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Abstract

This paper proves that: Let f be an entire function of finite order A on C™. Then
(1) Z d(a, f) <1 —Ek(\), where k()\) is a nonnegative constant depending only on \;
acC
(2) It Z d(a, f) =1, then X is a positive integer and equals the lower order of f.
acC
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§1. Introduction

It is well known that the defect relation

> d(a, f) <2

is valid for meromorphic functions on the complex plane, and this relation was generalized
successfully to meromorphic maps from C" into projective space and more general case.
Since the upper bound 2 is not reached by all meromorphic functions on the complex plane,
ones start to find the more accurate expression of upper bound of sum of deficiencies, for
examples, the works in [1, 6, 9]. In [6] A. Pfluger proved that if f is an entire function of
finite order A on the complex plane, then

(1) Z d(a, f) <1—Fk(\), where k() is a nonnegative constant depending only on A;

aeC
(2) If Z d(a, f) =1, then X is a positive integer.
acC

For meromorphic functions on C™, few results of this kind are known. In this paper we
study this problem and prove the following:

Theorem 1.1. Let f be a transcendental entire function of finite order A on C", then

> da, f) < 1—k(N),

acC
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_ 2r*(3/4)|sin A7|
where k(\) = TEAFTA(3/4) [ sin hr] -

Theorem 1.2. Let f be a transcendental entire function of finite order X on C™. If

Zé(a,f)zl,

acC
then X\ is a positive integer and equals the lower order of f.

§2. Notations and Lemmas
For z = (z1,--+ ,2,) € C", define |z| = (|z1]2+ - - + |2n]?) 2. Denote
Sp(r) ={z € C"|z| =r}, B,(r)={2€ C"|z| <r}.
Let d = 0 + 0 and d° = (0 — 0)/4mi, denote
wn(2) = ddlog |2|?,  on(2) = dlog |22 Awl™H(2), vn(z) = dd°|z|*.
Then 0, (z) defines a positive measure on S, (r) with total measure one.

~Let a € P'. If f7'(a) # C", we denote by Z$ the a—divisor of f, write Z/(r) =
B, (r)N Z! and define

ng(r,a) = 7"2_2"/ v (2).
z{(r)
Then the counting function is defined as
" dt
Ny(r.a) = [ Ins(t.0) = ns (0. + ns(0.)ogr,
0

where n(0, a) is the Lelong number of Z/ at the origin.
Let a € P! and f~!(a) # C™. Then we define the proximity function as

1
= +7Un , )
myg(r,a) = /SH(T) log 70—l (2), a # 0

- / log* |f(2)lon(z),  a=oo,
Sn(r)

and define the characteristic function as T¢(r) = my(r,00) + N¢(r,00). The first main
7, Chapter 4, A5.1]

T¢(r) = my(r,a) + N¢(r,a) + O(1).

theorem states that!

Define

L. . Nf (Ta a)
d(a, f) = liminf =1-limsup —————.
(@) =B 6 T
Denote by f.; the partial derivative of f with respect to z; (j = 1,2,---,n), then we

have
Lemma 2.1.

my(r, a)

(10, Lemma 6] 7ot f pe g non-constant meromorphic function on C™. Then

my, ;5(r,00) :/ log™t fi(z)
i S (1) /
hold for all large r outside a set with finite measure. Furthermore, if f is of finite order,
then mfzj/f(r, o) =0(logr), j=1,2,---,n hold for all large r.
T
We call f to be transcendental if lim M =00
r—oo logr

on(z) = O(logrT¢(r)), j=1,2,---,n

n

Lemma 2.2. Let f be a transcendental entire function on C™. Then Dy(z) = 3 z;f.;(2)
1

