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Abstract

In this paper a stochastic volatility model is considered. That is, a log price process Y which
is given in terms of a volatility process V is studied. The latter is defined such that the log

price possesses some of the properties empirically observed by Barndorff-Nielsen & Jiang[6]. In
the model there are two sets of unknown parameters, one set corresponding to the marginal
distribution of V and one to autocorrelation of V . Based on discrete time observations of
the log price the authors discuss how to estimate the parameters appearing in the marginal

distribution and find the asymptotic properties.
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§1. Introduction

Many recent contributions in the field of finance are devoted to modelling of stock prices.
The seminal Black and Scholes model[9] assumes that the stock price is a geometric Brownian
motion, which in particular implies that the volatility is constant. However, recent empirical
evidence has shown that the latter is unrealistic, see e.g. Bollerslev et al. (1992) or Taylor
and Xu (1994, 1995). As an alternative, some authors have proposed models that include
stochastic volatility in such a way that the pair consisting of the stock and the volatility
constitutes a two-dimensional diffusion. Examples are the models of Hull and White[14],
Wiggins[18], Scott[16], Chesney and Scott[10], Stein and Stein[17] and Heston[15]. One es-
sential feature shared by all these models is that the volatility is unobservable when only
discrete time observations are available, and clearly this raises some difficulties when trying
to estimate the unknown parameters.

Genon-Catalot et al.[11] have proposed a general set-up for estimating the parameters of
stochastic volatility models. They consider a two-dimensional diffusion (Y (t), V (t)), where
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Y (t) denotes the log price of a stock at time t, while V (t) is the unobserved volatility.
Moreover, (Y (t), V (t)) is given by

dY (t) = V (t)
1
2 dBt, (1.1)

dV (t) = b(θ, V (t))dt+ a(θ, V (t))dWt, (1.2)

where B and W are independent standard Brownian motions and θ is the unknown pa-
rameter. They consider the case when discrete time observations are available at time
0,△n, 2△n, · · · , n△n, and let △n → 0 and Tn = n△n → ∞ as n → ∞. In this setting they
are able to produce estimates of θ that are either consistent or even asymptotically normal.
However, it is of fundamental importance that, in a loose sense, the unknown parameter
only show up in the stationary distribution of V (t) (see model 2 of their paper for more
information on this) in particular, some questions related to the dependence structure of Y
can not be addressed in their setting.

Recent empirical investigations by Barndorff-Nielsen and Jiang[6] show that by defining
a stochastic volatility model where the volatility process has autocorrelation function given
by

r(u) = wρu0 + (1− w)ρu1 , (1.3)

a very good fit to real data is obtained. Moreover, the same paper also concludes that the
NIG distribution often provides an excellent fit to the increments in log prices, measured
on a daily basis, for instance. To incorporate these findings we will in the present study
modify the approach taken by Genon-Catalot et al.[11]. More precisely, as above we let the
log price be specified by Equation (1.1), but instead of (1.2) we take V to be the sum of two
independent Inverse Gaussian Ornstein Uhlenbeck processes (short: IG OU processes), as
defined by Barndorff-Nielsen[4]. This in particular implies that V is a stationary process with
an inverse Gaussian law, IG(α, δ), as marginal distribution. Moreover, the autocorrelation of
V then is described by (1.3). It also follows easily that, when measured over small intervals,
the increments in the log price, suitably normed, are almost defined according to the Normal
Inverse Gaussian distribution NIG(α, 0, 0, δ).

In other words, there are generally five unknown parameters in the model, two of which (α
and δ) appear in the stationary distribution of V and three (ω, ρ0 and ρ1) in the autocorrela-
tion. The problem we address is how to estimate α and δ based on discrete time observations
of Y . Normally one would rely on the maximum likelihood estimate, but, as pointed out by
Genon-Catalot et al.[11], the likelihood function has a somewhat inconvenient structure, and
therefore one has to use another procedure. We follow the approach of Genon-Catalot et
al.[11]. Essentially we obtain the same kind of results as they do, though the arguments have
to be modified due to the fact that our V is a process with jumps whereas Genon-Catalot
et al.[11] (1997) use a diffusion. Estimation of the parameters (ω, ρ0, ρ1) will be considered
in a future paper.

The paper is organized in the following way. Below we first describe our model and the
asymptotic framework in more detail. Section 2 is devoted to the parameters α and δ. As
in [11] the building blocks are a Law of Large Numbers and a Central Limit Theorem, and
these are also established in Section 2.

