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SOME FUNCTIONAL LIMIT THEOREMS FOR
THE INFINITE SERIES OF OU PROCESSES
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Abstract

This paper obtains functional modulus of continuity and Strassen’s functional LIL of the
infinite series of independent Ornstein-Uhlenbeck processes, which also imply the Lévy’s exact
modulus of continuity and LIL of this process respectively.

Keywords Ornstein-Uhlenbeck processes, Stationary Gaussian processes, Modulus
of continuity, Law of the iterated logarithm

2000 MR Subject Classification 60F06, 60F15, 60F17, 60G15.

Chinese Library Classification 0211.6 Document Code A

Article ID 0252-9599(2003)02-0001-12

¢1. Introduction

Let {Y(t),—00 < t < oo} = {Xp(t),—00 < t < 00}, be a sequence of independent
Ornstein-Uhlenbeck (OU) processes with coefficients v and A, i.e., {Xi(t), —00 < t < o0}
are stationary, mean zero Gaussian processes with

E{X)(5) X (1)} = }—’;exp{—Ak\t —sl}, k=1,2,,

where v, > 0, A > 0.

The process Y (-) was first introduced by Dawson/’]

as the stationary solution of the
infinite array of stochastic differential equations

dX;(t) = =N X, (O)dt 4+ (27)Y2dWi(t), i=1,2,---,

where {W;(t),—oc0 < t < oo} are independent Wiener processes (see also [6, 13]). Since
then the properties of Y'(-) have been extensively studied in the literature. The continuity
properties of Y(-) were studied by, for example, Iscoe et al. (see [10] and the references
therein). The moduli of continuity for £P-valued OU processes as well as for the £2-norm
squared process of these were investigated by, for example, Cséki et al., Csérgd and Shao (see
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[2,3] and the references thereins). Cséki et al.'l studied the infinite series of the independent
OU coordinate processes of Y (), namely the process X (-) defined by

o
{X(t),—oo<t<oo}:{ZXk(t),—oo<t<oo}, (1.1)
k=1
and obtained the Lévy’s exact modulus of continuity for {X (t), —oco < t < co}.

Let log x denote log, (max{z, 1}), and loglog = denote log, (log, (max{z, e})). In the sequel

of the present paper we assume that for some § > 0,

0<TIy= Z’yk(log()\k Vet /N, < oo,
k=1

which, in turn, implies that X (+) is a stationary and almost surely (a.s.) continuous Gaussian
process, and that

o*(h) = BE(X(t+h) - X(1)? =2 'Al’fu —e M) h>0,t>0. (1.2)
— Ak
The modulus of continuity of X (-) which was established by Cséki et al. (see [1, Theorem
4.1]) is the following
Theorem 1.1. Assume that o(-) is a reqularly varying function at zero with positive
exponent, namely, o(s) = s*L(s) with a > 0, where L(-) is slowly varying at zero, i.e. it is
measurable, positive and satisfies
L
im (As)
sl0 L(S)

=1 forall X>0.

Then

[X(t+5) - X(®)] as. | (1.3)

lim su su
h0 o<1t —hocscn o (h)(2log h=1)1/2

The LIL of X(-) is the following (see, e.g. [12]).
Theorem 1.2. Assume that there exist positive constants o and Cy such that
(1/Cp)s® < oa(s) < Cos®  forall 0<s<1.
Then

limsup su
hl0 pogsgh o(h)(2loglog h=1)1/2

The moduli of non-differentiability of X(-) were studied by Csérgd and Shaol* and
Zhang('?.

The purpose of this paper is to study functional modulus of continuity and Strassen’s
functional LIL for X(-), namely to establish Theorems 3.1, 3.2 and 4.1 below (see §3 and
§4), which also imply (1.3) and (1.4) respectively.

