let Ft :M
n → Rn+1

be a one-parameter family of smooth hypersurface immersions in Euclidean space. We say

that Mt = Ft(M
n) is a solution of the mean curvature flow (MCF) problem if Ft satisfies

∂

∂t
F (X, t) = −H(X, t)N(X, t), X ∈M, t ≥ 0,

F (·, 0) = F0(·),

where H(X, t) and N(X, t) are the mean curvature and the unit normal vector field re-

spectively and F0 describes the immersion of some given initial hypersurface. It is well

know[12,3] that for smooth closed initial hypersurface or for complete initial hypersurface

with bounded second fundamental form A = {hij} the solution of the MCF exists on a

maximal time interval [0, T ), 0 < T ≤ ∞. If T < ∞, the curvature of the hypersurfaces

Mt becomes unbounded for t → T . One would like to understand the singular behaviour

for t→ T in detail. Here, by singularities of the MCF we mean solutions to the MCF with

unbounded curvature. According to Huisken’s report[15], we can discuss it like Hamilton

has done on Ricci flow (see [7, 10] and [11]). First, try to analyze the singularities which

develop in finite time well enough to enable one to perform geometric surgeries before the

singularities occur, which will decompose the hypersurface, and then continue the solution.
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Second, classify solutions to the scaled MCF which exist for all time t ∈ [0,∞) and have

uniformly bounded curvature.

In this article we are interested in the geometric behaviour of solutions before the sin-

gularities occur. We confine our attention to solutions which are smooth and compact, or

smooth and complete with bounded second fundamental form. After recalling some nota-

tions, in Section 2, we show how the distance changes between two points under the MCF.

In Section 3, we obtain the estimates of the derivatives of the second fundamental form from

the bound of the second fundamental form. It is useful in discussing the existence of the long

time solution and the classification of singularities. We also obtain a maximum principle for

mean curvature flow which is more convenient than one in [3] to be used. In Section 4, we

study the curvature of complete manifolds at infinity. In Section 5, we discuss the volume

of the complete weakly convex solution to the MCF.

§1. Preliminaries

We recall the equations for some geometric quantities associated with the evolving hyper-

surface and other identities which we shall need in the sequel. We shall follow the notations

of [4]; in particular g = {gij} and A = {hij}(i, j = 1, · · · , n) will denote the metric tensor

and the second fundamental form on M induced by the immersion, while H = tr (hij) is

the mean curvature. We also denote by dv the volume element on M . All these quantities

depend on x, t (where x is a local coordinate onM), but this dependence will not be written

explicitly unless necessary.

Lemma 1.1.[12] If Mt is a solution of the MCF, we have

(1) ∂
∂tgij = −2Hhij ,

(2) ∂
∂thij = ∆hij − 2Hhilg

lmhmj + |A|2hij ,
(3) ∂

∂tH = ∆H + |A|2H,
(4) ∂

∂t |A|
2 = ∆|A2| − 2|DA|2 + 2|A|4,

(5) ∂
∂t |D

mA|2 = ∆|DmA|2 − 2|Dm+1A|2 +
∑

i+j+k=m

DmA ∗DiA ∗DjA ∗DkA,

where S ∗ T denotes linear combinations of traces of S and T .

We can introduce the orthonormal frame {Fa}(a = 1, · · · , n), where F1, · · · , Fn are tan-

gent to M . We can take covariant derivatives D = {Da} in the frame coordinates. We also

have the time-like vector field Dt on the frame bundle, which differentiates in the direction

of the moving frame (cf. [8] for detail). We can compute the commutator of Dt and Da,

and obtain following lemma.

Lemma 1.2.[8] For any function f ,

(Dt −∆)Daf = Da(Dt −∆)f + hachcdDdf.

In these orthonormal frame coordinates, the evolution of the second fundamental form is

particularly simple,

Dthab = ∆hab + |A|2hab.

§2. Bounds on Changing Distances

It is useful to see how the actual geometry changes under the mean curvature flow (MCF).
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For this purpose we need to control the distance d(P,Q, t) between two points P and Q at

time t when P and Q are fixed but t increases.