1.1. The Model
We now describe our model in further detail. First, as above let B = (B(t))t≥0 denote a

standard Wiener process and define the log price Y by (1.1). Second, based on the empirical
findings previously mentioned we aim at defining V as a stationary process such that (i)
the increments in Y , at least over small intervals, are nearly defined according to a normal
inverse Gaussian distribution, and (ii) the autocorrelation of V is given by (1.3).

We show below that (i) and (ii) follow if V appears as the sum of two independent IG
OU processes as we now describe.

Condition A Let α, δ0, δ1, λ0 and λ1 be positive parameters. Throughout the paper we
let V = (V (t))t≥0 be given by V (t) = V0(t) + V1(0), where V0 and V1 are two independent
IG OU processes, such that for j = 0, 1 the autocorrelation of Vj is t → exp(−λjt) and the



No.2 JIANG, W. J & J. PEDERSEN. PARAMETER ESTIMATION FOR STOCHASTIC MODEL 229

marginal distribution is IG(δj , α).
Recall from [6] that this determines the distribution of the entire process Vj uniquely. By

construction Vj can be written as

dVj(t) = −λjVj(t)dt+ dZj(t), (1.4)

where Vj(0) ∼ IG(δj , α) is independent of the process Zj , which is the so-called background
driving Lévy process. The density of Vj(0) (and Vj(t) because V is stationary ) hence is

(2π)−
1
2 δeδαx− 3

2 exp
[
− 1

2
(δ2x−1 + α2x)

]
, x > 0.

For future reference we note that Zj is a strictly increasing Lévy process satisfying Zj(t) =∑
0<s≤t

△Zj(s). The Lévy measure of Zj is

Fj(dx) =
1

λj
(2π)−1/2δjx

−3/2e−α2x/2dx, x > 0, (1.5)

as can be seen from [6]. For more information on IG OU processes we also refer to [6]. The
processes mentioned above are defined on a common probability space (Ω,F , P ) carrying a
filtration (Ft)t≥0 satisfying the usual conditions.

Recall that the convolution of IG(δ0, α) and IG(δ1, α) gives IG(δ, α), where δ = δ0 + δ1
(see [6]). By defining V according to Condition A it therefore follows that V is a stationary
process with V (t) distributed according to the IG(δ, α). Moreover, letting w = δ0/δ, ρ0 =
e−λ0 , ρ1 = e−λ1 , it is seen by direct calculation that, indeed, the autocorrelation of V is as
stated in (1.3).

Once again we emphasize that one of the main differences between our model and the
model of Genon-Catalot et al.[11] is that we have jumps in our V process. We are further
able to control the marginal distribution of V and the autocorrelation in a convenient way.

Having described our setting we note that there are five unknown parameters: α and δ
corresponding to the stationary distribution of V and ω, ρ0 and ρ1 for the autocorrelation.
When estimating these parameters we assume that discrete time observations of Y are
available at time tn0 = 0, tn1 , t

n
2 , · · · , tnn = Tn, where we put Tn = n△n and let tni = i△n. We

further let △n → 0 and Tn → ∞ as n → ∞.
Often it is convenient to consider the variables defined by

Y n
i :=

Y (tni )− Y (tni−1)

△1/2
n

, i = 1, · · · , n

with a similar definition of Bn
i . The point is that B

n
i follows a standard normal distribution

no matter what the values of i and n are, and Bn
1 · · · , Bn

n are independent. Moreover, the
sequence Y n

1 , · · · , Y n
n is stationary and conditional on the processes V0 and V1 it follows that

Y n
1 , · · · , Y n

n are independent of

Y n
i ∼ N

(
0,

1

△n

∫ tni

tni−1

V (u)du
)
.

In particular, as n → ∞ it is seen that Y n
i converges to a variable Z, with Z = ε

√
η, where

ε is standard normal and η is IG(δ, α), and ϵ and η are independent. That is, Z follows a
NIG(α, 0, 0, δ). (Recall that δ = δ0 + δ1 and the parameters are defined in Condition A).
For future reference we state this result as a lemma.

Lemma 1.1 Let △n → 0 as n → ∞. Then it holds that Y n
1

D→ Z, where Z ∼
NIG(α, 0, 0, δ).

Despite its simplicity Lemma 1.1 is in fact one of the cornerstones when estimating α
and δ, essentially because it allows us to pretend that the Y n

i ’s are drawings from the
NIG(α, 0, 0, δ).
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§2. Estimation of the Marginal Distribution of V

This section concerns α and δ. Using Lemma 1.1 estimation is performed pretending
that the Y n

i ’s (i = 1, · · · , n) are a sample of the NIG(α, 0, 0, δ) and, as usual, the asymptotic
behaviour is deduced via (a uniform version of) the Law of Large Numbers and a Central
Limit Theorem. The appropriate versions are stated in Subsection 2.1, while the proofs are
to be found in Subsection 2.2. The behaviour of the estimates is the topic of Subsection 2.3.

