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Abstract

Let A be a j × d (0, 1) matrix. It is known that if j = 2k − 1 is odd, then det(AAT ) ≤
(j+1)((j+1)d/4j)j ; if j is even, then det(AAT ) ≤ (j+1)((j+2)d/4(j+1))j . A is called a regular
D-optimal matrix if it satisfies the equality of the above bounds. In this note, it is proved that
if j = 2k−1 is odd, then A is a regular D-optimal matrix if and only if A is the adjacent matrix
of a (2k − 1, k, (j + 1)d/4j)-BIBD; if j = 2k is even, then A is a regular D-optimal matrix if

and only if A can be obtained from the adjacent matrix B of a (2k+1, k+1, (j+2)d/4(j+1))-
BIBD by deleting any one row from B. Three 21× 42 regular D-optimal matrices, which were
unknown in [11], are also provided.
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§1. Introduction

Let Mj,d(0, 1) be the set of all j×d (0, 1) matrices. The problem of finding the maximum

value of det(AAT ) for all A ∈ Mj,d(0, 1) has received considerable attention over the past

decade primarily for its significance in finding a j-simplex of the maximum volume in the

d-dimensional unit cube and in statistical design theory[6,7].

The matrices A ∈ Mj,d(0, 1) such that det(AAT ) is maximum are called D-optimal

matrices. Few results are known for D-optimal matrices. In [10, 11], Neubauer, Watkins

and Zeitlin proved that for A ∈ Mj,d(0, 1), if j = 2k−1 is odd, then det(AAT ) ≤ (j+1)((j+

1)d/4j)j ; if j = 2k is even, then det(AAT ) ≤ (j + 1)((j + 2)d/4(j + 1))j . They defined that

a D-optimal matrix A is regular if it satisfies the equality of the above bounds. Some new

infinitely families of regular D-optimal matrices are constructed by Hadamard matrices and

supplementary difference sets[11].

The purpose of this note is to show that if j = 2k − 1, then a matrix A ∈ Mj,d(0, 1) is a

regular D-optimal matrix if and only if A is the adjacent matrix of a (2k−1, k, (j+1)d/4j)-

BIBD (the definition of BIBD can be seen in Definition 2.2 below); if j = 2k, then a (0, 1)
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matrix A ∈ Mj,d(0, 1) is a regular D-optimal matrix if and only if A can be obtained from

the adjacent matrix B of a (2k + 1, k + 1, (j + 2)d/4(j + 1))-BIBD by deleting any one row

from B. We also provide three 21× 42 regular D-optimal matrices, which were unknown in

[11].

§2. Preliminaries

We begin this section with some definitions on design theory and some relative results.

Definition 2.1. Let v, λ be positive integers and K ⊆ N be a set of positive integers.

A (v,K, λ) pairwise balanced design, denoted by (v,K, λ)-PBD, is a finite collection B =

{B1, B2, · · · , Bb} of subsets of X = {1, 2, · · · , v} such that

(1) each pair of elements i, j ∈ X occurs in exactly λ blocks in B, and

(2) for each Bi ∈ B, |Bi| ∈ K.

Definition 2.2. Let v, k, λ be positive integers with k < v. A balanced incomplete bock

design, denoted by (v, k, λ)-BIBD, is a finite collection B = {B1, B2, · · · , Bb} of subsets of

{1, 2, · · · , v} such that

(1) each Bj has cardinality k, and

(2) each pair i, j ∈ {1, 2, · · · , v} occurs in exactly λ subsets in B.

Obviously, a BIBD is a special PBD.

It is an elementary result in block design theory that if B = (X,B) is a (v, k, λ)-BIBD,

then each element i ∈ {1, 2, · · · , v} occurs in the same number r of subsets in B and that

b = |B| and r satisfies the conditions

λ(v − 1) = r(k − 1), bk = vr. (2.1)

Thus b and r are determined by the other three parameters v, k, λ of the design. We some-

times refer to a (v, k, λ)-BIBD as a (v, b, r, k, λ)-BIBD.

The incidence matrix A = (aij) of a (v, b, r, k, λ)-BIBD B = (X,B) is defined by

aij =

{
1, if i ∈ Bj ,
0, otherwise.

It is well known that a (0, 1) matrix A is the incidence matrix of a (v, b, r, k, λ)-BIBD if

and only if the following holds

AAT = (r − λ)Iv + λJv, (2.2)

JvA = kJv,b, (2.3)

where Iv denotes the identity matrix of order v and Jv,b denotes v × b matrix with all its

entries 1.

Now we mention the known upper bounds for det(AAT ) separated into the cases − j odd

and j even.

Lemma 2.1.[11] If j = 2k − 1 is odd and A ∈ Mj,d(0, 1), then

det(AAT ) ≤ (j + 1)

(
(j + 1)d

4j

)j

.

