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NOTE ON REGULAR D-OPTIMAL MATRICES**

LI QIAOLIANG*

Abstract

Let A be a j x d (0,1) matrix. It is known that if j = 2k — 1 is odd, then det(4AT) <
(F+1)((5+1)d/45)7; if j is even, then det(AAT) < (5+1)((j+2)d/4(j+1))7. Ais called a regular
D-optimal matrix if it satisfies the equality of the above bounds. In this note, it is proved that
if 7 = 2k —1 is odd, then A is a regular D-optimal matrix if and only if A is the adjacent matrix
of a (2k — 1,k, (j + 1)d/45)-BIBD; if j = 2k is even, then A is a regular D-optimal matrix if
and only if A can be obtained from the adjacent matrix B of a (2k+1,k+1, (j +2)d/4(j +1))-
BIBD by deleting any one row from B. Three 21 X 42 regular D-optimal matrices, which were
unknown in [11], are also provided.
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¢1. Introduction

Let M; 4(0, 1) be the set of all j xd (0,1) matrices. The problem of finding the maximum
value of det(AAT) for all A € M, 4(0,1) has received considerable attention over the past
decade primarily for its significance in finding a j-simplex of the maximum volume in the
d-dimensional unit cube and in statistical design theory[®7.

The matrices A € M; 4(0,1) such that det(AAT) is maximum are called D-optimal
matrices. Few results are known for D-optimal matrices. In [10, 11], Neubauer, Watkins
and Zeitlin proved that for A € M; 4(0,1), if j = 2k—1is odd, then det(AAT) < (j+1)((j+
1)d/4j)7; if j = 2k is even, then det(AAT) < (j + 1)((j +2)d/4(j + 1))7. They defined that
a D-optimal matrix A is regular if it satisfies the equality of the above bounds. Some new
infinitely families of regular D-optimal matrices are constructed by Hadamard matrices and
supplementary difference sets!!!].

The purpose of this note is to show that if j = 2k — 1, then a matrix A € M, 4(0,1) is a
regular D-optimal matrix if and only if A is the adjacent matrix of a (2k —1,k, (j +1)d/4j)-
BIBD (the definition of BIBD can be seen in Definition 2.2 below); if j = 2k, then a (0,1)
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matrix A € M, 4(0,1) is a regular D-optimal matrix if and only if A can be obtained from
the adjacent matrix B of a (2k + 1,k + 1, (j + 2)d/4(j + 1))-BIBD by deleting any one row
from B. We also provide three 21 x 42 regular D-optimal matrices, which were unknown in
[11].

§2. Preliminaries

We begin this section with some definitions on design theory and some relative results.

Definition 2.1. Let v, A be positive integers and K C N be a set of positive integers.
A (v, K, \) pairwise balanced design, denoted by (v, K,\)-PBD, is a finite collection B =
{Bi1,Bs, -+, By} of subsets of X = {1,2,--- ,v} such that

(1) each pair of elements i,j € X occurs in exactly A blocks in B, and

(2) for each B; € B, |B;| € K.

Definition 2.2. Let v, k, \ be positive integers with k < v. A balanced incomplete bock
design, denoted by (v, k,\)-BIBD, is a finite collection B = {By, Ba, -+, By} of subsets of
{1,2,--- ,v} such that

(1) each Bj has cardinality k, and

(2) each pairi,j € {1,2,--- v} occurs in exactly A subsets in B.

Obviously, a BIBD is a special PBD.

It is an elementary result in block design theory that if B = (X,B) is a (v, k, A)-BIBD,
then each element ¢ € {1,2,--- v} occurs in the same number r of subsets in B and that
b = |B| and r satisfies the conditions

AMv—=1)=r(k—-1), bk=or (2.1)
Thus b and r are determined by the other three parameters v, k, A of the design. We some-
times refer to a (v, k, \)-BIBD as a (v, b, r, k, A)-BIBD.
The incidence matrix A = (a;;) of a (v,b, 7, k, \)-BIBD B = (X, B) is defined by
- _J 1, if ie By,
%7 =90, otherwise.
It is well known that a (0,1) matrix A is the incidence matrix of a (v, b,r, k, A)-BIBD if
and only if the following holds
AAT = (r = NI, + My, (2.2)
J’UA = ka,ba (23)
where I, denotes the identity matrix of order v and J,; denotes v x b matrix with all its
entries 1.
Now we mention the known upper bounds for det(AA”) separated into the cases — j odd

and j even.
Lemma 2.1.01 [f j = 2k — 1 is odd and A € M; 4(0,1), then

det(AAT) < (j+1) (Wi)j .

