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INEQUALITY OF KORN’S TYPE ON COMPACT
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Abstract

Inequalities of Korn’s type on a surface with boundary have been proved in many papers
using different techniques (see e.g. [4], [5] [11]). The author proves here an inequality of Korn’s
type on a compact surface without boundary. The idea is to use a finite number of maps for
defining the surface and the inequality of Korn’s type without boundary conditions for every

map and to recast these in a general functional analysis setting about quotient spaces.
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§1. Introduction

“Compact surfaces without boundary” were already considered by Şlicaru [sli] in his

doctoral dissertation, where he studied the asymptotic behaviour of thin elastic shells with

such middle surfaces.

For defining a surface with boundary, one mapping is usually enough. In fact, this is

the way we define the surface, as the image of that map. It is easily seen that this is

no longer possible in the case of surfaces without boundary. It suffices to consider the

case of the sphere: it is well known that a sphere is not homeomorphic with a part of a

plane. So the study we want to make here seems to be more complicated. However, this

is compensated by the fact that the functional analysis which is behind is simplier than in

the case of surfaces with boundary. That is why, when possible, we will recast our problems

in a general functional analysis settong about quotient spaces. In this setting, we establish

some general theorems which will give in particular the desired inequality of Korn’s type.

We start with some definitions and results about surfaces and Sobolev spaces on surfaces.

These are needed for justifying the inequality of Korn’s type in the case of compact surfaces

without boundary.
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§1. Some Elements of Surface Theory

Let there be given a three-dimensional vector space, in which we fix an origin O and a

basis; in this way the three-dimensional vector space is identified with R3.

In this paper we use the classical definition of a regular surface as found, for instance, in

[2] or [9].

Definition 1.1. A connected subset S ⊂ R3 is a regular surface of class Ck if, for each

point p ∈ S, there exists a neighborhood V of p in R3 and a map θ : U → V ∩ S of the open

set U ⊂ R2 onto V ∩ S ⊂ R3 such that

(1) θ is of class Ck.

(2) θ is a homeomorphism (the topology of S is the induced topology of the usual topology

on R3).

(3) For each q ∈ U , the differential dθq : R2 → R3 is one-to-one.

The third condition is equivalent to the fact that the vectors ∂αθ (α ∈ {1, 2}) are linearly
independent at all points q ∈ U . This means that θ : U → R3 is an immersion.

Another observation is that we can replace the neighborhood V appearing in Definition

1.1 with an open neighborhood V ′ ⊂ R3. Indeed, since V is a neighborhood of p, there

exists an open neighborhood V ′ ⊂ V of p. Now, since θ : U → V ∩ S is continuous,

U ′ := θ−1(V ′ ∩ S) is an open set in U , hence in R2 (because U is open in R2). Now we can

see that the map θ : U ′ → V ′ ∩ S also satisfies the conditions of Definition 1.1.

Conversely, if we have a collection of maps (θt)t∈A (where A is an arbitrary set of indices)

and a family (ωt)t∈A of open sets of R2 such that:

(1) θt : ωt → R3 is of class Ck,

(2) θt : ωt → θt(ωt) is a homeomorphism,

(3) For each q ∈ ωt, the differential dθt|q is one-to-one,

(4) θt(ωt) is open in ∪t∈Aθt(ωt),

(5) ∪t∈Aθt(ωt) is connected,

then S :=
∪
t∈A

θt(ωt) is a regular surface of classe C
k. In particular, this shows that Definition

1.1 is equivalent to the definition of an embedded surface as found in Definition 6.1.1 of [9].

The second viewpoint is the analog in the general case of a surface defined as the image

of a single map (obviously, the fourth condition is satisfied in the case of a single map).

Before passing to the case of compact surfaces, we recall some important results about

general surfaces:

1. Change of parameters. If θ : U → S and ψ : V → S are two parameterizations

of a regular surface of class Ck such that θ(U) ∩ θ(V ) = W ̸= ∅, then the “change of

coordinates” θ−1 ◦ ψ : ψ−1(W ) → θ−1(W ) is of class Ck. For a proof, see for instance [2],

§2.3, Proposition 1.

This shows that a regular surface of class Ck is, in particular, a differentiable manifold

of class Ck. So we can use all the results on differentiable manifolds and especially those

concerning tensor fields.

2. Using the same technique as in the proof of Proposition 1 of [2], we can show that

conditions (1) and (3) (here, we suppose that k ≥ 1), together with the fact that θt is

one-to-one, imply that θt : ωt → θt(ωt) is a homeomorphism.
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In what follows, a regular surface of class Ck will be defined as a connected subset of R3

that can be writen as S :=
∪
t∈A

θt(ωt), where

(1) ωt ⊂ R2 are open sets,

(2) θt : ωt → R3 is an immersion of class Ck over ωt, (1.1)

(3) θt(ωt) is open in S.

If S is in addition compact, then we can assume that A is a finite set. More specifically,

we will use the following property of compact surfaces, which allow to apply on those parts

of the surface that are images of a single map the results already known for surfaces defined

by a single map.

Theorem 1.1. Let S be a compact regular surface of class Ck. Then there exists a finite

number of maps (θt, ωt)
N
t=1 such that S =

N∪
t=1

θt(ωt) =
N∪
t=1

θt(ωt), where

(1) ωt ⊂ R2 are open, bounded and connected sets with Lipschitz-continuous boundary,

(2) θt : ωt → R3 are injective, Ck-differentiable immersions,

(3) θt(ωt) are open in S.

Here, we consider that a function is of class Ck over an arbitrary nonempty set, if it is

the restriction to that set of a function of class Ck on a larger open set.

Proof. Since S is a compact regular surface of class Ck, there exist (θt, Dt)
N
t=1, where

θt : Dt → R3, such that S =
N∪
t=1

θt(Dt), where

(1) Dt ⊂ R2 are open sets,

(2) θt : Dt → R3 are injective, of class Ck over Dt, and ∂αθt are linearly independent at

all points of Dt,

(3) θt(Dt) are open in S.