For use later on, we introduce some notations: Let Cy[0, 1] denote the set of all continuous

functions f on [0, 1] with f(0) =0, and || - || denote the sup-norm in Cy[0, 1], i.e.,
[fllec = sup [f(#)] for f e Col0,1].
0<t<1
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Let H,, C Cy[0,1] denote the reproducing kernel Hilbert space corresponding to the Gaussian
measure 4 on the seperable Banach space Cy[0, 1] induced by {X (¢)— X (0),0 <t < 1}. (The
construction of H,, can be found in, e.g., [11]). If f € H,, then ||f||,, denotes the H,-norm
of f.Set U ={f e H,:|fl|l, <1}. Forany h € (0,1) and ¢t € [0,1 — h], put

X(t+ hx) — X(¢)

M, = 0<z<1
(@) = S Glogp e 0SS TS L
X (hz) — X(0)
= <z<l1
Sh(@) o(h)(2loglog h—1)1/2’ Oszsl,
Vi, = {Mt,h(') € (p[0,1],0 <t < 1-—h}.

82. Several Lemmas

In this section we give some lemmas which will be used in the following two sections,
some of which are of independent interst.

Lemma 2.1. For any € > 0, there exists a positive number \g = \o(g) such that for any
A > )\07

HX(-)—X((D

_f(,)H ()‘(1"'5))2}_
A

225)§exp{— 5

(2.1)

o0

Proof. This inequality appears in Lemma 2.1 of [14], or see Theorem 2.1 of [19]. Hence
the lemma holds.

The following is an extension of Lemma 2.1.

Lemma 2.2. Assume that there exist positive constants o and 0 such that

o(s) =0s" forall 0<s<1. (2.2)
Then, for any € > 0, there exist positive numbers Ag = Ao(€) such that
t+ h X(t))
P( su inf H — f( H > 6e
(O<t<11) nfeu 0 oo )

C (A(1+¢))?
<=z s 2 .
= eXp{ 2 } (2:3)

for any X > \g and every 0 < h < hg with some hyg < 1. Here, and in the sequel, C stands
a positive constant, whose value is irrelavant.

Proof. Let t; = h[t- %] /29 for real number t € [0, 1), where j is a positive integer which
will be specified later on. Notice that

T e 0 TS
< (oo |55 +h O )2 ) (2.4
2P (ogg?_h olX (¢ + h-)A ;(h)@j i)l 5)

= Il + .[2.
Put t;(I) = lh/27, | > 1. Noting that X(-) is stationary, and that for any h > 0,
{W,O <z < 1} and {X(z) — X(0),0 < z < 1} have the same distribution by

o



252 CHIN. ANN. MATH. Vol.24 Ser.B

(2.2), we get
X(t; h — X (¢
IlgP( ma inf H + (j))—f()H 245)
1<l<[2’h H+le, - 1 <t<t () feu oo
[2Jh 41
)+ h- ti(l—1
< ( H ) — X(t;(1-1))) _f(')H 245)
fEle )\J(h) e (25)
274—1 i X()—X(0)
< —_— — f(- >4
<75 P(;2£H 10 =)
29 +1 (A(1 + 2¢))?
< S S VA
<Sew{- T
where the last inequality follows from (2.1).
It holds that
[27h 141
0| X(t+h)—X(t;(l—1)+ h-
b R, g OGO D
t;(1-1)<t<t; (1) o(h)
27 +1
<ZHp( ap X+ - X0l > A) (2:6)
h 0<t<2—7
49 + 29 g2)\?
<= _ -
=T eXp{ 302(2—1')}’

where for obtaining the last inequality we have used the following inequality (see Lemma
3.2 of [1]): For any p > 0, there exists 0 < h = hy(u) < 1 such that for every 0 < b/ < hy
and u > 0,
P( sup  sup |X(t+s)—X(#)|> ua(h')) < gexp{ v } (2.7)
0<t<1—h’ 0<s<h’ I 2+
if o(+) satisfies (2.2).
Choose j such that 2/ = (%)1/2’JK Then by combining (2.4)—(2.6), we have

2
<A<1+225>> 2 < Qg QLT

for A > Ao with A\g = A\o(e) = —2loge/ae. So, (2.3) is proved.