We let

ds2t = gij(X, t)dx
idxj , 0 ≤ t ≤ T

and use D or Dt to denote the connection of ds2t , ∆ or ∆t the Laplacian operator of ds2t ,

and suppose |A|2 ≤ K holds on Mt for 0 ≤ t ≤ T .

Lemma 2.1. We have

e−CKT ds20 ≤ ds2t ≤ eCKT ds20, 0 ≤ t ≤ T,

where the constant C depends only on n.

Proof. By use of the condition |A|2 ≤ K and the evolution equation of the metric gij ,

we can easily obtain the lemma.

Theorem 2.1. There exists a constant C depending only on the dimension, such that if

the square norm of the second fundamental form is bounded by a constant K, i.e., |A|2 ≤ K,

then

e−CK(t2−t1)d(P,Q, t1) ≤ d(P,Q, t2) ≤ eCK(t2−t1)d(P,Q, t1)

for any points P and Q and any times t1 and t2.

Proof. Let L be the length of a path γ in a hypersurface Mt = Ft(M). Suppose T is

the unit tangent vector to the path and s is the arc length along the path. We keep the

path fixed. Then the length L evolves by the formula ∂
∂tL = −

∫
γ
Hh(T, T )ds under the

MCF. The function d(P,Q, t) is the least length L of all paths. In general it will not be

smooth in t for fixed P and Q, but at least it will be Lipschitz continuous. Hence we can

estimate its derivative above and below, in the sense of giving an upper bound on the lim sup

of all forward difference quotients and lower bound on the lim inf of all forward difference

quotients (see [5] for details). We have the estimate

− inf
γ∈Γ

∣∣∣ ∫
γ

Hh(T, T )ds
∣∣∣ ≤ d

dt
d(P,Q, t) ≤ inf

γ∈Γ

∣∣∣ ∫
γ

Hh(T, T )ds
∣∣∣,

where the inf is taken over the compact set Γ of all geodesics γ from P to Q realizing the

distance as a minimal length.

Now we apply the bound

−CKL(γ) ≤
∫
γ

Hh(T, T )ds ≤ CKL(γ)

to conclude

−CKd(P,Q, t) ≤ d

dt
d(P,Q, t) ≤ CKd(P,Q, t),

that is,

−CK ≤ d

dt
log d(P,Q, t) ≤ CK;

all these inequalities are in the sense of [5]. Integrating the inequality we get the result.

§3. Derivative Estimates

In order to study the geometry of complete surfaces at infinity, we need a derivative

estimate from the bound of the second fundamental form. In this section, we will let C
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denote various constants which depend only on the dimension, the time interval T , and

the bound K. With appropriate modifications, the proof of Lemma 7.1 in [18] yields the

following derivative estimates of the second fundamental forms under the MCF.

Theorem 3.1. Suppose we have a solution to the MCF for 0 ≤ t ≤ T which is complete

with bounded second fundamental form |A|2 ≤ K. Then there exist constants Ck for k ≥ 1

depending only on k, n, K and T such that the covariant derivative of the second fundamental

form is bounded

|DA| ≤ C1/
√
t

and the k-th covariant derivative of the curvature is bounded

|DkA| ≤ Ck/t
k/2.

Corollary 3.1. If the second fundamental form is bounded |A|2 ≤ K on M × [0, T ], then

the space-time derivatives are bounded

|Dj
tD

kA| ≤ Cj,k/t
(j+k/2),

where the constant Cj,k depends on j, k, n, K and T .

Proof. We can express DtA in terms of ∆A and A ∗ A. Likewise we can differentiate

this equation to express any space-time derivative Dj
tD

kA just in terms of space derivatives,

and recover the bound above.

Now we employ Hamilton’s method in [6] to prove the following maximum principle.

Theorem 3.2. Let F (X, t) be a C∞ function on M × [0, T ] satisfying

(Dt −∆)F ≤ Q(F,X, t)

on M × [0, T ]. Let ρ(X, t) denote the distance between X and some fixed point O at time t.