Now we will use the following theorem due to Lebesgue: Let K be a compact metric

space and let K =
N∪
t=1

Vt, where Vt ⊂ K are open sets. Then there exists an ε > 0 such that

for all x ∈ K, there exists tx ∈ {1, . . . , N} such that B(x, ε) ⊂ Vtx (here, B(x, ε) denotes

the open ball centered at x with radius ε).

We use this theorem with K = S and Vt = θt(Dt). We consider that S is endowed with

the metric induced by the Euclidian metric on R3. With ε given by Lebesgue’s theorem,

define V ′
t := {x ∈ Vt ; d(x,K \ Vt) > ε

2}. Obviously, V ′
t is open in K. We will show that

K = ∪N
t=1V

′
t .

Let x ∈ K. Then, by Lebesgue’s Theorem, the ball B(x, ε) is included in some Vtx , which

implies that d(x,K \ Vtx) ≥ ε > ε
2 . Consequently, x ∈ V ′

tx , so that x ∈
N∪
t=1

V ′
t .

Since V ′
t = {x ∈ Vt ; d(x,K \ Vt) ≥ ε

2}, we have V ′
t ⊂ V ′

t ⊂ Vt. Define ω′
t := θ−1

t (V ′
t ) and

note that ω′
t is open. Since θt is a homeomorphism (as observed above), we have V ′

t = θt(ω
′
t)

and ω′
t = θ−1

t (V ′
t ) ⊂ θ−1

t (Vt) = Dt. We also see that the sets ω′
t are bounded (indeed, θt is

a homeomorphism and V ′
t is a compact set, so ω′

t is compact and therefore bounded). Since

ω′
t ⊂ Dt, there exists a bounded open set ωt with Lipschitz-continuous boundary, such that

ω′
t ⊂ ωt ⊂ ωt ⊂ Dt. So θt(ωt) ⊂ S and θt(ωt) is open in S, because θt(ωt) ⊂ θt(Dt) and

θt : Dt → θt(Dt) is a homeomorphism.
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Now it is clear that θt satisfies the regularity conditions on ωt (since it satisfies these

conditions on Dt). Finally, we have

S =
N∪
t=1

V ′
t =

N∪
t=1

θt(ω
′
t) ⊂

N∪
t=1

θt(ωt) ⊂
N∪
t=1

θt(ωt) ⊂ S.

To conclude the proof, we observe that we can assume that the sets ωt are connected:

otherwise, we take the connected components of ωt and use the compactness of S to again

obtain a finite number of maps.

Before passing to the next section, let us introduce some classical elements of a surface,

which will be used in the present paper. Here and in the sequel, Greek indices and exponents

(except ε and ν) take their values in the set {1, 2}, Latin indices and exponents (except t)

take their values in the set {1, 2, 3}, and the summation convention with respect to repeted

indices and exponents is used. The Euclidian scalar and vector products are denoted by

a · b and a ∧ b, respectively. We consider a regular surface of class Ck (k ≥ 2) denoted by

S. Let p ∈ S be a point of the surface and let (θ, ω) be a local map at p with θ(x) = p. We

define the following elements of either p or x by the same symbol (we write this dependence

explicitly only for the first definition) in applications, we will consider functions of either

p or x, depending on whether we work on the surface or on the set ω defining the surface

through the map θ:

aα(p) = aα(x) := ∂αθ(x) are the vectors of the covariant basis of TpS (the tangent space

to S at p) associated with the map θ,

aα are the vectors of the contravariant basis of TpS associated with the map θ, and they

are defined by the relations aα · aβ = δαβ , where δ
α
β designates the Kronecker’s delta,

a3 = a3 :=
a1 ∧ a2

|a1 ∧ a2|
is the unit normal vector to S at p,

aαβ := aα · aβ are the covariant components of the metric tensor,

aαβ := aα · aβ are the contravariant components of the metric tensor,

a := det(aαβ) is the square of the surface element,

Γσ
αβ := aσ · ∂βaα = aσ · ∂αβθ are the Christoffel symbols,

bαβ := a3 · ∂βaα = a3 · ∂αβθ are the covariant components of the curvature tensor,

bβα := aβσbσα are the mixed components of the curvature tensor,

ds :=
√
a dx is the area element on S.

§2. Sobolev Spaces on Surfaces

Let S be a regular surface of class Ck and let f : S → R be a real valued function on

S. We say that f ∈ Hm(S), (m ≤ k) if, for every p ∈ S and for a map (θ, ω) such that

p = θ(x) ∈ θ(ω), the derivatives of f ◦ θ of order ≤ m are in L1
loc(ω) and the following

expression is finite:

∥f∥Hm(S) :=
(∫

S

f2 ds+
m∑
l=1

∫
S

aα1β1 . . . aαlβlf|α1...αl
f|β1...βl

ds
) 1

2

, (2.1)

where f|α1...αl
are the l-covariant derivatives of f .

It is easily seen that such a property of weak-differentiability does not depend on the map

we choose; this comes from the fact that S is a Ck-differentiable manifold (see Section 1).
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As regards the expression in (2.1), we know from tensor theory that it is intrinsic, which

means that it does not depend on the maps we choose to calculate it.

In the case of a compact surface, we can replace these norms by the following equivalent

norms which are simplier: for a fixed collection of maps (θt, ωt)
N
t=1 as those in Theorem 1.2,

define ( N∑
t=1

∥f ◦ θt∥2Hm(ωt)

) 1
2

.

These norms are no more intrinsic, but this is not inconvenient for our analysis, since they

are equivalent (for a fixed collection of maps) with the intrinsic norms defined in (2.1).