The following lemma follows from the well-known inequalities about the shift of symmetric

Il+12§%exp{f

convex sets (see, for example, [7]).
Lemma 2.3. For any f € H, andr >0,
exp{— || fI[%/2}P(| X () = X (0)]|o < T) P([(X(:) = X(0)) = f()llee <7)
P(|X() = X(0)]loe <),
where H,, is defined as in Section 1.
The following lemma is due to Ferniquel®!.

Lemma 2.4. Let {£(t),0 <t < T} be a Gaussian process with mean zero and
B(E(t) = £(s))* < A*([t—s) for 0<s,t<T,

where A is continuous, nondecreasing and satisfies floo A(e‘y2 T)dy < oo and also EE%(t) <
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I'? for 0 <t <T. Then, for each x > 0,

P(();E)T )| > x(F + /1DO A(e_yQT)dy)) < Ce /2,

§3. Functional Modulus of Continuity of X( )

In this section, we prove the following
Theorem 3.1. Assume that there exist positive constants « and 0 such that (2.2) is
satisfied. Then for any € > 0, with probability one, there exists hg = ho(g) > 0 such that

oV, CU* (3.1)
and

U C (0W)° (3.2)
if h < hg, where the following notations are used

Ef =: 1], inf ||g —
{g € Co[0.1}, inf flg = fllee < 5},
OV, = {O0M,; 1 (-) € Cp[0,1],0 <t <1—h}.
An equivalent result is the following theorem.

Theorem 3.2. Assume that there exist positive constants o and 0 such that (2.2) is
satisfied. Then

lim sup inf [|0M; 5 — flle 0, 3.1
Mo | Jof 160Myn — f]] (3.1)
and, for each f €U,
lim inf  [|0M 5, — flle % 0. 3.2
é?&ogigl_h” th — fll (3.2)

Proof. At first we prove (3.1). For any ¥ € (1,2) and integer n > 1, let h,, = 9~". For
all h € (0,1), there is n such that h, 11 < h < h,,. Then we have

su inf |[0M;;, —
Ogtgll)—hfeuH th = flloo

< su inf ||0 M, —
_0§t§1—phn+1f614” tinss = Flloo

+  sup sup O[T, Ty = 1| M, [loo (3.3)
hnt1<h<h, 0<t<l—hp41
+ sup sup HF};}Jrth”Mt,thrl (hr_iilh’) - Mt,hn+1 () ||OO

hns1 <h<h, 0<t<1—hy 4
= g+ a5 I,
Here, and in the sequel,
[y =: (2hlogh™1)~1/2,
By Lemma 2.2, we get that for any € > 0 and n large enough,

C
P(J™ > 6e) < P~ exp{—(1+¢)%logh, 1, } < ChS;.
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Therefore, we have

ZP(JI(H) > 6e) < o0

n

which implies

lim J™ %50 (3.4)

n—oo
by the Borel-Cantelli lemma. By (2.7), the definition of h,,, and the Borel-Cantelli lemma,
it is easy to show that

a.s.
lim sup{JQ(") + Jé")} < 4V9 -1,

n—oo

which implies that
lim {J(" + My & (3.5)

if we let ¥ | 1. From (3.3)—(3.5) we obtain (3.1).
Next, we prove (3.2) holds for each f € U. For any ¥ € (0,1), let h,, =9~",n > 1. Let

t; = 2dih,, i=0,1,---,[(2dh,)"'] =: pn,,

where d > 1 is a sufficiently large constant which will be specified later on.