2.1. The Law of Large Numbers and the Central Limit Theorem
We first state the Law of Large numbers.
Proposition 2.1. Let f : R → R be C1 and satisfy |f ′(x)| ≤ K(1 + |x|r), ∀x, for some

constants K, r > 0. Let also △n → 0 and Tn → ∞ as n → ∞. Then it holds that

1

n

n∑
i=1

f(Y n
i ) → E[f(Z)]

in probability as n → ∞, where Z ∼ NIG(α, 0, 0, δ).
Remark 2.1. Note that by Lemma 1.1 we have that the Y n

i ’s “almost” are distributed
according to the NIG(α, 0, 0, δ). In view of this the above result is not surprising.

In fact, we need to strengthen the statement in Proposition 2.1 slightly; more precisely,
consider the following uniform version of the Law of Large Numbers.

Proposition 2.2. Let l ≥ 1 and K ⊆ Rl be a compact set. Also let f : R × Rl → R
be C1 and denote the partial derivatives by fi, i = 1, · · · , l + 1. Finally assume that there
are constants K, r > 0 such that for i = 1, · · · , l + 1 and (x, τ) ∈ R × Rl it holds that
|fi(x; τ)| ≤ K(1 + |x|r + ||τ ||r), where || · || denotes the usual norm on Rl, and let △n → 0
and Tn → ∞ as n → ∞. Then

sup
τ∈K

∣∣∣ 1
n

n∑
i=1

f(Y n
i ; τ)− E[f(Z; τ)]

∣∣∣ → 0

in probability as n → ∞, where Z is specified in Proposition 2.1.
We finally need the Central Limit Theorem, but first we introduce more notation. Let

l ≥ 1 and consider a mapping f = (f1, · · · , fl) : R → Rl satisfying the following two
conditions:

(i) First, f is C1 and there are constants C, r > 0 such that for j = 1, · · · , l the following
inequality applies,

|f ′
j(x)| ≤ C(1 + |x|r), ∀x ∈ R.

(ii) Also, E[fj(Z)] = 0 for j = 1, · · · , l, where Z is defined in Proposition 2.1.
Denote the class of mappings satisfying (i) and (ii) by Hl.
For f ∈ Hl we define hf : R2

+ → Rl by hf (w) = E[f(||w||X)], whereX is standard normal
and ||w|| denotes the norm of w = (w0, w1) given by

√
w0 + w1. Then hf satisfies a growth

condition and is C1. In the following we use that the process (W (t))t≥0 = (V0(t), V1(t))t≥0

(the components are described in Condition A, see Section 1.1) is a Markov process, and we
denote the corresponding transition function by (Tt)t≥0. Hence, for f ∈ Hl we have

Tthf (w) = E[hf (W (t))|W (0) = w].

For f ∈ Hl we also define gf by

gf (w) = −
∫ ∞

0

Tthf (w)dt.

It follows from Remark 2.3.1 of [8], or by direct calculation, using that Vj is an OU process,
that gf is well-defined, that gf (W (t)) is square integrable and that

lim
s↓0

Tsgf − gf
s

= lim
s↓0

∫ s

0
Tthfdt

s
= hf (2.1)
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pointwise. Whence gf is in the domain of the generator of (Tt)t≥0. Moreover, by defining

Σf = −E[gTf (W (0))hf (W (0)))]− E[hT
f (W (0))gf (W (0)))] (2.2)

where superscript T denotes transposition, we get a positive semidefinite l× l matrix, as we
shall see in the proof of Proposition 2.3.

Proposition 2.3. (a) Let f ∈ Hl and let △n → 0, Tn → ∞ and △nTn → 0 as n → ∞.
Then we have

1√
Tn

n∑
i=1

f(Y n
i )△n

D→ N(0,Σf ).

(b) If moreover the l functions w → hf,1(w), · · · , w → hf,l(w) are linearly independent, then
it holds that Σf is positive definite. This condition is satisfied if each fj is symmetric and
further the l functions x → f1(x), · · · , x → fl(x) are linearly independent.