Let us show this assertion for m = 1, 2 (in this paper, we will use only the H1(S) and

H2(S)-norms). First of all, we have

∥f∥H1(S) :=
(∫

S

f2 ds+

∫
S

aαβf|αf|β ds
) 1

2

, (2.2)

∥f∥H2(S) :=
(∫

S

f2 ds+

∫
S

aαβf|αf|β ds+

∫
S

aαβaστf|ασf|βτ ds
) 1

2

, (2.3)

where f|α(p) = f|α(x) :=
∂(f◦θ)
∂xα

(x) and f|αβ(p) = f|αβ(x) :=
∂2(f◦θ)
∂xα∂xβ

(x)−Γσ
αβ(x)f|σ(x), with

p = θ(x), are the first and second covariant derivatives of the function f in p.

For the H1(S)-norm, thanks to the positive definitness of (aαβ), we have c̃
∑

α(f|α)
2 ≤

aαβf|αf|β ≤ C̃
∑

α(f|α)
2 for some positive constants c̃ and C̃. We multiply this relation by√

a, add (f ◦ θt)2
√
a, then integrate over ωt. Using in addition the fact that a is a stictly

positive function on ω̄t, we obtain that there exist two constants c > 0 and C > 0 such that

c∥f ◦ θt∥2H1(ωt)
≤

∫
θt(ωt)

(f2 + aαβf|αf|β) ds ≤ C∥f ◦ θt∥2H1(ωt)
. (2.4)

Since the function f2 + aαβf|αf|β is positive on S, we have the following inequalities∫
θt(ωt)

(f2 + aαβf|αf|β) ds ≤
∫
S

(f2 + aαβf|αf|β) ds ≤
N∑
t=1

∫
θt(ωt)

(f2 + aαβf|αf|β) ds.

Taking the sum with respect to t in (2.4) and using the last inequalities, we obtain

c

N

N∑
t=1

∥f ◦ θt∥2H1(ωt)
≤ ∥f∥2H1(S) ≤ C

N∑
t=1

∥f ◦ θt∥2H1(ωt)
,

which is the sought equivalence for m = 1.

Now, let us prove the equivalence for the H2(S)-norm. It suffices to find two constants

c > 0 and C > 0 such that

c
N∑
t=1

∥f ◦ θt∥2H2(ωt)
≤

∫
S

aαβaστf|ασf|βτ ds ≤ C
N∑
t=1

∥f ◦ θt∥2H2(ωt)
. (2.5)

Using in particular Theorem 3.3-2 of [cia], which states that (aαβaστ ) is uniformly positive

definite, we obtain on the one hand that

c̃
∑
α,β

(f|αβ)
2 ≤ aαβaστf|ασf|βτ ≤ C̃

∑
α,β

(f|αβ)
2 (2.6)
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for some constants c̃ > 0 and C̃ > 0. On the other hand, since the functions Γσ
αβ are

bounded on ωt, we deduce from the definition of f|αβ that there exist two constants c1 > 0

and C1 > 0 such that

c1

{(
∂αβ(f ◦ θt)

)2
+

∑
σ

(
∂σ(f ◦ θt)

)2} ≤ (f|αβ)
2 ≤ C1

{(
∂αβ(f ◦ θt)

)2
+
∑
σ

(
∂σ(f ◦ θt)

)2}
.

We introduce this inequality in (2.6), then multiply the result by
√
a (which is a strictly

positive and bounded function on ω̄t) and finally integrate on ωt. This gives

c2

(∑
α,β

∥∂αβ(f ◦ θt)∥2L2(ωt)
+
∑
σ

∥∂σ(f ◦ θt)∥2L2(ωt)

)
≤

∫
θt(ωt)

aαβaστf|ασf|βτ ds ≤ C2

(∑
α,β

∥∂αβ(f ◦ θt)∥2L2(ωt)
+
∑
σ

∥∂σ(f ◦ θt)∥2L2(ωt)

)
,

for some positive constants c2 and C2. Since the function aαβaστf|ασf|βτ is positive on S,

we can use the same method than that used for the H1(S)-norm in order to obtain (2.5).

We say that a spatial vector field η (which means that with each p ∈ S, we associate a

vector η(p) in space, not necessarily in the tangent space TpS) is in the space Hm(S) if all

its components in a fixed basis of R3 belong to Hm(S).

Now, let us consider the tangential and the normal components of η. More specifically,

let η = ητ + ην , where ητ (p) ∈ TpS and ην(p) is parallel to the normal to S at the point p.

We say that η ∈ H1
τ (S)⊕H2

ν (S) if ητ ∈ H1(S) and ην ∈ H2(S).

§3. Koiter’s Model for a Linearly Elastic Shell

Throughout this paragraph, S is a compact regular surface of class C3. Throughout the

sequel, the points p ∈ S and x ∈ ω (or ωt) are related by the relation p = θ(x). Our aim is

to establish an inequality, thereafter called inequality of Korn’s type, which eventually will

imply the existence (and uniqueness) of a solution to Koiter’s model for a linearly elastic

shell with a compact regular middle surface. To establish such an inequality, we make an

analogy with the case of one-mapping surfaces (surfaces which are parameterized by a single

map) and we retain from this case only the intrinsic quantities. To begin with, let us define

the two-dimensional Koiter equations for a linearly elastic shell. We consider a shell with

middle surface S and thickness 2ε, subjected to applied body forces. In Koiter’s model, the

unknown is the displacement field ζε
K : S → R3 of the middle surface of the shell. In the

case where the surface is defined by a single map (θ, ω) satisfying properties (1) and (2)

(with k = 3) of Theorem 1.2, the problem under consideration is the following:
Find Aζ⃗εK ∈ VK(ω) such that∫
ω

{
εaαβστ,εγστ (Aζ⃗

ε
K)γαβ(Aη⃗) +

ε3

3
aαβστ,ερστ (Aζ⃗

ε

K)ραβ(Aη⃗)
}√

a dx

=

∫
ω

f̃ε ·Aη⃗
√
a dx for all Aη⃗ = (η̃i) ∈ VK(ω),

(3.1)

where VK(ω) is a closed subspace ofof the space H1(ω) ×H1(ω) ×H2(ω) considered with

the usual norm, f̃ε = (f̃ε,i) ∈ L2(ω) × L2(ω) × L2(ω) (where fε = f̃ε,ibai account for the