]:
is a transcendental entire function on C™ too, and mp,,¢(r,00) = O(logrTy(r)) holds for
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all large r outside a set with finite measure. Furthermore, if f is of finite order, then
mp,f(r,00) = O(logr) holds for all large 7.
Proof. Since f is an entire function on C™, then we can expand it as a convergent series

f(z) = > P™(z), where P™(z) is either identically zero or a homogeneous polynomial of
m=0

degree mi(m =0,1,2,---). Since f is transcendental, there are infinitely many terms of
{P™(2)} which are not identically zero. By the homogeneity of P™(z) we have

j=1
hence
Dy(z) =Y zif-,(2) = Y mP™(2),
j=1 m=0

and there are infinitely many terms of {mP™(z)} which are not identically zero. So Dy is
a transcendental entire function on C™ too. Since for any rational function R(z), we have
mp(r,00) = O(logr), then

",
my (o0 = [ o] Y05 (2)
S, (r) =

< ;/S g |[222)

on(z)

a,,,(z)+2/ log™ |zj|om(2) + O(1)
j=1 Sy (r)

j=1 n(r)
= mezj/f(r, o0) + Zmzj (ryo0) +0(1) = mezj/f(r, 00) + O(log ).
Jj=1 j=1 j=1

Hence from Lemma 2.1 we conclude the proof.
Let f be an entire function on C", and set M(r, f) = |mlax [f(2)]-

Lemma 2.3.05 Lemma 1l 1ot ¢ be an entire function on C™. Then for any 0 < r < R,

Ty(r) +0(1) <log M(r, f) < %

Lemma 2.4. Let f be a transcendental entire function on C™. Then f(z) and Ds(z) =

T¢(R)+ O(1).

n
Z 2 f-;(2) are of the same order and lower order.
Jj=1

Proof. Since f is a transcendental entire function on C". Then

Tp, (r) = mp, (r,00) = / log™ Dy (2)[0n(2)

S (r)

= /Sn(r) log™ | =~(2)|on(z) + /S » log" |f(2)|on(2)

:/ log™ —=(2)|on(z) + mg(r,00)
S (r)

= / log® | =L (2)|on(2) + Ty (r). (2.1)
S (r)

Hence from Lemma 2.2 we deduce that
Tp,(r) < O(logrTy(r)) + Ty(r) (2.2)
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holds for all large r outside a set with finite measure.
Let z- be a point on |z| = r such that |f(z,)] = |m‘ax|f(z)|(: M(r, f)). We write

ze =76 & = (&1, ,&) € Su(1). Consider the function f(t) = f(t¢), t € C, then
f’(t) = ijfzj (t€). Therefore

Jj=1

F(z) — FO) = [F(r) - FO)] < / ()1t

/OT jzlgjfzj(tf)‘dt/Or‘jzlfjfzj(tf)‘dth/r

Since [t£] < 1/r when 0 <t < 1/r, if r > 1, we have |f., (t§)| < M(1, f,), hence

/ % DT EES SEN A
Jj=1 j=1

Since |t&| <r when 0 < t <,

[ angjfz"(tg)’dt_[rHitfjfzj(tﬁ)‘dt
T =1 1 =
< r/: Zn:tfjfzj(tﬁ)‘dt < 7‘/: M(r,Dg)dt = M(r,Dg)(r* — 1).

=1

SoGl, ) (23)
j=1

3=

Hence from (2.3) we have
log M(r, f) = log | f(z)]

<log™t |f(0)| +log™ ZM(l, f2;) +log™ M(r,Dg) + O(log ).
j=1
Therefore from above inequality and taking R = 2r in Lemma 2.3 we deduce that when r is
large enough,

Ty(r) <log M(r, f) + O(1) < log M(r,Dy) + O(logr) < 3-2*""*Tp (2r) + O(logr). (2.4)

Since f is a transcendental entire function, from Lemma 2.2 Dy is a transcendental entire
function too. By a standard way one can deduce from (2.2) and (2.4) that f and Dy are of
same order and lower order.

Let g be a meromorphic map from C" into P!, and (go, g1) be a reduced representation
of g. If |go(0)|> + |g1(0)]? # 0, define the characteristic function of ¢ as

Ty(r) = / log(190(2)[? + 191(2)2) 2 n(2) — log(1go(0)[* + g1 (0)[*)%.