We first show
. . a.s.
1 M, =" 0. :
o1, 10Micte = Sl 30
Let {Wg(t), —00 <t < 00}, be a sequence of independent standard Wiener processes.
It is easy to see that
W)
{()\—k) ot o< t< oo} and {Xg(t), —0o0 <t < oo}
have the same distribution. Hence we can rewrite {X (t), —oo <t < oo} as

oo o2t
Xt =3 (z—’;)m% (3.7)

k=1
and remain the almost sure path properties of X (-) without change.
By (3.7), we have
X(tz ) (tz)

1/2 2Ak(2di+z)h ) Wk(eQ)\k(Zdi)hn)
) ( Xk (2dita)hy, T ek(2di)hn )

Vi 1/2 Wk 2Ak(2d1+m)h ) Wk(62Ak(2i_l)dh")
) ek (2di+z)hy,

1/2 Wk (62>\k(2di)hn) _ Wk (62Ak(2i—1)dhﬂ,)

N kZ: (%Z) e e (2di)hn,

1/2 Wk (eQAk(Qi—l)dhn)

Yk —Xehnz
+ Z (Tk) oAk (2di) Ry, (e7*in® —1)

1
() — £7)(0) + 07 (x).
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Note that {§£Z) (x) —EZ(Z)(O), 0 <z < 1}$2, is a sequence of independent Gaussian processes.
Therefore, V0 < & < 1,

P(, min [6Myn, = flloc > 4e)

0<i<pn,
0(e) () — €7 (0))

Olln" () oo
= P(Ogr?gl?h H o(hy)V/2log hnt B f()Hoo = 36) +P<0<r?<a,in U(hn;?\;m = 6)
Phn é-(”) )

& (0)) 01n") ()l
H \/ﬁ -0 >3)+Z ( nmzs) (3.9)

ol <~>||oo
< H{ (102, () = )l 2 2 + PP = <)

Ph

- 01n") ()lloo
+§ P : >e).
= ‘o(hn)V2loghy! 5)

Forany f e and 0 <e < 1,let f. = (1 —¢)f. Then f. € U and || f — fc|loo < €. By Lemma
2.3, we get that Vi > 0,

PIOM:; 1, () = F (oo = 2¢)

< P(I(X(-) = X(0)) — y/2log hn ' fo()]|oc > £1/21og b ')

<1-P(|X() = X(0)]eo <ey/2loghn’)exp{—(1—¢)*|f[loghy"}

<1—Cexp{—(1—¢)’logh,'}
< exp{—C’ﬁ_(l_a)Q"}

for n large enough since f € Y. Thus, if we can show that for any ¢ > 0 and € > 0,

P( sup [0 ()] > 90(11 )\/QIOghﬁl) < Cy~Ce*d/n (3.10)

0<t<1

for large n, then by (3.9) we get
P(, min (600, — flloc > 4e)
0<i<pn,
S exp{_c’phnﬁ_(l_e)Qn} + Cph7l19_062d1/2n (311)
< exp{—C¥"} + C9~(C L,

Choosing d > 1 sufficiently large such that Ce2d'/? > 1, we have the sum (3.11) is finite.
Therefore we obtain (3.6) by the Borel-Cantelli lemma.
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We prove (3.10). For 0 < s < s+¢ <1 we have Vi > 0,
B (s +1) =0l ())?

o0
Yk —2dXih —Aphnty\2
< —e klin (] — g7 Aklin
<3 qremon )
(o)
<(X
k=1

= 1/2
< O'(hnt) ( Z %6_4‘”‘””(1 _ e—/\khn)iﬁ)
i

1/2

2R

“Arhnt 12 1 & V& —4drphy “Arhnt\3
(1—e ) E o E (1—e )
k
k=1

and

k _
27 4dAihn (1 _ o /\khn)S

< Z %e—4d>\khn(l _ e_)\khn)?’