Equality holds if and only if
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(1) AAT = t(I + J), for some integer t and either of the following conditions are met:
(2a) each column of A contains exactly k ones
or
(2b) t = (5 + 1)d/45.
Lemma 2.2.01Y [f j = 2k is even and A € M; 4(0,1), then
T - (J +2)dyJ
det(AA") < (j + 1)(m) .
Equality holds if and only if
(1) AAT = t(I + J), for some integer t and either of the following conditions are met:
(2a) each column of A contains either k or k+ 1 ones
or
(2b) t = (j +2)d/4(j + 1).
Lemma 2.3.1'" (1) Assume that j = 2k — 1 is odd and A € M; 4(0,1) contains a column
with fewer than k or more than k ones. Then
1 \i—l/k?d—1\J
det(AAT) < (j - 1) ( ; ) . (2.4)
(2) Assume that j =2k and A € M, 4(0,1) contains a column with fewer than k or more
than k + 1 ones. then

det(AAT) < (KH11)J’—1<’“(’“+;)CI—2)J‘ (2.5)

Lemma 2.4. Suppose B = (X,B) is a (v,{k,k + 1}, \)-PBD satisfying:
(1) each point of X occurs in exactly v blocks;
(2) there are r blocks of size k.
Then, by adding a new pointy to X and to all size k blocks, we obtain a (v+1,k+1,\)-BIBD.
Proof. Let x € X and suppose that there are a, and b, blocks of size k + 1 and k

respectively, containing x. It is obvious that

az +by =1 (2.6)
Considering all the pairs containing x, we have
kay + (k—1)by = A(v —1). (2.7)
From (2.6) and (2.7), we have
by =1k —A(v—1). (2.8)

Therefore, b, is a constant number independent of x, and so is a,.
Let |B| = b. There are b—r blocks of size k+ 1. From size k+ 1 blocks, we get (b—7) (’H;)
pairs. From size k blocks, we get r(g) pairs. Hence we have

(b—r)(k;1> +r<];> —)\(;>. (2.9)

Since each point of X appears in exactly r blocks, then we get

rk+(b—r)(k+1)=or (2.10)
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From (2.9) and (2.10), we get

rk = Av. (2.11)
Further from (8), we get

by = A
This means that each point x € X appears in A blocks of size k. Thus for each x € X, the
pair {x, y} occurs in exactly A blocks. The conclusion then follows.

¢3. Main Results

Theorem 3.1. Let j = 2k — 1 be an odd integer and A € M, q. Then the following
statements are equivalent:

(1) A is a regular D-optimal matriz, i.e., det(AAT) = (5 +1)((j + 1)d/45)7.

(2) A is the adjacent matriz of a (2k — 1,k, (j + 1)d/4j)-BIBD.

Proof. (1) = (2) : A is the adjacent matrix of a (2k — 1,k, (j + 1)d/45)-BIBD. By (2),
AAT = (j +1)d/45(I; + J;), it follows that det(AAT) = (j + 1)((j + 1)d/4j)?, ie., Ais a
regular D-optimal matrix.

(2) = (1) : Now we assume that A is a regular D-optimal matrix, i.e., det(AAT) =

G+ 1((j +1)d/4j)7. By Lemma 2.1, we have
AAT = (I +J) for some positive integer t.
We prove that each column of A contains exactly &k ones and that ¢ = (5 + 1)d/4j.
First we prove that each column of A contains exactly k& ones.

Suppose, on the contrary, A contains a column with fewer than k ones or more than &
ones. Then by Lemma 2.3,

det(AAT) < (j Jlr 1)j—1(k2dj— 1)j.
Since,

. 4+ 1)d\J 1 NI-1/k2d—1\J
(‘7+1)((] 4j) ) - (j+1> ( j )
G+ DU+ 1)U — (k2d — 1)747
(45)7(G + 17~
G+ DMl — (522 - 1)
4ji(j+ 1y
G+ D = (1524
Vi + 1)

=0,
det(AAT) < (j + 1)((j + 1)d/4j)?. This contradicts the assumption that A is a regular D-
optimal matrix. Thus each column of A contains exactly k ones. By (2.2) and (2.3), A is
an adjacent matrix of some (2k — 1, k, t)-BIBD with r = 2t.
Now we prove that ¢ = (j + 1)d/4j. By (2.1), we have 2t(2k — 1) = dk. It follows that
dk d(ij+1)

2% = =
2k — 1 2]




No.2 LI, Q. L. NOTE ON REGULAR D-OPTIMAL MATRICES 219

Thus ¢t = d(j + 1)/4j. So A is the adjacent matrix of a (2k — 1, &, (j + 1)d/45)-BIBD and
Theorem 3.1 is now proved.