Results similar to Propositions 2.1 and 2.3 are also given in [12]. However, as they do
not use quite the same setting we can not use their results directly. Specifically, they obtain
their analogue to Proposition 2.3 (a) by using a CLT for diffusions, while we have to rely
on a CLT stated for more general Markov processes. Besides, they give the asymptotic
variance in somewhat more closed form. In the present setting (2.1) is essentially the best
representation of the variance we can get, and the property of Σf stated in Proposition 2.3
(b) has to be proved by means of martingale techniques. An analogue to Proposition 2.3
(b) is also obtained by [8] in a somewhat different context, but only when hf is bounded.

2.2. The Proofs
We first state a couple of preliminary results.
Lemma 2.1. For j = 0, 1 and p, T > 0 we have that sup

t≤T
Vj(t) is in Lp(P ). Moreover, it

holds that

lim sup
t→0

1

t
E
[

sup
u∈[0,t]

|V (u)− V (0)|
]

is finite.
Proof. As Vj is an OU process and Zj is increasing (see Subsection 1.1) we have the

following estimate for t ≤ T

Vj(t) = Vj(0)e
−λjt +

∫ t

0

e−λj(t−s)dZj(s) ≤ Vj(0) + Zj(T ).

Clearly, both Vj(0) and Zj(T ) have finite moments. This gives the first statement.
To prove the second statement we note that it clearly suffices to argue

lim sup
t→0

1

t
E
[

sup
u∈[0,t]

|Vj(u)− Vj(0)|
]
< ∞

for j = 0, 1. But from the above inequalities we have for u ≤ t

|Vj(u)− Vj(0)| ≤ Vj(0)(1− e−λjt) + Zj(t)

and using that, E[Zj(t)] = Cjt, ∀t ≥ 0, for some constant Cj , it follows

1

t
E
[

sup
u∈[0,t]

|Vj(u)− Vj(0)|
]
≤ E[Vj(0)]

(1− e−λjt)

t
+ Cj .

The right-hand side converges to E[Vj(0)]λj + Cj as t → 0, which gives the result.
Lemma 2.2. let f and △n be as in Proposition 2.1. Then it holds that f(Y n

1 ) has the
expansion

f(Y n
1 ) = {f(Y n

1 )− f(V (0)
1
2Bn

1 )}+ f(V (0)
1
2Bn

1 ),

where the first term, divided by △
1
2
n , is bounded in L1(P ).
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Proof. We first have f(Y n
1 ) − f(V (0)

1
2Bn

1 ) = f ′(Zn){Y n
1 − V (0)

1
2Bn

1 }, where Zn is on

the line between Y n
1 and V (0)

1
2Bn

1 . And note that the number E[f
′
(Zn)

2]
1
2 is bounded by

a constant C, not depending on n, therefore

E[|f(Y n
1 )− f(V (0)

1
2Bn

1 )|] ≤ C{E[(Y n
1 − V (0)

1
2Bn

1 )
2]} 1

2

= C
{
E
[
△−1

n

∫ △n

0

(V
1
2 (0)− V

1
2 (u))2du

]} 1
2

≤ C
{
E
[

sup
0≤u≤△n

|V (0)− V (u)|
]} 1

2

.

By applying to Lemma 2.1, this gives the result.
Proof of Proposition 2.1. Consider the following expansion

1

n

n∑
i=1

f(Y n
i ) =

1

n

n∑
i=1

f(Y n
i )− f(V

1
2 (tni−1)B

n
i ) +

1

n

n∑
i=1

f(V
1
2 (tni−1)B

n
i ) (2.3)

and use that by stationarity and the previous lemma

E
[∣∣∣ 1
n

n∑
i=1

f(Y n
i )− f(V

1
2 (tni−1)B

n
i )
∣∣∣] ≤ n−1

n∑
i=1

E
[∣∣∣f(Y n

i )− f(V
1
2 (tni−1)B

n
i )
∣∣∣]

= E
[∣∣∣f(Y n

1 )− f(V
1
2 (0)Bn

1 )
∣∣∣] → 0.

This means we just have to consider the second term on the right-hand side of (2.3). Define

qf (v) by qf (v) = E[f(v
1
2X)], where X follows a standard normal, and note that

1

n

n∑
i=1

f(V
1
2 (tni−1)B

n
i ) =

1

n

n∑
i=1

qf (V (tni−1)) +
1

n

n∑
i=1

[f(V
1
2 (tni−1)B

n
i )− qf (V (tni−1))]. (2.4)

It is obvious that the second term on the right-hands side of (2.4) vanishes in L2(P ) as
n → ∞. Also, it is easily seen that qf is continuous and satisfies a growth condition,
therefore by the previous lemma we have

E
[∣∣∣ 1

Tn

n∑
i=1

∫ tni

tni−1

qf (V (tni−1))− qf (V (u))du
∣∣∣]

≤ E
[

sup
u∈[0,tn1 ]

∣∣qf (V (0))− qf (V (u))
∣∣∣] → 0.