Let a € P!, we can write a = [ag, a1] (Jap|? + |a1]?> = 1) by the homogeneous coordinate.
Denote by Z9 the a—divisor of g, i.e., the 0—divisor of apgo + @191, then by the same way
as above we can define the counting function Ny(r, a) with respect to Z¢ and the deficiency

d(a,g). Now we can state the results of S.Mori and J.Noguchi as following:

Lemma 2.5.[5: Theorem 1]; [2, Corollary 3] 1ot ¢ . C™ — P be a non-constant meromorphic
map of finite order A. Then

(1) for any Hy, Hy € P!,
lim sup Ny (r, H1)~+ Ny (r, H2) > k(N),
7—00 Tg(’l”)
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where k() is defined in Theorem 1.1;

(2) If Hy, Hy € P! satisfy 6(Hy,g) = 6(Ha,g) = 1, then X is a positive integer and equals
the lower order of g.

Let f be an entire function on C”, define a holomorphic map g : C* — P! as following:

g: z— [1,f(2)].

Take Hy = [0,1], Hy = [1,0] € P!, then Zf; =0, Zf, = = Z{, hence Ny(r,H,) =
N¢(r,0),Ny(r, Hy) = Ny(r,00) = 0.

Since

[log™* |£(2)] —log(1 + |f(2)")?] < log2,
integrating above inequality on S, (r) and noticing fSn ) on(z) = 1, by the definition of
characteristic function we have
Ty(r) = Ty(r) + O(1).

Hence f and g are of the same order and lower order, and
N N,(r, H
Ny(r,0) = limsup —%2—~ (r, 1).

lim su
r—>oop Tf ('r') r—00 Tg(T’)

Obviously §(Ha, g) = 6(co, f) = 1, hence from Lemma 2.5 we obtain
Lemma 2.6. Let f be a non-constant entire function of finite order A on C™. Then

(1)

. Ny(r,0)
lim su > k(A);
7'—>oop Tf(r) - ( )

(2) If 6(0, f) = 1, then X is a positive integer and equals the lower order of f.

§2. Proof of Theorems
The proof of Theorem 1.1. For any ¢ distinct points a;,- -+, a4 in C, set

1 1 1
:Zm, and §:§Erl<l£|aj_ak|
Then as in [4, p.239] we can deduce that

4 3q
log™ |F(2) |>Zlog |fq10g 5 —log 3.

a;

Since fs " on(z) =1, by mtegratmg above inequality on S,,(r) we have

q
3q
mp(r,00) > me(r,aj) qlog™ 5 —log 3. (3.1)

Jj=1

Noticing Dy_o; = Dy (j = ,q) we have
q
1
log™ F(z Zog ’ff#‘—&- og™ |D()‘+10gq

Since f and f — a; are of the same order, from Lemma 2.2 and above inequality we deduce
that

q
(r, 00 SZ Df o; (1,00) +mp,(r,0) +logqg =mp,(r,0) + O(log ). (3.2)
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Therefore from (3.1), (3.2) and the first main theorem we have
q
me(r,aj) <Tp,(r) = Np,(r,0) + O(log ). (3.3)
j=1
From (2.1) and Lemma 2.2 we have
Tp,(r) <Ty(r) + O(logr).
Hence from (3.3) we obtain

q q

; N, ,0
lim inf 2 %3) (r, a] Z im inf ﬂ <1 - limsup M,
r—00 r—00 f( ) oo TDf (r)

q
ie., Z d(aj, f) < 6(0,Dy). Hence by a well known discussion we can derive that
j=1

> d(a, f) < 6(0,Dy). (3.4)

acC
From Lemma 2.4 we know that the order of Dy is A. Furthermore, from Lemma 2.6 we have

Np,(r,0
0(0,D¢) =1— limsupM <

T—00 TDf (T) =0 k()\)

Combining (3.4) with above inequality we can obtain the conclusion of Theorem 1.1.
The Proof of Theorem 1.2. Since Z d(a, f) =1, from (3.4) we have §(0,Dy) =

aeC
Hence from Lemma 2.6 we know that the order of Dy equals the lower order of Dy and is
a positive integer. Hence from Lemma 2.4 we deduce that the order of f equals the lower
order of f and is a positive integer. The proof is completed.
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