If F (X, t) satisfies the following conditions:

(1) F (X, t) ≤ Cρ(X, t)m for some positive integer m, constant C > 0;

(2) F (X, 0) ≤ 0 holds on M ;

(3) Q(F,X, t) ≤ 0 for F (X, t) > 0;

then F (X, t) ≤ 0 holds on M × [0, T ].

In order to prove this theorem, we may assume we are working on a closed time interval

0 ≤ t ≤ T , for if we only start with 0 < t < T , we can pass to ε ≤ t ≤ Tε and let ε→ 0.

Lemma 3.1. There exists a function f such that f ≥ 1 everywhere and f(X) → ∞ as

X → ∞, but |Df | ≤ C0 and |∆f | ≤ C0 for a positive constant C0 depending only on n, K

and T for t ∈ [0, T ]. (In case the hypersurface is compact, we take f ≡ 1.)

Proof. From our assumption, at time zero, |A|2 ≤ K, there must exist a constant k > 0,

such that Ric ≥ −k. Then by a theorem of Schoen and Yau (see Chapter 1 of [17]) there

exists a proper smooth function f̃ , satisfying |Df̃ | ≤ C, f̃ ≥ C1ρ and |∆f̃ | ≤ C for some

constants C and C1 depending on K, where ρ is a distance function from a fixed point.

In what follows, we will bound covariant derivatives of f̃ at time t > 0. By Theorem 2.1,

we have f̃ ≥ Cρ at t ∈ [0, T ]. Choose a coordinate system such that Dkgij(X, 0) = 0 at

X ∈ M . We let Dt, ∆t and | · |t denote the covariant, the Laplacian and the norm at time
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t. Then by the definition of covariant derivative, we have

Dt
i f̃(X) = D0

i f̃(X),

∆tf̃(X) = gij(X, t)D0
iD

0
j f̃(X)− gij(X, t)Γk

ij(X, t)D
0
kf̃ .

Since

∂

∂t
Γk
ij = gkl(Dl(Hhij −Dj(Hhil)−Di(Hhlj)),

we have

∂

∂t
|Γk

ij |2(X, t) =
∂

∂t
(gkγg

iαgjβΓk
ijΓ

γ
αβ) ≤

C√
t

by our assumption and Theorem 3.1. Then |Γk
ij |2 ≤ C. We have

|Dtf̃(X)|2 = gij(X, t)Dt
i f̃(X)Dt

j f̃(X)

≤ Cgij(X, 0)D0
i f̃(X)D0

j f̃(X)

= C|D0f̃(X)|2 ≤ C

and

|∆tf̃(X)| ≤ |gij(X, t)D0
iD

0
j f̃(X)|+ |gij(X, t)Γk

ij(X, t)D
0
kf̃ |

≤ C|∆0f̃(X)|+ C|D0f̃ | ≤ C

for some suitable constant C depending only on n, K and T . At last we let f = 1+ f̃ , then

f is desired.

Lemma 3.2. Given any constant C, any η > 0 and any compact set K in space-time,

we can find a function ϕ(X, t) such that

(1) ϕ ≤ η on the set K and ϕ ≥ ϵ for some ϵ > 0, while ϕ(X, t) → ∞ if X → ∞ in the

sense that the sets ϕ ≤ N are all compact in space-time for 0 ≤ t ≤ T ;

(2) (Dt −∆)ϕ > Cϕ.

Proof. Let

ϕ(X, t) = ϵeBtf(X)

with f defined in Lemma 3.1 and constant B will be chosen later. Since ∆f ≤ C and f ≥ 1,

we get ∆ϕ ≤ Cϕ, and to make (2) work we only need Dtϕ > Cϕ with a different C. This

can be done by picking B > C. To prove (1) we need

ϵ ≤ ηe−BT (max
K

f(X))−1,

which we can do.

Now we begin to prove Theorem 3.2. Let G(X, t) = F (X, t) − ϕm+1(X, t), where the

function ϕ = ϵeBtf(X) = ϵeBt(1+f̃) is given in Lemma 3.2 and Lemma 3.1. Then G(X, 0) =

F (X, 0)− ϕm+1(X, 0) < 0 on M , and

G(X, t) ≤ Cρm(X, t)− (ϵC1ρ)
m+1 = (C − C ′ρ)ρm < 0

outside a compact subset K. We want to show G(X, t) < 0 holds on M × [0, T ].