Finally, as V is ergodic, the Law of Large Numbers gives

1

Tn

∫ Tn

0

qf (V (u))du → E[qf (V (0))] = E[f(Z)]

as n → ∞ a.s., and this concludes the proof.
Proof of Proposition 2.2. Note there are constants C, p > 0 such that |f(x; τ)| ≤

C(1 + |x|p), ∀x ∈ R, ∀τ ∈ K. Put γ = sup
n

E[{C(1 + |Y n
1 |p)}2] 12 , which is a finite quantity.

We must argue that for any ϵ > 0 it holds

lim sup
n→∞

E
[
sup
τ∈K

∣∣∣ 1
n

n∑
i=1

f(Y n
i ; τ)− E[f(Z; τ)]

∣∣∣ ∧ 1
]
< ϵ.

Choose L > 0 such that for n ∈ N it holds that l P (|Y n
1 | > L)

1
2 ≤

ϵ
4

2γ . This can be done due

to the fact that Y n
1 converges by Lemma 1.1. Also choose an integer q, points τ1, · · · , τq ∈ K

and positive numbers r1, · · · , rq such that (i) K ⊆
q∪

j=1

B(τj ; rj), where B(τj ; rj) denotes the
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open ball in Rl with center τj and radius rj , (ii) E[ sup
τ∈B(τj ;rj)

|f(Z; τj) − f(Z; τ)|] ≤ ϵ
4 and

(iii) sup
x:|x|≤L,τ∈B(τj ;rj)

|f(x; τj)− f(x; τ)| ≤ ϵ
4 . Then

sup
τ∈K

∣∣∣ 1
n

n∑
i=1

f(Y n
i ; τ)− E[f(Z; τ)]

∣∣∣
≤ sup

j=1,··· ,q
sup

τ∈B(τj ;rj)

∣∣∣ 1
n

n∑
i=1

f(Y n
i ; τ)− E[f(Z; τ)]

∣∣∣
≤ sup

j=1,··· ,q
sup

τ∈B(τj ;rj)

∣∣ 1
n

n∑
i=1

[f(Y n
i ; τj)− f(Y n

i ; τ)]
∣∣∣

+ sup
j=1,··· ,q

∣∣ 1
n

n∑
i=1

f(Y n
i ; τj)− E[f(Z; τj)]

∣∣∣
+ sup

j=1,··· ,q
sup

τ∈B(τj ;rj)

∣∣∣E[f(Z; τ)− f(Z; τj)]
∣∣∣.

The third term is by (ii) less than ϵ
4 , the mean of the last term is dominated by 2γP (|Y n

i | >
L)

1
2 ≤ ϵ

4 . Using (iii), we can easily see that the first term is dominated by

ϵ

4
+

2C

n

n∑
i=1

(1 + |Y n
i |p)1{|Y n

i |>L}.

Therefore

E
[
sup
τ∈K

∣∣∣ 1
n

n∑
i=1

f(Y n
i ; τ)− E[f(Z; τ)]

∣∣∣ ∧ 1
]

≤ sup
j=1,··· ,q

E
[∣∣∣ 1
n

n∑
i=1

f(Y n
i ; τj)− E[f(Z; τj)]

∣∣∣ ∧ 1
]
+

3

4
ϵ,

and by choosing n large enough the left-hand side is less than ϵ, as is seen from Proposition
2.1.

Before proving the Central Limit Theorem Proposition 2.3 we state another useful result.
Proposition 2.4. Let f ∈ Hl and Tn → ∞ as n → ∞. It then holds

1√
Tn

∫ Tn

0

hf (W (u))du
D→ N(0,Σf ) as n → ∞.

Moreover, Σf is positive definite if the functions w → hf,1(w), · · · , w → hf,l(w) are linearly
independent.

Proof. Let l = 1. The general case follows from this using the usual Cramer-Wold
device and the fact that if f ∈ Hl and a ∈ Rl is constant then a · f ∈ H1 and a · hf = ha·f ,

a ·gf = ga·f . The first part of the statement is a consequence of Bhattacharya[8, Theorem 2.1].
However, in order to prove the second part we have to repeat some of the arguments. First,
it is known that the relation

Ttgf = gf +

∫ t

0

Tshfds

implies that the process

M(t) = gf (W (t))− gf (W (0))−
∫ t

0

hf (W (s))ds
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is a martingale. Also, by direct calculation it is seen that var(M(t)) = tΣf . Clearly,

stationarity of W implies that the first part of the result follows by proving 1√
t
M(t)

D→
N(0,Σf ) as t → ∞. As M has square integrable increments and is defined in terms of
a stationary Markov process, this is however an easy consequence of the Central Limit
Theorem for martingales (see e.g. [13]).