Theorem 3.2. Let j = 2k be even and A € M; 4(0,1). Then the following statements
are equivalent

(1) A is a regular D-optimal matriz, i.e., det(AAT) = (5 + 1)((j + 2)d/4(j + 1)).

(2) A is the adjacent matriz of a (j,{k,k+ 1}, (j +2)d/4(j +1))- PBD, say B = (X,B),
which satisfies the following conditions:

(2a) each point of X appears in exactly (j +2)d/2(j + 1) blocks. and

(2b) there are (j +2)d/2(j + 1) blocks of size k.

(3) A is a matriz obtained from the adjacent matrix B of a (2k+1,k+1,(j+2)d/4(j+1))-
BIBD by deleting any one row from B.

Proof. (1) = (2): Assume that A is a regular D-optimal matrix, i.e., det(4AT) =
(j+1)((j +2)d/4(j + 1))?. By Lemma 2.2,

AAT = t(I; + J;) for some positive integer ¢

In order to prove that A is the adjacent matrix of a (j,{k,k + 1}, (j + 2)d/4(j + 1))-PBD
which satisfies the condition (2a) and (2b), we first prove that each column of A contains
exactly k or k + 1 ones.

Suppose, on the contrary, that A contains a column with fewer than & or more than k41
ones. By Lemma 2.3, we have

det(4AT) < (?)j‘l(’W)(

j+1
i +2)d\J 1 N1/ /k(k+1)d—2\J
Gen(§s) - ) ()
PG+ d - (12— 24
4G+ 1)7 150
F 2 — (5 +2)d
4 (j +1)i=147

Since

:07

det(AAT) < (j+1)((§ +2)d/4(j +1))7. This contradicts the assumption that A is a regular
D-optimal matrix. Thus each column of A contains either k or k + 1 ones.

Thus A is the adjacent matrix of a (j, {k, k + 1},¢)-PBD. Let the PBD be B = (X, B).
Since AAT = t(I; + J;), each point in X appears in exactly 2¢ blocks.

Now we determine the parameter ¢ and show that there are (j + 2)d/2(j + 1) blocks of
size k.

Assume that there are m blocks in B of size k. From the blocks of size k, we get m(k)

2
pairs, and from the blocks of size k + 1, we get (d —m)(*3") pairs. So

mk + (d —m)(k + 1) = 2tj,

(o) =emm(t3 ) ~G)
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It follows that ¢ = (j+2)d/4(j+1) and m = (j+2)d/2(j+1). Thus A is the adjacent matrix
of a (4,{k,k+1},(j +2)d/4(j + 1))-PBD which satisfies the conditions (2a) and (2b).

(2)= (3): By Lemma 2.4.

(3)= (1): A is a matrix obtained from the adjacent matrix, say B, of a (j + 1,k +
1,(j + 2)d/4(j + 1))-BIBD, then BBT = (j + 2)d/4(j + 1)(Ij41 + Jj4+1). It follows that
AAT = (j+2)d/4(5 +1)(I; + J;). Thus det(AAT) = (5 +1)((j +2)d/4(j +1))?, i.e., Ais a
regular D-optimal matrix. Theorem 3.2 is now proved.

Now we give three D-optimal 21 x 42 optimal matrices, which were unknown for the
authors in [11, p.115]. In [3], the authors gave three (21,42,20,10,9)-BIBD. The initial
blocks of three solutions, are given by

Di: A =(0,1,2,4,5,8,9,12, 14, 20),

By = (0,5,8,10,12, 14, 15, 18, 19, 20),
Dy: Ay =(0,1,4,5,7,8,9,10,17, 18),

By = By,
Dy: Ay=(0,1,2,4,6,7,9,10,17, 18),

Bs = (0,4,5,7,11,13, 14, 15, 16, 19).

The supplementary design of the three BIBDs are (21,42,22,11,11)-BIBDs. By Theorem
3.1, we get three 21 x 42 regular D-optimal matrices.
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