Aehn<d-1/2 K
VE —ddAphn (1 _ —Aehn)\3
> e e
Ahn>d—1/2
7 12 o
< d71 i 1 — ei/\kh” + €7d i 1 _ efAkhn
< kz::l Al ) ; Al )

< 4d o (hy).
We have also
E@" (s +1) — 0" (5))? < 24720 (hat)o (hn)
and
E(n{") ()% = B(n{ () — 0 (0))? < 24720 (hyt)o ().
By the condition (2.2) of o(+),
/ Ae ¥ )dy = (2d7 202 (h,,))Y/2 / e~ dy < 2(2d" 202 (h,))) 2 /v 2a.
1 1
Appying Lemma 2.4 yields for each x > 0,

P<oi2p1‘” Q0] > 21+ 2/V20)(2d7) 2o (h,)) < Cem N2,

which implies easily that (3.10) holds. So (3.6) is proved.
For all h € (0,1), there is n such that h,y1 < h < h,,. Then, for each f € U we have
inf {|0Mn — flloo

0<t<1-—h
< min ||0My; 5, — flleo
0<i<ph,,
+  sup sup O {|T;" oo + T Tal|Mep, (hyy*he) = My, ()l }

hing1 <h<hy 0<t<1—h,

=: Jin) + J5").
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It follows from (3.6) that

lim J™ %20,

n—oo

Similar to the arguments for JQ(") and Jén) in (3.3), it is easy to show that

lim J™ %20,

n—oo

w0

From these estimates we obtain (3.2). The proof is completed.
Corollary 3.1. Assume that there exist positive constants o and 0 such that (2.2) is

satisfied. Then

lim sup ®(0M; ) 2 sup o(f)
hi0 o<t<1—h feu

for any continuous function ® : Cy[0,1] — R. In particular, (1.3) holds.

§4. Strassen’s Functional LIL of X ()

In this section, we prove the following
Theorem 4.1. Assume that there exist positive constants o and 0 such that (2.2) is
satisfied. Then

lim inf [0S — flleo =" 0. 4.1
lim inf {105 — /| 0 (4.1)

If we also assume that one of the following conditions holds:
(i) a > 1;
(i) 0 < r;?zai()\k < 00

(iii) > < oo,
k=1
then, for each f € U,
lim inf |05}, — e %" 0. 4.2
i nf 051 flle 0 (4.2

Proof. The proof of (4.1), which is completely similar to that of (3.1), is omitted.
Now we show that (4.2) holds for each f € U if also one of the conditions (i)~(iii) is
satisfied. Let h,, = e, n > 1,p > 1. It is enough to show that for each f € U,
limnf |[6Sh, — £l = (4.3)
Notice that
liminf ||0Sh, — flleo
n—oo
0(X (hy, hn) — X(rhy
<liminf sup (X (Anz + rhn) _1(7’ ) — f(z)
n—=oo g<z<1!  o(hy)(2logloghy, ")t/2
X - X
+ 2limsup sup 01X (hnz + rhn) _1(hnx)|
n—oo 0<e<1 0(hy)(2logloghy')1/2
=: L1 + Lo,
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where r > 0, which will be specified later on. It is enough to show that the following two

equalities are true:

Ly o, (4.4)
Ly 22 0. (4.5)
We proceed with the proofs of (4.4) and (4.5) by considering the case of (i)—(iii), sepa-

rately.
Case 1. o > 1. Choose r > 0 sufficiently large. Notice that
. 0| X (hnx + rhy) — X (hno)|
limsup sup —
n—oo 0<z<1 0(hy)(2logloghy)1/2

