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Abstract

This paper obtains functional modulus of continuity and Strassen’s functional LIL of the
infinite series of independent Ornstein-Uhlenbeck processes, which also imply the Lévy’s exact

modulus of continuity and LIL of this process respectively.
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§1. Introduction

Let {Y (t),−∞ < t < ∞} = {Xk(t),−∞ < t < ∞}∞k=1 be a sequence of independent

Ornstein-Uhlenbeck (OU) processes with coefficients γk and λk, i.e., {Xk(t),−∞ < t < ∞}
are stationary, mean zero Gaussian processes with

E{Xk(s)Xk(t)} =
γk
λk

exp{−λk|t− s|}, k = 1, 2, · · · ,

where γk ≥ 0, λk > 0.

The process Y (·) was first introduced by Dawson[5] as the stationary solution of the

infinite array of stochastic differential equations

dXi(t) = −λiXi(t)dt+ (2γi)
1/2dWi(t), i = 1, 2, · · · ,

where {Wi(t),−∞ < t < ∞} are independent Wiener processes (see also [6, 13]). Since

then the properties of Y (·) have been extensively studied in the literature. The continuity

properties of Y (·) were studied by, for example, Iscoe et al. (see [10] and the references

therein). The moduli of continuity for ℓp-valued OU processes as well as for the ℓ2-norm

squared process of these were investigated by, for example, Csáki et al., Csörgő and Shao (see
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[2,3] and the references thereins). Csáki et al.[1] studied the infinite series of the independent

OU coordinate processes of Y (·), namely the process X(·) defined by

{X(t),−∞ < t < ∞} =
{ ∞∑

k=1

Xk(t),−∞ < t < ∞
}
, (1.1)

and obtained the Lévy’s exact modulus of continuity for {X(t),−∞ < t < ∞}.
Let log x denote loge(max{x, 1}), and log log x denote loge(loge(max{x, e})). In the sequel

of the present paper we assume that for some δ > 0,

0 < Γ0 =
∞∑
k=1

γk(log(λk ∨ e))1+δ/λk < ∞,

which, in turn, implies thatX(·) is a stationary and almost surely (a.s.) continuous Gaussian

process, and that

σ2(h) = E(X(t+ h)−X(t))2 = 2

∞∑
k=1

γk
λk

(1− e−λkh), h ≥ 0, t ≥ 0. (1.2)

The modulus of continuity of X(·) which was established by Csáki et al. (see [1, Theorem

4.1]) is the following

Theorem 1.1. Assume that σ(·) is a regularly varying function at zero with positive

exponent, namely, σ(s) = sαL(s) with α > 0, where L(·) is slowly varying at zero, i.e. it is

measurable, positive and satisfies

lim
s↓0

L(λs)

L(s)
= 1 for all λ > 0.

Then

lim
h↓0

sup
0≤t≤1−h

sup
0≤s≤h

|X(t+ s)−X(t)|
σ(h)(2 log h−1)1/2

a.s.
= 1. (1.3)

The LIL of X(·) is the following (see, e.g. [12]).

Theorem 1.2. Assume that there exist positive constants α and C0 such that

(1/C0)s
α ≤ σ(s) ≤ C0s

α for all 0 < s ≤ 1.

Then

lim sup
h↓0

sup
0≤s≤h

|X(s)−X(0)|
σ(h)(2 log log h−1)1/2

a.s.
= 1. (1.4)

The moduli of non-differentiability of X(·) were studied by Csörgő and Shao[4] and

Zhang[15].

The purpose of this paper is to study functional modulus of continuity and Strassen’s

functional LIL for X(·), namely to establish Theorems 3.1, 3.2 and 4.1 below (see §3 and

§4), which also imply (1.3) and (1.4) respectively.

For use later on, we introduce some notations: Let C0[0, 1] denote the set of all continuous

functions f on [0, 1] with f(0) = 0, and ∥ · ∥∞ denote the sup-norm in C0[0, 1], i.e.,

∥f∥∞ = sup
0≤t≤1

|f(t)| for f ∈ C0[0, 1].
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LetHµ ⊂ C0[0, 1] denote the reproducing kernel Hilbert space corresponding to the Gaussian

measure µ on the seperable Banach space C0[0, 1] induced by {X(t)−X(0), 0 ≤ t ≤ 1}. (The
construction of Hµ can be found in, e.g., [11]). If f ∈ Hµ, then ∥f∥µ denotes the Hµ-norm

of f. Set U = {f ∈ Hµ : ∥f∥µ ≤ 1}. For any h ∈ (0, 1) and t ∈ [0, 1− h], put

Mt,h(x) =
X(t+ hx)−X(t)

σ(h)(2 log h−1)1/2
, 0 ≤ x ≤ 1,

Sh(x) =
X(hx)−X(0)

σ(h)(2 log log h−1)1/2
, 0 ≤ x ≤ 1,

Vh = {Mt,h(·) ∈ C0[0, 1], 0 ≤ t ≤ 1− h}.

§2. Several Lemmas

In this section we give some lemmas which will be used in the following two sections,

some of which are of independent interst.

Lemma 2.1. For any ε > 0, there exists a positive number λ0 = λ0(ε) such that for any

λ ≥ λ0,

P
(
inf
f∈U

∥∥∥X(·)−X(0)

λ
− f(·)

∥∥∥
∞

≥ 2ε
)
≤ exp

{
− (λ(1 + ε))2

2

}
. (2.1)

Proof. This inequality appears in Lemma 2.1 of [14], or see Theorem 2.1 of [19]. Hence

the lemma holds.

The following is an extension of Lemma 2.1.