No.2 S. MARDARE INEQUALITY OF KORN’S TYPE ON COMPACT SURFACES 197

applied body forces) and

aαβστ,ε(p) = aαβστ,ε(x) :=
4λεµε

λε + 2µε
aαβaστ + 2µε(aασaβτ + aατaβσ),

γαβ(η)(p) = γαβ(Aη⃗)(x) :=
1

2
(∂βηcdotaα + ∂αηcdotaβ)

=
1

2
(∂β η̃α + ∂αη̃β)− Γσ

αβ η̃σ − bαβ η̃3,

ραβ(η)(p) = ραβ(Aη⃗)(x) := (∂αβη − Γσ
αβ∂ση) · a3

= ∂αβ η̃3 − Γσ
αβ∂σ η̃3 − bσαbσβ η̃3

+ bσα(∂β η̃σ − Γτ
βσ∂σ η̃τ ) + bτβ(∂αη̃τ − Γσ

ατ∂σ η̃σ)

+ (∂αb
τ
β + Γτ

ασb
σ
β − Γσ

αβb
τ
σ)η̃τ ,

where λε > 0 and µε > 0 are the Lamé constants of the elastic material constituting the

shell, and η(p) = η̃i(x)a
i(p). Then, in Koiter’s model, the displacement field of the middle

surface of the shell is given by ζε
K = ζεK,ia

i. Throughout this section, we denote by the same

symbol a function of p (defined on the surface) or of x (provided that θ(x) = p). We also

make the convention that the two functions are equal. Recall that we have already used this

convention in Section 2. For further details about Koiter’s model, see [4].

Let us notice that matrices
(
γαβ(η)(p)

)
and

(
ραβ(η)(p)

)
are symmetric and that the

functions γαβ(η̃) and ραβ(η̃) belong to L2(ω), since η̃ ∈ H1(ω)×H1(ω)×H2(ω). As long

as we are only interested in the existence and uniqueness of a solution to problem (3.1),

the coefficients ε and ε3

3 are not really relevant, so we make the convention that ε = 1 and
ε3

3 = 1 in (3.1). Accordingly, the expression appearing in (3.1) becomes:

A(ζ,η) := aαβστγστ (ζ)γαβ(η) + aαβστρστ (ζ)ραβ(η),

where ζ and η are two spatial vector fields. We already know that (aαβστ ) are the con-

travariant components of a tensor field of rank 4 (the two-dimensional elasticity tensor),

that
(
γαβ(η)

)
are the covariant components of a tensor field of rank 2 (the linearized change

of metric tensor), and that
(
ραβ(ζ)(ρστ (η)

)
are the covariant components of a tensor field

of rank 4. Finally, by inner multiplication, we see that the expression A(ζ,η) is a tensor

field of rank 0, i. e., a function. This means that this expression does not depend on the

choice of maps, but only on the vector fields ζ and η defining the tensor fields
(
γαβ(ζ)

)
,(

γαβ(η)
)
and

(
ραβ(ζ)(ρστ (η)

)
.

As we shall see later in this paper, the fact that Aη⃗ ∈ H1(ω)×H1(ω)×H2(ω) is equivalent

with η ∈ H1
τ (S)⊕H2

ν (S). Now, problem (3.1) (with the simplifying convention that ε have

been replaced by one and ε3

3 have been replaced by one) takes the folowing intrinsic form:

ζ ∈ H1
τ (S)⊕H2

ν (S),∫
S

A(ζ,η) ds =

∫
S

f · η, ds for all η ∈ H1
τ (S)⊕H2

ν (S).
(3.2)

Note that this form of Koiter’s model can be transposed verbatim in the case where the

surface S is compact.

Let us consider the bilinear form

B(ζ,η) :=

∫
S

A(ζ,η) ds (3.3)
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defined over the space H1
τ (S)⊕H2

ν (S), and the linear form

L(η) :=

∫
S

f · η, ds

defined over the same space. Then we rewrite problem (3.2) in a functional form, that is:

Find ζ ∈ E := H1
τ (S)⊕H2

ν (S) such that

B(ζ,η) = L(η) for all η ∈ E.
(3.4)

We are interested in proving the existence and uniqueness of the solution to this problem.

To this end, we will use the Lax-Milgram theorem; naturally, proving the ellipticity of the

bilinear form is the only difficulty. The object of the following section is to establish an

inequality which allow to prove the ellipticity of the bilinear form B.

§4. Korn Inequality for Compact Surfaces

Let us begin by making some observations on the bilinear form B. We can verify that

η 7→
√
B(η,η) is a seminorm on E. This comes from the fact that B is a symmetric bilinear

form which satisfies B(η,η) ≥ 0 for all η ∈ E. To prove this last property of B, we use

the fact that aαβστ tστ tαβ ≥ c
∑
α,β

|tαβ |2 for all symmetric matrices (tαβ) (for a proof, see [4,

Theorem 3.3-2]). We shall see later that η 7→
√
B(η,η) is not a norm on E.

We consider the following framework, which is well suited to our problem: let (E, ∥ · ∥)
be a Banach space, let L ∈ E′ be a linear form over E, and let B be a symmetric bilinear

form over E which satisfies B(x, x) ≥ 0 for all x ∈ E. Consider the problem

Find x ∈ E such that B(x, y) = L(y) for all y ∈ E. (4.1)

Define the seminorm x 7→ |x| :=
√
B(x, x) and the set F := {x ∈ E ; |x| = 0}. We can

easily verify the following properties:

1. F is a vector space.

2. We must have L(y) = 0 for all y ∈ F if we wish that problem (4.1) would have

solutions. Indeed, since B(x, x) ≥ 0 for all x ∈ E, we have the Cauchy-Schwarz inequality:

|B(x, y)| ≤
√
B(x, x)

√
B(y, y) = |x||y|. So, if x ∈ E and y ∈ F , we have |B(x, y)| ≤ |x||y| =

0. In other words,

B(x, y) = 0 for all x ∈ E, y ∈ F. (4.2)

Therefore, if x is a solution of (4.1) and y ∈ F , then B(x, y) = 0 = L(y).