[r/9] . .
X - X -1
< limsup Z sup O1X (o2 + 6hn) (hn{j_ i~ 1)oh,)
n—oo = 0<z<1 o(hy)(2loglog hy*)1/2
0| X (hy, 8]6hn — X (hn 8]6hy,
tmenp sup  sup AT /0Bt 5) = X /o))
n—oo 0<z<10<s<ohn o(hy)(2loglog hy*)1/2
=i Ly + Ly,
where 0 < ¢ < r, which will be specified later on. By (2.7), it holds that Ve > 0,
[r/3]
P(Y sup [X(hoa +i6hn) = X (hnw + (i = 1)0ha)| = Zo(hn)(2loglog hy,")'/?)
= 0<e<1 0
< fP( sup |X(z+90)— X(x)| > 65(210g10gh;1)1/2/r) (4.6)
0 \o<a<i
r £252 1 _ 2%
< — - - < r2o2(3)
=5 exp{ 202(0) loglog h,, } <Cn ,
where 0 < § < r. If we choose § small enough such that
ep
92,2520—2 ~ 1
then the sum (4.6) is finite. Hence by the Borel-Cantelli lemma we obtain
L, %0
5°="0.

Similarly, by (2.7) and the Borel-Cantelli lemma, we have Lj &5 when § 4 0. Therefore
(4.5) is proved.
Put
To(z) = €7 ,(x) and (o(z) =" (@),
where 53?/2(33) and 77§7;)/2 (x) are defined as in (3.8) (with ¢ =1 and d = r/2 there). Then
X(hpx +rhy) — X(rhy) = Th(z) — T (0) + (o). (4.7)
Along the same lines as that of the proof of (3.10), we have Ve > 0,

01¢n (@)l 2
P( s >e)<C for large n, 4.8
(0;1;21 U(hn)(210g10gh;1)1/2 st ) ~0n T large n ( )

which implies

i 01¢n (@) a.s.

limsup su =2 4.9
n—>oop0§x1:§)1 o(hn)(2loglog hy *)1/2 (4.9)
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by the Borel-Cantelli lemma.

- f(@)] < 2)

(4.10)

By (4.7), (4.8) and Lemma 2.3, we get that V0 < e < 1,
(Y, (z) —1,(0
o<z<1!0(hy)(2loglog hy*)1/2
X - X
> P( sup 0(X (hpx + rhy) _l(rhn))
o<z<1! o(hy)(2logloghy, t)1/2
0|Gn ()]
-P
(02121 o(hy)(2loglog hyt)1/2 = E)
X(z) — X(0) 2
> p ’ - ‘ <e)-C
B (02;21 (2loglog hy,*)1/2 fe(x)| < 5) n
> P(|X(-) = X(0)| < (2loglog hy;")'/?)
) exp{—||f£||i loglogh, '} —Cn™2
> Cn~(1=°p _ Cn~2,
where f. is defined as in §3. Choosing p > 1 small enough such that (1 —¢)?p < 1, we have
the sum (4.10) is infinite. Since {Y,,(z) —Y,,(0),0 < x < 1}$2, is a sequence of independent

Gaussian processes, we get
0 Tn _ Tn 0 -S.
liminf sup (Yn(2) 51)) —f(x)| =0 (4.11)
n—oo g<z<1l0(hy,)(2logloghy')l/2
by the Borel-Cantelli lemma. Putting (4.7), (4.9) and (4.11) together implies (4.4).
Case 2. 0 < max Ak < 00. Choose r = § small enough in Case 1. Note the following

fact: for0§s§s—7i—t§1,

B(Gals 4 1) = Gals))? € 3 Tem2ln (1 — 672 < 0 ().
=1 'k

Then, along the same lines as that of Case 1, we have that (4.4) and (4.5) are true.

Case 3. ) 7% < 0o. Choose r = § small enough in Case 1. If
k=1

oo
Iy = Z’yk < 00,
k=1

then
a*(h)

h = (02(h))/|h:0 =2 Z’Yk(]- - e_kkh) he0 = 2F1
k=1

In this case, by (2.2), we have 02(s) = 2I';s for all 0 < s < 1. It follows easily that

are independent. By Lemma 2.3, V0 < € < 1, we have
(X (hpz + 0hy,) — X(0hy,
P( sup |20t ) — X ()
o<ae<1! o(hy)(2logloghy, ")1/2
Choosing p > 1 small enough such that (1 —&)?p < 1, the sum (4.12) is infinite. Hence by

the Borel-Cantelli lemma, (4.4) follows in this case as well. The proof of (4.5) is the same

lim
R0

- f(x)( < 26) > o097, (4.12)

as that in Case 1. The proof is completed.
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Corollary 4.1. Assume that there exist positive constants a and 6 such that (2.2) is
satisfied and that one of the conditions (i)—(iii) is satisfied. Then, with probability one, the
process {0Sy(x),0 <z < 1,0 < h < 1/3} is relatively compact in Cyl0,1], and the set of its
limit points (as h — 0) is U.