If it is not true, we suppose that t0 is the first time such that at some point X0 ∈ M ,

G(X0, t0) = 0. Then at time t0, X0 is the maximal point of G on M and F (X0, t0) =
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ϕm+1(X0, t0) > 0. So at space-time point (X0, t0)

DtG(X, t) ≤ ∆F +Q(F,X, t)− (m+ 1)ϕmDtϕ

= ∆G+Q(F,X, t)− (m+ 1)ϕm(Dt −∆)ϕ+m(m+ 1)ϕm−1|Dϕ|2

< (m+ 1)ϕm+1(−C +mC0) < 0,

where the constant C comes from Lemma 3.2 and can be chosen large and C0 comes from

Lemma 3.1. Then at point X0, G(X0, t) > 0 for some time t < t0. This is a contradiction.

Then we have G(X, t) < 0 on M × [0, T ]. At last we only need to let η → 0 in Lemma 3.2,

and get F (X, t) ≤ 0 on M × [0, T ]. This completes the proof of Theorem 3.2.

Now we can use Theorem 3.1 and Theorem 3.2 to prove following

Theorem 3.3. If the square norm of the second fundamental form |A|2 is bounded

|A|2 ≤ K

up to time t with 0 < t ≤ 1/K, there exists a constant C depending only on the dimension

such that the covariant derivative of the second fundamental form is bounded

|DA| ≤ CK1/2/t1/2.

Proof. We have

Dt|A|2 = ∆|A|2 − 2|DA|2 + 2|A|4,
Dt|DA|2 ≤ ∆|DA|2 − 2|D2A|2 + CK|DA|2.

Now let F be the function

F = t|DA|2 +B|A|2,

where B is a constant we shall choose in a minute. Then DtF ≤ ∆F +(CKt− 2B)|DA|2 +
2B|A|4. We assume tK ≤ 1. Then if we take B ≥ C, we get DtF ≤ ∆F + CK2 for

some constant C. Also the inequality F ≤ CK at t = 0 together with Theorem 3.2 implies

F ≤ CK + CK2t. Now as long as tK ≤ 1 this gives F ≤ CK for some constant C, and

t|DA|2 ≤ F ≤ CK yields |DA| ≤ CK1/2/t1/2 for some constant C.

§4. Geometry of Complete Surfaces at Infinity

Theorem 4.1. Suppose we have a complete solution to the MCF with bounded second

fundamental form. Let s denote the distance from a fixed point on the complete hypersurface.

If |A| → 0 as s→ ∞ at t = 0, this remains true for t ≥ 0.

Proof. Suppose |A|2 ≤ K for some constant K. At t = 0, for every ε > 0 we can find

σ <∞, such that |A|2 ≤ ε for s ≥ σ. We have the evolution equation

Dt|A|2 = ∆|A|2 − 2|DA|2 + 2|A|4

and an estimate

Dt|A|2 ≤ ∆|A|2 + 2|A|4.

For any σ > 0 choose

ρ = σ + (K − ε)/δ
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and choose the continuous function

ψ =

K, if s ≤ σ,
K − δ(s− σ) = ε+ δ(ρ− ε), if σ ≤ s ≤ ρ,
ε, if s ≥ ρ,

where s is the distance from some origin at t = 0. Then ψ is Lipschitz continuous since s is,

and since |Ds| ≤ 1 almost everywhere, we also have |Dψ| ≤ δ almost everywhere.

Now we can smooth ψ locally and patch together with a partition of unity to get a

function ψ̃ which is smooth and satisfies

−ε ≤ ψ̃ ≤ K + ε and |Dψ̃| ≤ 2δ everywhere

and

ψ̃ ≥ K − ε, if s ≤ σ,

ψ̃ ≤ ε, if s ≥ ρ.

Lastly take ϕ = ψ̃ + 2ε. Then

ε ≤ ϕ ≤ K + 3ε and |Dϕ| ≤ 2δ everywhere

and

ϕ ≥ K if s ≤ σ and ϕ ≤ 3ε if s ≥ ρ.