Remark 4.1. Property (4.2) says that F = kerB, where

kerB := {y ∈ E ; B(x, y) = 0 for all x ∈ E}.
3. If x is a solution of (4.1) and x̃ ∈ F , then x+ x̃ is also a solution of (4.1).

So, if we wish that problem (4.1) be well posed (in the sense that it has one and only one

solution), we have to impose the condition

L|F = 0 (4.3)

and try to solve the problem over the quotient space E/F , not over E. Note that L is well

defined on E/F , thanks to the compatibility condition (4.3). The same remark holds for B,

thanks to relation (4.2). Now, the problem we want to solve reads:

Find x̂ ∈ E/F such that B(x̂, ŷ) = L(ŷ) for all ŷ ∈ E/F. (4.4)
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The following abstract result gives the ellipticity of B on E/F under some additional

assumptions. This is equivalent to saying that the seminorm induced by B is a norm

equivalent to the norm of E/F . Applying the following theorem to our case gives us the

Korn inequality for compact surfaces. Note that some ideas of the proof are close to those

used by Duvaut and Lions in [7, Chapter 3], where they have studied the three-dimensional

elasticity problem without boundary conditions.

Theorem 4.1. Let (E, ∥ · ∥) be a Banach space, let | · | be a seminorm on E and let

(Ẽ, ∥ · ∥0) be a larger normed space (E ⊂ Ẽ) such that

(i) There exists c > 0 such that |x| ≤ c∥x∥ for all x ∈ E,

(ii) The inclusion (E, ∥ · ∥) ↪→ (Ẽ, ∥ · ∥0) is compact,

(iii) There exists c0 > 0 such that ∥x∥ ≤ c0(∥x∥0 + |x|) for all x ∈ E.

Then there exists C > 0 such that ∥x̂∥E/F ≤ C|x̂|E/F for all x̂ ∈ E/F , where F := {x ∈
E ; |x| = 0}, ∥x̂∥E/F := inf{∥x∥ ; x ∈ x̂} and |x̂|E/F := inf{|x| ; x ∈ x̂}.

In the case of problem (3.4), (i) means the continuity of the quadratic form η 7→ B(η,η)

and will be given by the continuity of the bilinear form B, (ii) will be the compact inclusion

of H1
τ (S)⊕H2

ν (S) in L2
τ (S)⊕H1

ν (S) and (iii) will be an inequality of Korn’s type without

boundary conditions.

Proof. We argue by contradiction. If the announced inequality is false, then there exists

a sequence (x̂n)n∈N in E such that ∥x̂n∥E/F = 1 and |x̂n|E/F → 0 when n→ +∞.

For each x̂n we choose a representative xn such that ∥xn∥ ≤ 2. The inclusion (E, ∥ · ∥) ↪→
(Ẽ, ∥ · ∥0) is compact, so there exists a subsequence

(
also denoted by (xn) for simplicity of

notations
)
such that (xn) converges in the norm ∥ · ∥0 to some element of E. In particular,

(xn) is a Cauchy sequence with respect to the norm ∥ · ∥0. By using (iii), we obtain

∥xn − xm∥ ≤ c0(∥xn − xm∥0 + |xn − xm|) ≤ c0(∥xn − xm∥0 + |xn|+ |xm|).

Using the fact that |xn| = |x̂n|E/F for all representative xn of x̂n (indeed, if xn and x′n are

two representatives of x̂n, then x
′
n−xn ∈ F and |x′n| = |xn+x′n−xn| ≤ |xn|+|x′n−xn| = |xn|;

in the same way we get |xn| ≤ |x′n|, so |x′n| = |xn|) and the fact that |x̂n|E/F → 0, we obtain

that (xn) is a Cauchy sequence with respect to the norm ∥ · ∥.
Since (E, ∥ · ∥) is a Banach space, there exists x ∈ E such that limn→∞ ∥xn − x∥ = 0.

But ∥x̂n − x̂∥E/F = ∥x̂n − x∥ ≤ ∥xn − x∥, so limn→∞ ∥x̂n − x̂∥E/F = 0. Consequently,

∥x̂n∥E/F → ∥x̂∥E/F , so we have ∥x̂∥E/F = 1.

On the other hand, we have∣∣|x̂n|E/F − |x̂|E/F

∣∣ ≤ |x̂n − x̂|E/F = |xn − x| ≤ c∥xn − x∥ n→∞−→ 0. (4.5)

But | · |E/F is a norm on E/F . Indeed, if |x̂|E/F = 0, then there exists a sequence (x+yn)

of representatives of x̂, x+ yn, (where x is a fixed representative of x̂ and yn ∈ F ) such that

|x+ yn| < 1
n , for all n ∈ N∗. We have |x| ≤ |x+ yn|+ |yn| = |x+ yn| < 1

n for all n ∈ N∗. So

|x| = 0, which implies that x ∈ F and finally x̂ = 0̂.

Now, using (4.5) and the fact that |x̂n|E/F
n→∞−→ 0, we obtain |x̂|E/F = 0, so x̂ = 0̂. But

this is in contradiction with the fact that ∥x̂∥E/F = 1 and the proof is complete.

Now we can solve problem (4.4) by the following corollary:

Corollary 4.1. Let (E, ∥ · ∥) be a Banach space and let B : E ×E → R be a symmetric

continuous bilinear form (there exists c > 0 such that |B(x, y)| ≤ c∥x∥∥y∥ for all x, y ∈ E)
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which satisfies B(x, x) ≥ 0 for all x ∈ E. Let F := {x ∈ E ; B(x, x) = 0} and let L ∈ E′ be

a linear form on E which satisfies L|F = 0. Assume that there exists a larger space (Ẽ, ∥·∥0)
such that

(i) The inclusion of (E, ∥ · ∥) in (Ẽ, ∥ · ∥0) is compact,

(ii) There exists c0 > 0 such that ∥x∥ ≤ c0
(
∥x∥0 +

√
B(x, x)

)
for all x ∈ E.