To prove the second part let us assume Σf = 0. Then M(t) is almost surely constant.
By right-continuity it therefore follows that M is indistinguishable from zero, and hence
(gf (W (t)))t≥0 is a continuous process. However, W has jumps of any positive size and
therefore gf is constant (see Lemma 2.7 below for details). Using the relation (2.1) it is seen
that hf is zero.

The following lemma clarifies one point used above.
Lemma 2.3. Let the setting be as in Proposition 2.3 (a) and let l = 1.
(a) Let w = (w0, w1) ∈ R2

+ and ξ, ρ and r be positive numbers such that ξ and ρ are
greater that 3r. Then it holds that

P (∃t : V0(t−) ∈]w0 − r, w0 + r[ and V0(t) ∈]w0 + ξ − r, w0 + ξ + r[

and V1(t−), V1(t) ∈]w1 − r, w1 + r[
)
> 0

P (∃t : V1(t−) ∈]w1 − r, w1 + r[ and V1(t) ∈]w1 + ρ− r, w1 + ρ+ r[

and V0(t−), V0(t) ∈]w0 − r, w0 + r[) > 0.

(b) If Σf = 0 then gf is constant.
Remark 2.2. The first statement in (a) states that with positive probability V0 jumps

from a neighbourhood of w0 to a neighbourhood of w0 + ξ, while V1 stays near w1.
Proof. (a) Note that, because the marginal distributions of the Vj processes are inde-

pendent IG laws, the variable W (0) will be in the set ]w0 − r, w0 + r[×]w1 − r, w1 + r[ with
positive probability. Therefore it suffices to argue that the two probabilities are both positive
conditional on W (0) = w̄, where w̄ is an arbitrary point of ]w0 − r, w0 + r[×]w1 − r, w1 + r[.
We shall for simplicity only consider the case w̄ = w. Let Pw denote the measure corre-
sponding to the conditional distribution given W (0) = w. Then using that Vj appears as
an OU Process driven by the process Zj , and that Zj is increasing, we obtain under Pw

e−λjtwj ≤ Vj(t) ≤ e−λjtwj + Zj(t), j = 0, 1. (2.5)

We give the argument for the first probability only, the second being similar. Take t0 > 0
satisfying

e−λjt0wj > wj − r, j = 0, 1 (2.6)

and let us prove

Pw(V1(t) ∈]w1 − r, w1 + r[, ∀t ≤ t0 and

∃t ≤ t0 : V0(t−) ∈]w0 − r, w0 + r[, V0(t) ∈]w0 − r + ξ, w0 + r + ξ[
)
> 0.

Now, by independence the above probability equals

Pw1

(
V1(t) ∈]w1 − r, w1 + r[,∀t ≤ t0

)
× Pw0

(
∃t ≤ t0 : V0(t−) ∈]w0 − r, w0 + r[, V0(t) ∈]w0 − r + ξ, w0 + r + ξ[

)
and by the representation of the Lévy measure of Zj in (1.5), it follows easily that with
positive probability we have Z1(t0) < r, and hence by (2.5) and (2.6) the first term is
positive. Let τ = inf{t > 0 : △Z0(t) ≥ r}. Using (2.5) and the fact that △Z0 = △V0 it
suffices to argue

Pw0

(
τ ≤ t0 and △Z0(τ) ∈]w0−r+ξ−V0(τ−), w0+r+ξ−V0(τ−)[and Z0(τ−) < r

)
> 0.
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Let F0
τ− be the pre σ–field generated by τ in the natural filtration of Z0. As the set

A = {τ ≤ t0, Z0(τ−) < r} has positive probability under Pω0 and is an element of F0
τ−, it

suffices to argue that conditional on F0
τ− the event

{△Z0(τ) ∈]w0 − r + ξ − V0(τ−), w0 + r + ξ − V0(τ−)[}
has positive probability on A. Now, △Z0(τ) is independent of F0

τ− and is distributed

according to F 0(dκ)
F 0([r,∞[) for κ > r, where F 0 denotes the Lévy measure for Z0. On A the

interval ]w0 − r + ξ − V0(τ−), w0 + r + ξ − V0(τ−)[ is contained in ]r,∞[ ( because ξ > 3r
by assumption ). Further, F 0 has positive density with respect to the Lebesgue measure on
R+ (see (1.5)). By combining these facts the result follows.