Now define ϕ for t ≥ 0 by solving the scalar heat equation ∂ϕ
∂t = ∆ϕ in the Laplacian of

the metric evolving by the MCF. By the maximum principle we still have ε ≤ ϕ ≤ K + 3ε

everywhere for t ≥ 0. The derivative Daϕ evolves in an evolving orthonormal frame by

Lemma 1.2

DtDaϕ = ∆Daϕ+ hachcdDdϕ

and hence

∂

∂t
|Dϕ|2 = ∆|Dϕ|2 − 2|D2ϕ|2 + 2habhbcDaϕDcϕ

≤ ∆|Dϕ|2 + CK|Dϕ|2

for some constant C depending only on the dimension. By the maximum principle, we have

|Dϕ|2 ≤ 4δ2eCKt for t ≥ 0.

The second derivative DaDbϕ evolves by the formula

DtDaDbϕ = ∆DaDbϕ+ 2(habhcd − hadhbc)DcDdϕ+ hachcdDdDbϕ

+ hbchcdDaDdϕ+ 2hcdDahbcDdϕ.

Then we can obtain

Dt|D2ϕ|2 ≤ ∆|D2ϕ|2 + CK|D2ϕ|2 + CK1/2|DA||Dϕ||D2ϕ|.

By Theorem 3.3 we have for 0 < t ≤ 1/K

Dt|D2ϕ|2 ≤ ∆|D2ϕ|2 + CK|D2ϕ|2 + CK|Dϕ||D2ϕ|/t1/2,

where C depends only on the dimension. Let us put F = t|D2ϕ|2 + |Dϕ|2 and compute

∂

∂t
F ≤ ∆F − |D2ϕ|2 + CKt|D2ϕ|2 + CKt1/2|Dϕ||D2ϕ|+ CK|Dϕ|2.
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As 2t1/2|Dϕ||D2ϕ| ≤ t|D2ϕ|2 + |Dϕ|2, we have

∂

∂t
F ≤ ∆F − |D2ϕ|2 + CKt|D2ϕ|2 + CK|Dϕ|2.

Then if t ≤ C0/K where C0 = 1/C depends only on the dimension, we have

∂

∂t
F ≤ ∆F + CK|Dϕ|2 ≤ ∆F + CKδ2eCKt.

Now in the time interval 0 < t ≤ min{C0

K , 1
K }, we have

∂

∂t
F ≤ ∆F + Cδ2K,

where C depends only on the dimension. By the maximum principle (Theorem 3.2)

F (t) ≤ F (0) + Cδ2Kt ≤ 4δ2 + Cδ2Kt

for 0 < t ≤ min{C0

K , 1
K }. Then F (t) ≤ Cδ2, and t|D2ϕ|2 ≤ Cδ2. Thus

|D2ϕ| ≤ Cδ/
√
t, for 0 < t ≤ min

{C0

K
,
1

K

}
.

Since |∆ϕ|2 ≤ n|D2ϕ|2 and ϕ solves the heat equation,∣∣∣∂ϕ
∂t

∣∣∣ ≤ Cδ/
√
t for 0 < t ≤ min

{C0

K
,
1

K

}
,

where C depends only on the dimension n. For all point X,

|ϕ(X, t)− ϕ(X, 0)| ≤ 2Cδ
√
t, for 0 < t ≤ min

{C0

K
,
1

K

}
.

Since δ > 0 is arbitrarily small, we can take

δ ≤ ε
√
K

2C
√
C0

so that 2Cδ
√
t ≤ ε, for 0 < t ≤ min{C0

K , 1
K }. Then ϕ ≤ 4ε for t ≤ min{C0

K , 1
K } on the set

where s ≥ ρ at t = 0. Now distances can expand, but only at an exponential rate governed

by K. In particular if s = s(X,O, t) is the distance between a point X and the origin O at

time t, we have ∂s
∂t ≤ CKs and s(t) ≤ s(0)eCKt. This gives us a constant C depending only

on the dimension such that if s ≥ Cρ at X at time t ≤ min{C0

K , 1
K }, then s ≥ ρ at X at

t = 0, and ϕ ≤ 4ε at X at time t.