Corollary 4.2. Assume that there exist positive constants o and 0 such that (2.2) is
satisfied and that one of the conditions (1)—(iil) is satisfied. Then

limsup ®(0.Sy,) = sup ®(f)
hi0 feu
for any continuous function ® : Cy[0,1] — R. In particular, (1.4) holds.

Remark. The assumption (2.2) used in Theorems 3.1, 3.2 and 4.1 is weak and standard,
since for studying the functional limit law of X (-) we need this condition to ensure that for
any h > 0,

{G(X(hfﬂ) — X(0))
o(h)
have the same distribution.

,0§z§1} and {X(z) — X(0),0 <z < 1}

REFERENCES

[1] Csdki, E., Csorgd, M., Lin, Z. Y. & Révész, P., On infinite series of independent Ornstein-Uhlenbeck
processes, Stoch. Process. Their Appl., 39(1991), 25-44.

[2] Csédki, E., Csorgé, M. & Shao, Q. M., Fernique type inequalities and moduli of continuity for 12-valued
Ornstein-Uhlenbeck processes, Ann. Inst. Henri Poincaré Probab. Statist., 28(1992), 479-517.

[3] Csorgd, M. & Shao, Q. M., Strong limit theorems for large and small increments of {P-valued Gaussian
processes, Ann. Probab., 21(1993), 1958-1990.

[4] Csorgd, M. & Shao, Q. M., On almost sure limit inferior for B-valued stochastic processes and applica-
tions, Probab. Theory Relat. Fields, 99(1994), 29-54.

[5] Dawson, D. A., Stochastic evolution equations, Math. Biosciences, 15(1972), 287-316.

[6] Dawson, D. A., Stochastic evolution equations and related measure processes, J. Multivariate Anal.,
5(1975), 1-52.

[7] Dudley, R. M., Hoffmann-J¢rgensen, J. & Shepp, L. A., On the lower tail of Gaussian seminorms, Ann.
Probab., 9(1979), 319-342.

[8] Fernique, X., Continuite des processus Gaussiens, C.R. Acad. Sci., Paris, 258(1964), 6058—6060.

[9] Goodman, V. & Kuelbs, J., Rates of clustering for some Gaussian self-similar processes, Probab. Theory
Relat. Fields, 88(1991), 47-75.

[10] Iscoe, I., Marcus, M., McDonald, D., Talagrand, M. & Zinn, J., Continuity of [P-valued Ornstein-
Uhlenbeck processes, Ann. Probab., 18(1990), 68—84.

[11] Kuelbs, J., Li, W. V. & Talagrand, M., Lim inf results for Gaussian samples and Chung’s functional
LIL, Ann. Probab., 22(1994), 1879-1903.

[12] Lin, Z. Y., Lu, C. R. & Zhang L. X., Path Properties of Gaussian Processes, Zhejiang Univ. Press,
2001.

[13] Walsh, J. B., A stochastic model of neural response, Adv. Appl. Probab., 13(1981), 231-281.

[14] Wang, W. S., On a functional limit result for increments of a fractional Brownian motion, Acta Math.
Hung., 93:(1-2)(2001), 167-184.

[15] Zhang, L. X., The exact moduli of non-differentiability of the infinite series of Ornstein-Uhlenbeck
processes, Chin. Ann. Math., 16 A(1995), 263-268.