Equality holds if and only if
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(1) AAT = t(I + J), for some integer t and either of the following conditions are met:

(2a) each column of A contains exactly k ones

or

(2b) t = (j + 1)d/4j.

Lemma 2.2.[11] If j = 2k is even and A ∈ Mj,d(0, 1), then

det(AAT ) ≤ (j + 1)
( (j + 2)d

4(j + 1)

)j

.

Equality holds if and only if

(1) AAT = t(I + J), for some integer t and either of the following conditions are met:

(2a) each column of A contains either k or k + 1 ones

or

(2b) t = (j + 2)d/4(j + 1).

Lemma 2.3.[11] (1) Assume that j = 2k− 1 is odd and A ∈ Mj,d(0, 1) contains a column

with fewer than k or more than k ones. Then

det(AAT ) ≤
( 1

j + 1

)j−1(k2d− 1

j

)j

. (2.4)

(2) Assume that j = 2k and A ∈ Mj,d(0, 1) contains a column with fewer than k or more

than k + 1 ones. then

det(AAT ) ≤
( 1

j + 1

)j−1(k(k + 1)d− 2

j

)j

(2.5)

Lemma 2.4. Suppose B = (X,B) is a (v, {k, k + 1}, λ)-PBD satisfying:

(1) each point of X occurs in exactly r blocks;

(2) there are r blocks of size k.

Then, by adding a new point y to X and to all size k blocks, we obtain a (v+1, k+1, λ)-BIBD.

Proof. Let x ∈ X and suppose that there are ax and bx blocks of size k + 1 and k

respectively, containing x. It is obvious that

ax + bx = r. (2.6)

Considering all the pairs containing x, we have

kax + (k − 1)bx = λ(v − 1). (2.7)

From (2.6) and (2.7), we have

bx = rk − λ(v − 1). (2.8)

Therefore, bx is a constant number independent of x, and so is ax.

Let |B| = b. There are b−r blocks of size k+1. From size k+1 blocks, we get (b−r)
(
k+1
2

)
pairs. From size k blocks, we get r

(
k
2

)
pairs. Hence we have

(b− r)

(
k + 1

2

)
+ r

(
k

2

)
= λ

(
v

2

)
. (2.9)

Since each point of X appears in exactly r blocks, then we get

rk + (b− r)(k + 1) = vr. (2.10)
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From (2.9) and (2.10), we get

rk = λv. (2.11)

Further from (8), we get

bx = λ.

This means that each point x ∈ X appears in λ blocks of size k. Thus for each x ∈ X, the

pair {x, y} occurs in exactly λ blocks. The conclusion then follows.

§3. Main Results

Theorem 3.1. Let j = 2k − 1 be an odd integer and A ∈ Mj,d. Then the following

statements are equivalent:

(1) A is a regular D-optimal matrix, i.e., det(AAT ) = (j + 1)((j + 1)d/4j)j .

(2) A is the adjacent matrix of a (2k − 1, k, (j + 1)d/4j)-BIBD.

Proof. (1) ⇒ (2) : A is the adjacent matrix of a (2k − 1, k, (j + 1)d/4j)-BIBD. By (2),

AAT = (j + 1)d/4j(Ij + Jj), it follows that det(AAT ) = (j + 1)((j + 1)d/4j)j , i.e., A is a

regular D-optimal matrix.

(2) ⇒ (1) : Now we assume that A is a regular D-optimal matrix, i.e., det(AAT ) =

(j + 1)((j + 1)d/4j)j . By Lemma 2.1, we have

AAT = t(I + J) for some positive integer t.

We prove that each column of A contains exactly k ones and that t = (j + 1)d/4j.

First we prove that each column of A contains exactly k ones.

Suppose, on the contrary, A contains a column with fewer than k ones or more than k

ones. Then by Lemma 2.3,

det(AAT ) ≤
( 1

j + 1

)j−1(k2d− 1

j

)j

.

Since,

(j + 1)
( (j + 1)d

4j

)j

−
( 1

j + 1

)j−1(k2d− 1

j

)j

=
(j + 1)(j+1)dj(j + 1)(j−1) − (k2d− 1)j4j

(4j)j(j + 1)j−1

=
(j + 1)2jdj − (( j+1

2 )2d− 1)j4j

4jjj(j + 1)j−1

>
(j + 1)2jdj − (( j+1

2 )2d)j4j

4jjj(j + 1)j−1

= 0,

det(AAT ) < (j + 1)((j + 1)d/4j)j . This contradicts the assumption that A is a regular D-

optimal matrix. Thus each column of A contains exactly k ones. By (2.2) and (2.3), A is

an adjacent matrix of some (2k − 1, k, t)-BIBD with r = 2t.