Now at t = 0, we have

|A|2 ≤ K ≤ ϕ, if s ≤ σ,

|A|2 ≤ ε ≤ ϕ, if s ≥ σ.

So |A|2 ≤ ϕ everywhere at t = 0. Since

∂

∂t
|A|2 ≤ ∆|A|2 + 2|A|4,

we have
∂

∂t
|A|2 ≤ ∆|A|2 + 2K|A|2,

while
∂

∂t
(e2Ktϕ) = ∆(e2Ktϕ) + 2K(e2Ktϕ).
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So |A|2 ≤ e2Ktϕ by Theorem 3.2, for t ≤ min{C0

K , 1
K }. This gives |A|2 ≤ Cϕ for some

constant C depending only on the dimension. Hence at time t we have

|A|2 ≤ Cε for s ≥ Cρ,

where the constant C depends only on the dimension and independent of ε. Thus |A| → 0

for t ≤ min{C0

K , 1
K } also as s → ∞. Since the time interval can always be advanced by

min{C0

K , 1
K } as long as |A|2 ≤ K, we get the result until |A| becomes unbounded or t→ ∞.

§5. Asymptotic Volume Ratio

Next we introduce the concept asymptotic volume ratio which was first defined by Hamil-

ton (see [7]). Let s denote the distance to an origin O in a complete manifold of dimension

n, let Bs denote the ball of radius s around the origin, and let V (Bs) be its volume. If the

manifold has weakly positive Ricci curvature, then the standard volume comparison theorem

tells us that V (Bs)/s
n is monotone decreasing in s. We define the asymptotic volume ratio

ν = lim
s→∞

V (Bs)/s
n.

In Euclidean space ν is the volume ν̄ of the unit ball, otherwise ν ≤ ν̄. For all s, V (Bs) ≥ νsn.

It is clear that the value of ν is independent of the choice of the origin. Hence the lower

bound holds on any ball around any point P ,

V (Bs(P )) ≥ νsn.

Of course we also have V (Bs(P )) ≤ ν̄sn.

Theorem 5.1. Suppose we have a complete weakly convex solution to the MCF with

bounded second fundamental form, where |A|2 → 0 as s → ∞ (a condition preserved by the

flow). Then the asymptotic volume ratio ν is constant.

Proof. Let γ be a small constant we shall choose soon, and consider the annulus

Nσ = {γσ ≤ s ≤ σ}.
Since Nσ = Bσ −Bγσ, we have

V (Nσ) = V (Bσ)− V (Bγσ).

If the asymptotic volume ratio is at least ν, then

V (Nσ) ≥ (ν − γnν̄)σn,

where γ is small, ν − γnν̄ is nearly ν and most of the ball is in the annulus.

The volume of the annulus changes at a rate

d

dt
V (Nσ) = −

∫
Nσ

H2dv.

For every ε and every γ we can find σ0 so that if σ ≥ σ0 then |A|2 ≤ ε on Nσ. This makes∣∣∣ d
dt
V (Nσ)

∣∣∣ ≤ nεV (Nσ).

If V1(Nσ) is the volume at time t1 and V2(Nσ) is the volume at time t2, we have

V2(Nσ) ≥ e−nε|t2−t1|V1(Nσ).

Let νi be the asymptotic volume ratio at time ti (i = 1, 2). Then

V1(Nσ) ≥ (ν1 − γnν̄)σn
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for all σ and all γ > 0. If V2(Bσ) is the volume of Bσ at time t2, then

V2(Bσ) ≥ V2(Nσ).

Together these make

V2(Bσ) ≥ e−nε|t2−t1|(ν1 − γnν̄)σn.

Fix γ > 0 and let σ → ∞. Then ε→ 0 and

ν2 = lim
σ→∞

V2(Bσ)

σn
≥ ν1 − γnν̄.

Since this is true for all γ > 0, ν2 ≥ ν1. But we can switch t1 and t2, so ν1 = ν2 and ν is

constant.
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