Then there exists one and only one solution of the variational problem

Find x̂ ∈ E/F such that B(x̂, ŷ) = L(ŷ) for all ŷ ∈ E/F.

Proof. We consider the seminorm x ∈ E 7→ |x| :=
√
B(x, x) and the induced norm on

E/F . We have seen in the proof of Theorem 4.1 that | · |E/F is a norm on E/F .

The continuity of B implies that B(x, x) ≤ c∥x∥2 for all x ∈ E, so

|x| ≤
√
c∥x∥ for all x ∈ E. (4.6)

Taking the inf with respect to x ∈ x̂ in (4.6), we obtain that |x̂|E/F ≤
√
c∥x̂∥E/F for

all x̂ ∈ E/F . In addition, inequality (4.6) shows that assumption (i) of Theorem 4.1 is

satisfied. The other two hypotheses are given in the statement of the corollary, so we can

apply Theorem 4.1. Consequently, there exists C > 0 such that ∥x̂∥E/F ≤ C|x̂|E/F for all

x̂ ∈ E/F . Therefore, the norms ∥ · ∥E/F and | · |E/F are equivalent.

We also see that L ∈ (E/F, ∥ · ∥E/F )
′. Indeed, if ∥ŷn − ŷ∥E/F → 0, then we can choose

yn and y as representatives for ŷn, respectively ŷ, such that ∥yn − y∥ → 0 (using the same

technique as in Theorem 4.1). Since L is a linear form over E, we have L(yn) → L(y). Since

L(yn) = L(ŷn) and L(y) = L(ŷ), we obtain L(ŷn) → L(ŷ).

We know from the general theory that (E/F, ∥ · ∥E/F ) is a Banach space. So, since the

norms ∥ ·∥E/F and | · |E/F are equivalent, we have that (E/F, | · |E/F ) is a Banach space too.

Moreover, the last one is a Hilbert space, because (x̂, ŷ) 7→ B(x̂, ŷ) is a scalar product. From

the equivalence of the norms, we also deduce the eqality (E/F, | · |E/F )
′ = (E/F, ∥ · ∥E/F )

′.

So L ∈ (E/F, | · |E/F )
′. Now, we can conclude by applying Riesz’s Theorem to the Hilbert

space
(
E/F,B(·,·)

)
and to the linear form L.

Let us come back to our particular case, where

E = H1
τ (S)⊕H2

ν (S), which is a Banach space,

Ẽ = L2
τ (S)⊕H1

ν (S),

B : E × E → R , B(ζ,η) =

∫
S

A(ζ,η) ds,

L : E → R , L(η) =

∫
S

f · η, ds,

where f is a vector field in L2(S) and where

A(ζ,η)(p) := aαβστ (p)γστ (ζ)(p)γαβ(η)(p) + aαβστ (p)ρστ (ζ)(p)ραβ(η)(p),

the expression in the right hand side being taken for a map (θ, ω) such that p ∈ θ(ω). We

have already seen that the value of this expression does not depend on the chosen map.

It is a classical result that E ↪→ Ẽ is a compact inclusion and it is not difficult to verify

that L is a linear form over E and that B is a symmetric continuous bilinear form over

the same space. We know from [4, Theorem 3.3-2] that A(η,η)(p) ≥ 0 on S, because(
γαβ(η)(p)

)
and

(
ραβ(η)(p)

)
are symmetric matrices. So B(η,η) ≥ 0 for all η ∈ E.
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In order to apply Theorem 4.1, it remains to verify hypothesis (iii), which can be viewed

in this setting as a “weak” inequality of Korn’s type in the entire space E. To this end,

we shall use the inequality of Korn’s type without boundary conditions for one-mapping

surfaces that is proved in [4].

Since S is a compact regular surface of class C3, we can apply Theorem 1.2 and find

N maps (θt, ωt) of class C3, satisfying conditions (1) − (3) of this theorem such that S =
N∪
t=1

θt(ωt). We apply the inequality of Korn’s type without boundary conditions for each

map. Accordingly, if η(p) = η̃i(x)a
i(p), we have for all t ∈ {1, . . . , N} that∑

α

∥η̃α∥2H1(ωt)
+ ∥η̃3∥2H2(ωt)

≤ ct

{∑
α

∥η̃α∥2L2(ωt)
+ ∥η̃3∥2H1(ωt)

+
∑
α,β

∥γαβ(η̃)∥2L2(ωt)
+
∑
α,β

∥ραβ(η̃)∥2L2(ωt)

}
for all η̃ = (η̃i) ∈ H1(ωt)×H1(ωt)×H2(ωt).

Here, we have applied Theorem 2.6-1 of [4]. The hypotheses of this theorem are satisfied,

since η ∈ Hm
τ (S)⊕Hn

ν (S) (with m,n ≤ 2) implies that

η ∈ Hm
τ (θt(ωt))⊕Hn

ν (θt(ωt)) for all t,

which is equivalent to η̃α ∈ Hm(ωt), η̃3 ∈ Hn(ωt). Moreover, the norms ∥ητ∥Hm(θt(ωt)) and

∥ην∥Hn(θt(ωt)) are equivalent to the norms ∥(η̃α)∥Hm(ωt)×Hm(ωt) and respectively ∥η̃3∥Hn(ωt).

Indeed, we have η̃i(x) = (η · ai)(p) = (ητ + ην)(p) · ai(p), so η̃α(x) = (ητ · aα)(p) and

η̃3(x) = (ην · a3)(p). Conversely, we have ητ (p) = (η̃αa
α)(x) and ην(p) = (η̃3a

3)(x). The

desired equivalences come from the fact that ai and ai are C2(ωt)-vector fields.