Concerning (b) this is an easy consequence of (a), continuity of gf and the fact that
(gf (W (t)))t≥0 is a continuous process.

Proof of Proposition 2.3. (a) We only consider the case l = 1. Use the expansion

1√
Tn

n∑
i=1

f(Y n
i )△n =

1√
Tn

n∑
i=1

{
f(Y n

i )− f(V
1
2 (tni−1)B

n
i )
}
△n

+
1√
Tn

n∑
i=1

f(V
1
2 (tni−1)B

n
i )△n (2.7)

and noting that the mean of the first term is dominated by

T
1
2
n △

1
2
n
E[|f(Y n

1 )− f(V
1
2 (0)Bn

1 )|]

△
1
2
n

and that the second is bounded by Lemma 2.2., we have that the first term on the right-hand
side of (2.7) converges to zero in L1(P ). Moreover,

1√
Tn

n∑
i=1

f(V
1
2 (tni−1)B

n
i )△n

=
1√
Tn

n∑
i=1

{
f(V

1
2 (tni−1)B

n
i )− hf (W (tni−1))

}
△n +

1√
Tn

n∑
i=1

hf (W (tni−1))△n

and as in the proof of Proposition 2.1 it is seen that the first term vanishes in L2(P ) as
n → ∞. By the preceding proposition we conclude the proof once we have shown that

1√
Tn

n∑
i=1

hf (W (tni−1))△n − 1√
Tn

∫ Tn

0

hf (W (u))du

=
1√
Tn

n∑
i=1

∫ tni

tni−1

hf (W (u))− hf (W (tni−1))du

vanishes in L1(P ) as n → ∞. But the mean of this is less than

T
1
2
n E

[
sup

0≤u≤△n

∣∣hf (W (u))− hf (W (0))
∣∣].

It follows that the last term is dominated by a constant times

T
1
2
n

{
E
[

sup
0≤u≤△n

|V (u)− V (0)|
]} 1

2

,

and by Lemma 2.1 convergence to zero holds.
To prove (b) the first part follows from Lemma 2.3 while for the second we first state a

fact as follows:
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If f ∈ H1 is symmetric and Ef(X̃) = 0 for any X̃ which follows a normal distribution
with zero mean, then f must be zero.

To prove this, denote g(σ) =
∫ +∞
−∞ f(x)e

−x2

2 σ2

dx. Then it follows that g(σ) = 0, ∀σ > 0,

and also g
′
(σ) = 0, ∀σ > 0. Repeating this leads to∫ +∞

−∞
f(x)x2ne

−x2

2 dx = 0, ∀n ∈ N,

and by symmetry of f , we have∫ +∞

−∞
f(x)x2n+1e

−x2

2 dx = 0, ∀n ∈ N.

Thus ∫ +∞

−∞
f2(x)e

−x2

2 dx = 0.

Finally we get that f must be zero due to continuity.
Now, we use this to deduce the second part of (b). If Σf is not positive definite then by

the first part of (b) there is a nonzero vector a ∈ Rl, such that a · hf = 0. This then leads
to E[a · f(||w||X) = 0] for any w ∈ R2

+, where X ∼ N(0, 1), and by the above we get
a · f = 0.

2.3. Parameter Estimation
Recall from Lemma 1.1 that Y n

1
D→ NIG(α, 0, 0, δ) as n → ∞. That is, for △n small we

have that Y n
1 , · · · , Y n

n is a stationary sequence such that Y n
i almost follows a NIG distribu-

tion. Motivated by this we now find an estimate (α̂n, δ̂n) of the true parameter values (α, δ)
as a local maximum for

(α0, δ0) →
n∑

i=1

l(Y n
i ; (α0, δ0)), (2.8)

where l(y; (α0, δ0)) denotes the log density of the NIG(α0, 0, 0, δ0) in the point y. In other
words we estimate the parameters by maximizing the likelihood function corresponding to
iid drawings of a NIG distribution. As we shall see the estimates are in fact asymptotically
normal, though the observations are not independent. The asymptotic variance however
differs somewhat from the iid case.