Now we prove that t = (j + 1)d/4j. By (2.1), we have 2t(2k − 1) = dk. It follows that

2t =
dk

2k − 1
=

d(j + 1)

2j
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Thus t = d(j + 1)/4j. So A is the adjacent matrix of a (2k − 1, k, (j + 1)d/4j)-BIBD and

Theorem 3.1 is now proved.

Theorem 3.2. Let j = 2k be even and A ∈ Mj,d(0, 1). Then the following statements

are equivalent

(1) A is a regular D-optimal matrix, i.e., det(AAT ) = (j + 1)((j + 2)d/4(j + 1))j .

(2) A is the adjacent matrix of a (j, {k, k+1}, (j +2)d/4(j +1))- PBD, say B = (X,B),

which satisfies the following conditions:

(2a) each point of X appears in exactly (j + 2)d/2(j + 1) blocks. and

(2b) there are (j + 2)d/2(j + 1) blocks of size k.

(3) A is a matrix obtained from the adjacent matrix B of a (2k+1, k+1, (j+2)d/4(j+1))-

BIBD by deleting any one row from B.

Proof. (1) ⇒ (2): Assume that A is a regular D-optimal matrix, i.e., det(AAT ) =

(j + 1)((j + 2)d/4(j + 1))j . By Lemma 2.2,

AAT = t(Ij + Jj) for some positive integer t

In order to prove that A is the adjacent matrix of a (j, {k, k + 1}, (j + 2)d/4(j + 1))-PBD

which satisfies the condition (2a) and (2b), we first prove that each column of A contains

exactly k or k + 1 ones.

Suppose, on the contrary, that A contains a column with fewer than k or more than k+1

ones. By Lemma 2.3, we have

det(AAT ) ≤
( 1

j + 1

)j−1(k(k + 1)d− 2

j

)j

.

Since

(j + 1)
( (j + 2)d

4(j + 1)

)j

−
( 1

j + 1

)j−1(k(k + 1)d− 2

j

)j

=
jj(j + 2)jdj − ( j(j+2)

4 d− 2)j4j

4j(j + 1)j−1jj

>
jj(j + 2)jdj − (j(j + 2))jdj

4j(j + 1)j−1jj

= 0,

det(AAT ) < (j+1)((j+2)d/4(j+1))j . This contradicts the assumption that A is a regular

D-optimal matrix. Thus each column of A contains either k or k + 1 ones.

Thus A is the adjacent matrix of a (j, {k, k + 1}, t)-PBD. Let the PBD be B = (X,B).

Since AAT = t(Ij + Jj), each point in X appears in exactly 2t blocks.

Now we determine the parameter t and show that there are (j + 2)d/2(j + 1) blocks of

size k.

Assume that there are m blocks in B of size k. From the blocks of size k, we get m
(
k
2

)
pairs, and from the blocks of size k + 1, we get (d−m)

(
k+1
2

)
pairs. So

mk + (d−m)(k + 1) = 2tj,

m

(
k

2

)
+ (d−m)

(
k + 1

2

)
= t

(
j

2

)
.
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It follows that t = (j+2)d/4(j+1) and m = (j+2)d/2(j+1). Thus A is the adjacent matrix

of a (j, {k, k + 1}, (j + 2)d/4(j + 1))-PBD which satisfies the conditions (2a) and (2b).

(2)⇒ (3): By Lemma 2.4.

(3)⇒ (1): A is a matrix obtained from the adjacent matrix, say B, of a (j + 1, k +

1, (j + 2)d/4(j + 1))-BIBD, then BBT = (j + 2)d/4(j + 1)(Ij+1 + Jj+1). It follows that

AAT = (j + 2)d/4(j + 1)(Ij + Jj). Thus det(AA
T ) = (j + 1)((j + 2)d/4(j + 1))j , i.e., A is a

regular D-optimal matrix. Theorem 3.2 is now proved.

Now we give three D-optimal 21 × 42 optimal matrices, which were unknown for the

authors in [11, p.115]. In [3], the authors gave three (21, 42, 20, 10, 9)-BIBD. The initial

blocks of three solutions, are given by

D1 : A1 = (0, 1, 2, 4, 5, 8, 9, 12, 14, 20),

B1 = (0, 5, 8, 10, 12, 14, 15, 18, 19, 20),

D2 : A2 = (0, 1, 4, 5, 7, 8, 9, 10, 17, 18),

B2 = B1;

D3 : A3 = (0, 1, 2, 4, 6, 7, 9, 10, 17, 18),

B3 = (0, 4, 5, 7, 11, 13, 14, 15, 16, 19).

The supplementary design of the three BIBDs are (21, 42, 22, 11, 11)-BIBDs. By Theorem

3.1, we get three 21× 42 regular D-optimal matrices.

Acknowledgement. The author wishes to thank Prof. L. Zhu for providing him the

proof of Lemma 2.4.
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