By using Theorem 3.3-2 of [4], we deduce the existence of a constant c̃t > 0 such that

A(η,η)(p) ≥ c̃t

(∑
α,β

|γαβ(η̃)(x)|2 +
∑
α,β

|ραβ(η̃)(x)|2
)
. (4.8)

Therefore, we infer from (4.7) that

∥ητ∥2H1(θt(ωt))
+ ∥ην∥2H2(θt(ωt))

≤ Ct

{
∥ητ∥2L2(θt(ωt))

+ ∥ην∥2H1(θt(ωt))
+

∫
θt(ωt)

A(η,η) ds
}

for all η ∈ H1
τ (θt(ωt))⊕H2

ν (θt(ωt)).

Since A(η,η) ≥ 0 over S, we also have

∥ητ∥2H1(θt(ωt))
+ ∥ην∥2H2(θt(ωt))

≤ Ct

{
∥ητ∥2L2(θt(ωt))

+ ∥ην∥2H1(θt(ωt))
+

∫
S

A(η,η) ds
}

for all η ∈ H1
τ (S)⊕H2

ν (S). Taking the sum with respect to t, we obtain

∥ητ∥2H1(S) + ∥ην∥2H2(S) ≤ c
{
∥ητ∥2L2(S) + ∥ην∥2H1(S) +N

∫
S

A(η,η) ds
}
.

Consequently, there exists a constant c0 > 0 such that

∥η|E ≤ c0(∥η|Ẽ +
√
B(η,η))

for all η ∈ E, which is exactly hypothesis (iii) of Theorem 4.1, where we have denoted

|η| :=
√
B(η,η).
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For simplicity, let us denote E/kerB by V̇ (S). We recall that the space F that appears

in Theorem 4.1 is in fact kerB (see Remark 4.1). Applying Theorem 4.1 to our case, we

obtain the following theorem which gives the desired inequality of Korn’s type on compact

surfaces without boundary:

Theorem 4.2. Let S be a regular compact surface of class C3. Then there exists a

constant c > 0 such that

∥η̂∥V̇ (S) ≤ c
(∫

S

A(η,η) ds
) 1

2

for all η̂ ∈ V̇ (S),

where η is an arbitrary representative of η̂.

Of course, the same result still holds true if one replaces the bilinear form A with the

following bilinear form

Aε(ζ,η) := εaαβστ,εγστ (ζ)γαβ(η) +
ε3

3
aαβστ,ερστ (ζ)ραβ(η).

Indeed, with the notation Bε(ζ,η) :=
∫
S
Aε(ζ,η) ds, it is obvious that Aε, respectively Bε,

satisfies the properties of A that we have used in our analysis respectively B. Moreover, we

have kerBε = kerB.

The compatibility condition on Lε (where Lε :=
∫
S
fε · η, ds) becomes in our particular

case
∫
S
fε · η, ds = 0 for all η ∈ kerB. We recall that, if ζ̂, η̂ ∈ V̇ (s) and (ζ, ζ′), (η,η′)

are two pairs of representatives for ζ̂ and respectively η̂, then Bε(ζ′,η′) = Bε(ζ,η) (thanks

to (4.2)) and L(η′) = L(η) (thanks to the compatibility condition). By applying Corollary

4.1 to the spaces E, Ẽ, to the bilinear form Bε and to the linear form Lε appearing in our

particular case, we establish the existence of a solution to the Koiter’s model (4.9) for a

linearly elastic shell with a compact middle surface (note that problem (4.9) is the analogue

of the problem (3.1) in the case of compact regular surfaces):

Theorem 4.3. Let S be a regular compact surface of class C3 and let fε ∈ L2(S) be a

vector field on S such that
∫
S
fε · η, ds = 0 for all η ∈ kerBε. Then there exists one and

only one solution to the problemFind ζ̂ε ∈ V̇ (S) such that∫
S

Aε(εζ,η) ds =

∫
S

fε · η, ds for all η̂ ∈ V̇ (S),
(4.9)

where εζ, η are arbitrary representatives of ε̂ζ and respectively η̂.

Now, we would like to better describe the space V̇ (S). For exemple, the first natural

question is to find out if V̇ (S) is a proper quotient space of H1
τ (S) ⊕H2

ν (S), i. e., to find

out if kerB = {0} or not. The answer is given by the following theorem, which describes

the space kerB in the case of general regular surfaces (defined by (1.1)).

Theorem 4.4 (Infinitesimal Rigid Displacement Lemma on a General Regular Surface).

Let S be a regular surface of class C3 and let η be a vector field in kerB. Then there exists

two vectors c,d ∈ R3 such that

η(p) = c+ d ∧ p, for all p ∈ S,

where p :=
−→
Op is the position vector of p.

Proof. Let p0 ∈ S and let (θ, ω) be a local map at p0 (i.e., p0 ∈ θ(ω) ⊂ S) such that

ω ⊂ R2 is connected, θ : ω → R3 is an injective application of class C3, θ(ω) is open in S,
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and the vectors (∂αθ) are linearly independent in all points of ω. Notice that such a map

exists, by the definition of a regular surface of class C3 (see Section 1).

Since η ∈ kerB, we have in particular B(η,η) = 0, which is equivalent to A(η,η) = 0.

Consider the surface S′ := θ(ω) and notice that A(η|S′ ,η|S′) = A(η,η)|S′ = 0 on S′.

Therefore, it follows from (4.8) that γαβ(η) and ραβ(η) vanish on S′. Applying Theorem

2.6-3 of [4] to the surface S′ and to the vector field ηS′ thus gives the existence of two vectors

c(θ) and d(θ) such that η(p) = c(θ) + d(θ) ∧ θ(x) for all x ∈ ω, or equivalently, that

η(p) = c(θ) + d(θ) ∧ p for all p ∈ S′.

So “locally”, the theorem is true. To prove the global result, it suffices to show that c(θ)

and d(θ), which apparently depend on the local map, are in fact constants over the entire

surface S. To this end, the decisive argument is the connectedness of S.