From [4] we have that the log density of a NIG(α0, 0, 0, δ0) is

l(y; (α0, δ0)) = δ0α0 − log π − logα0 + log δ0 − 1

2
log(δ0

2
+ y2)

+ logK1(α
0 ·

√
δ02 + y2),

where q(y) =
√
1 + y2 and K1 is the modified Bessel function of the third order and index

1. Denote also the j’th derivative of log K1 by Dj . To state the asymptotic properties of the
estimates we need the first and the second derivative of l with respect to the parameters,
so let U = (U1, U2) be the two-dimensional vector of the partial derivatives (subscript 1

corresponds to α). Then we have (with D1 = D1(α
0 ·

√
δ02 + y2) and D2 = D2(α

0 ·√
δ02 + y2))

U1(y; (α
0, δ0)) = − 1

α0
+ δ0 +D1 ·

√
δ02 + y2,

U2(y; (α
0, δ0)) =

1

δ0
+ α0 − δ0

δ02 + y2
+D1 ·

α0δ0√
δ02 + y2
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and with j = (jij)
2
i,j=1 denoting the 2 by 2 matrix consisting of minus the second derivatives

we get

j11(y; (α
0, δ0)) =

1

α02
+D2 · (δ0

2
+ y2),

j12(y; (α
0, δ0)) = 1 +D2 · δ0α0 +D1 ·

δ0√
δ02 + y2

,

j21(y; (α
0, δ0)) = j12(y; (α

0, δ0)),

j22(y; (α
0, δ0)) = − 1

δ02
− y2 − δ0

2

δ02 + y2

2

+D2 ·
α02δ0

2√
δ02 + y2

+D1 ·
α0y2

(δ02 + y2)
3
2

.

By combining this with subsection 2.1 we arrive at the following.
Proposition 2.5. Let △n → 0, Tn → ∞ and △nTn → 0 as n → ∞. (a) First, we

have

1√
Tn

n∑
i=1

U
(
Y n
i ; (α, δ)

)
△n

D→ N(0,Σ(α,δ)), n → ∞,

where Σ(α,δ) denotes the matrix Σf in (2.2) with f(·) = U(·; (α, δ)). Moreover, Σ(α,δ) is
positive definite.

(b) If r > 0 is positive such that the open ball, B((α, δ); r), with radius r and center (α, δ)
is contained in R2

+, then it holds that

sup
(α0,δ0)∈B((α,δ);r)

∣∣∣ 1
n

n∑
i=1

j(Y n
i ; (α0, δ0))− E[j(Z; (α0, δ0))]

∣∣∣ → 0

in probability as n → ∞, where Z ∼ NIG(α, 0, 0, δ). Moreover, the matrix E[j(Z; (α, δ))] is
positive definite.

Remark 2.3. Let i(α, δ) = E[j(Z; (α, δ))]. Then i(α, δ) corresponds in fact to the
expected information for iid drawings of the NIG(α, 0, 0, δ). This immediately gives that
i(α, δ) is positive definite.

Proof. We just have to verify the conditions in Propositions 2.2 and 2.3. But for every
ϵ > 0 it holds that sup

y>ϵ
|Dj(y)| is bounded for j = 1, 2, 3 as can be seen from [1]. This gives the

various growth conditions, which in turn implies U(·; (α, δ)) ∈ H2. As y → U1(y; (α, δ)) and
y → U2(y; (α, δ)) are symmetric and linearly independent it also follows that the asymptotic
variance in (a) is positive definite.

Having established the CLT and the Law of Large Numbers, the asymptotic behaviour of

the estimate (α̂n, δ̂n) is easily derived. More precisely, using the classical Taylor expansion

argument (see e.g. [7]) it follows that, indeed, there is local maximum (α̂n, δ̂n) for (2.8) such
that √

Tn

(
(α̂n, δ̂n)− (α, δ)

)
i(α, δ)Σ

− 1
2

(α,δ)

D→ N(0, I2), (2.9)

where I2 denotes the 2 × 2 identity matrix. This result holds if ∆n → 0, Tn → ∞ and
∆nTn → 0 as n → ∞.

Remark 2.4. (1) Note that in the case of iid observations from NIG(α, 0, 0, δ), one
gets asymptotic normality of the estimator as in (2.9). However, the asymptotic variance is
different as one has to replace Σ(α,δ) by i(α, δ) and Tn by n.

(2) We have chosen to estimate α and δ by using the likelihood function corresponding
to iid observations. Of course, by choosing a contrast function, which does not necessarily
correspond to this likelihood function, and finding a minimum contrast estimate it is still
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possible to derive consistency or asymptotic normality in terms of the results of Subsection
2.1.

(3) In this paper we have used that the volatility process V appears as the sum of two
Ornstein-Uhlenbeck processes with inverse Gaussian marginals. Clearly, the same kind of
results apply by considering other Ornstein Uhlenbeck processes.
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