Since S is a regular surface of class C3, there exists a collection of maps (θt, ωt)t∈A such

that ωt are connected, S =
∪
t∈A

θt(ωt) =
∪
t∈A

St, and θt, ωt satisfy conditions (1)–(3) of (1.1).

Notice that St := θt(ωt) are also regular surfaces of class C3.

We have seen in the first part of the proof that, for all t ∈ A, there exist ct,dt ∈ R3 such

that η(p) = ct + dt ∧ p, for all p ∈ St. Now, fix t0 ∈ A and define the sets

A0 := {t ∈ A ; ct = ct0 and dt = dt0} and A1 = A \A0.

Then S0 := ∪t∈A0St and S1 := ∪t∈A1St are open sets in S, since each St is open in S.

Obviously, S = S0 ∪ S1 and t0 ∈ A0, so St0 ⊂ S0, which proves that S0 ̸= ∅.
Now, let us prove that S1 = ∅. We argue by contradiction. Suppose that S1 ̸= ∅, which

is equivalent to A1 ̸= ∅. Then S0 ∩ S1 ̸= ∅, because S is connected. So there exists t1 ∈ A1

such that St1 ∩ S0 ̸= ∅. For all p ∈ St1 ∩ S0, we have

η(p) = ct1 + dt1 ∧ p = ct0 + dt0 ∧ p. (4.10)

Since St1 ∩ S0 is open in S, there exist three non-colinear points p, q, r ∈ St1 ∩ S0 (i.e.

p − q ̸= λ(p − r) for all λ ∈ R). Otherwise, for any local map that describes a portion of

St1 ∩ S0, the vectors aα cannot be linearly independent. We write (4.10) for p, q and r:

ct1 + dt1 ∧ p = ct0 + dt0 ∧ p,

ct1 + dt1 ∧ q = ct0 + dt0 ∧ q,

ct1 + dt1 ∧ r = ct0 + dt0 ∧ r.

Substracting the second equation from the first one, we obtain dt1 ∧ (p−q) = dt0 ∧ (p−q),

so that (dt1 − dt0) ∧ (p− q) = 0. Therefore dt1 − dt0 is colinear with p− q. We make the

same operations with the first and the last equation and we obtain that dt1 − dt0 is also

colinear with p− r. That is, there exist λ, µ ∈ R such that

dt1 − dt0 = λ(p− q) = µ(p− r).

But p−q and p− r are non-colinear, so we must have λ = µ = 0. Consequently, dt1 = dt0 .

Moreover, ct1 = ct0 , thanks to (4.10). But this proves that t1 ∈ A0, which contradicts the

fact that t1 ∈ A1 (because A0 and A1 are disjoint sets, by definition).

So S1 = ∅ and S = S0. To conclude the proof, we take c = ct0 and d = dt0 .

Remark 4.2. Using the same arguments as in the previous proof, where we have shown
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that S1 = ∅, we can prove that c and d of Theorem 4.3 are unique for a given vector field

η ∈ kerB.

Theorem 4.4 shows not only that V̇ (S) ̸= H1
τ (S)⊕H2

ν (S), but more precisely, that V̇ (S)

is isomorphic with a subspace of H1
τ (S)⊕H2

ν (S) of codimension 6.

Remarks 4.3. (1) Theorems 4.3 and 4.4 also holds true for general bounded surfaces

with boundary. Indeed, we have used the compactedness of the surface only in the proof of

Theorem 1.2, or this theorem also holds true for bounded surfaces with boundary.

(2) Let S be a general bounded surface with boundary and let Γ be a relative open subset

of the boundary of S. if we require that the solution of Koiter’s problem (3.2) satisfy in

addition some boundary conditions on Γ, then the quotient space V̇ (S) = E/ kerB appearig

in Theorem 4.2 coincides with the entire space E. More specifically, problem (3.2) is posed

in this case over the space E = VK(S), where

VK(S) :=
{
η ∈ H1

τ (S)⊕H2
ν (S) ; η = ∂νην = 0 on Γ

}
,

where the normal derivative of any vector field ξ = (ξi) ∈ H2(S) is defined by ∂νξ := (∇ξi·ν)
over the boundary of S. Here ∇ξi := [ξi]|αa

α, where [ξi]|α are the covariant derivatives of

the function ξi. The equality E/ kerB = E comes from the fact that kerB = {0} over

VK(S). One can prove this by using Theorem 4.4 together with a connectedness argument.

Note that in the case of one-mapping surfaces, Theorems 4.2 and 4.3 have already been

proved in [4] (see Theorem 2.6-4 and the begining of Chapter 7).

(3) Even in the case of compact surfaces without boundary, we can avoid considering

quotient spaces. It suffices to consider the space V⊥(S) :=
{
η ∈ H1

τ (S) ⊕ H2
ν (S) ;

∫
S
η ·

ζ for all ζ ∈ kerB
}
instead of the space V̇ (S). Note that the space V⊥(S) is in fact the

subspace (kerB)⊥ of H1
τ (S)⊕H2

ν (S), where the orthogonal of kerB is taken with respect

to the scalar product (η, ζ) 7→
∫
S
η · ζ ds. This idea has already been used by Şlicaru in

his doctoral dissertation [10]. However, fixing in this manner a representative of η̂ ∈ V̇ (S)

(since this is what we do eventually) does not correspond to any physical requirement or

principle. This is why we have preferred to solve the problem over the quotient space V̇ (S).

References

[ 1 ] Aubin, T., Nonlinear analysis on manifolds, Monge-Ampère equations, Springer-Verlag, 1982.
[ 2 ] Do Carmo, M. P., Differential Geometry of curves and surfaces, Prentice Hall, Englewood Cliffs, 1976.

[ 3 ] Do Carmo, M. P., Riemannian Geometry, Birkhäuser Boston, 1992.
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[ 8 ] Eisenhart, L. P., Riemannian geometry, Princeton University Press, 1949.
[ 9 ] Klingenberg, W., A course in differential geometry, Springer-Verlag, 1978.
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