Lemma 2.2. Assume that there exist positive constants α and θ such that

σ(s) = θsα for all 0 < s ≤ 1. (2.2)

Then, for any ε > 0, there exist positive numbers λ0 = λ0(ε) such that

P
(

sup
0≤t≤1−h

inf
f∈U

∥∥∥θ(X(t+ h·)−X(t))

λσ(h)
− f(·)

∥∥∥
∞

≥ 6ε
)

≤ C

h
exp

{
− (λ(1 + ε))2

2

}
(2.3)

for any λ ≥ λ0 and every 0 < h ≤ h0 with some h0 < 1. Here, and in the sequel, C stands

a positive constant, whose value is irrelavant.

Proof. Let tj = h
[
t · 2

j

h

]
/2j for real number t ∈ [0, 1), where j is a positive integer which

will be specified later on. Notice that

P
(

sup
0≤t≤1−h

inf
f∈U

∥∥∥θ(X(t+ h·)−X(t))

λσ(h)
− f(·)

∥∥∥
∞

≥ 6ε
)

≤ P
(

sup
0≤t≤1−h

inf
f∈U

∥∥∥θ(X(tj + h·)−X(tj))

λσ(h)
− f(·)

∥∥∥
∞

≥ 4ε
)

+ 2P

(
sup

0≤t≤1−h

θ∥X(t+ h·)−X(tj + h·)∥∞
λσ(h)

≥ ε

)
=: I1 + I2.

(2.4)

Put tj(l) = lh/2j , l ≥ 1. Noting that X(·) is stationary, and that for any h > 0,{
θ(X(hx)−X(0))

σ(h) , 0 ≤ x ≤ 1
}

and {X(x) − X(0), 0 ≤ x ≤ 1} have the same distribution by
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(2.2), we get

I1 ≤ P
(

max
1≤l≤[2jh−1]+1

sup
tj(l−1)≤t<tj(l)

inf
f∈U

∥∥∥θ(X(tj + h·)−X(tj))

λσ(h)
− f(·)

∥∥∥
∞

≥ 4ε
)

≤
[2jh−1]+1∑

l=1

P
(
inf
f∈U

∥∥∥θ(X(tj(l − 1) + h·)−X(tj(l − 1)))

λσ(h)
− f(·)

∥∥∥
∞

≥ 4ε
)

≤ 2j + 1

h
P
(
inf
f∈U

∥∥∥X(·)−X(0)

λ
− f(·)

∥∥∥
∞

≥ 4ε
)

≤ 2j + 1

h
exp

{
− (λ(1 + 2ε))2

2

}
,

(2.5)

where the last inequality follows from (2.1).

It holds that

I2 ≤
[2jh−1]+1∑

l=1

P
(

sup
tj(l−1)≤t<tj(l)

θ∥X(t+ h·)−X(tj(l − 1) + h·)∥∞
λσ(h)

≥ ε
)

≤ 2j + 1

h
P
(

sup
0≤t<2−j

∥X(t+ ·)−X(·)∥∞ ≥ ελ
)

≤ 4j + 2j

h
exp

{
− ε2λ2

3σ2(2−j)

}
,

(2.6)

where for obtaining the last inequality we have used the following inequality (see Lemma

3.2 of [1]): For any µ > 0, there exists 0 < h′
0 = h′

0(µ) < 1 such that for every 0 < h′ ≤ h′
0

and u > 0,

P
(

sup
0≤t≤1−h′

sup
0≤s≤h′

|X(t+ s)−X(t)| ≥ uσ(h′)
)
≤ C

h′ exp
{
− u2

2 + µ

}
(2.7)

if σ(·) satisfies (2.2).
Choose j such that 2j = ( 3(1+2ε)2θ2

ε2 )1/2α. Then by combining (2.4)–(2.6), we have

I1 + I2 ≤ C

h
exp

{
− (λ(1 + 2ε))2

2
− 2

α
log ε

}
≤ C

h
exp

{
− (λ(1 + ε))2

2

}
for λ > λ0 with λ0 = λ0(ε) = −2 log ε/αε. So, (2.3) is proved.

The following lemma follows from the well-known inequalities about the shift of symmetric

convex sets (see, for example, [7]).

Lemma 2.3. For any f ∈ Hµ and r > 0,

exp{−∥f∥2µ/2}P (∥X(·)−X(0)∥∞ ≤ r) ≤ P (∥(X(·)−X(0))− f(·)∥∞ ≤ r)

≤ P (∥X(·)−X(0)∥∞ ≤ r),

where Hµ is defined as in Section 1.

The following lemma is due to Fernique[8].

Lemma 2.4. Let {ξ(t), 0 ≤ t ≤ T} be a Gaussian process with mean zero and

E(ξ(t)− ξ(s))2 ≤ Λ2(|t− s|) for 0 ≤ s, t ≤ T,

where Λ is continuous, nondecreasing and satisfies
∫∞
1

Λ(e−y2

T )dy < ∞ and also Eξ2(t) ≤
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Γ2 for 0 ≤ t ≤ T. Then, for each x > 0,

P
(

sup
0≤t≤T

|ξ(t)| > x
(
Γ +

∫ ∞

1

Λ(e−y2

T )dy
))

≤ Ce−x2/2.

§3. Functional Modulus of Continuity of X( · )

In this section, we prove the following

Theorem 3.1. Assume that there exist positive constants α and θ such that (2.2) is

satisfied. Then for any ε > 0, with probability one, there exists h0 = h0(ε) > 0 such that

θVh ⊂ Uε (3.1)′

and

U ⊂ (θVh)
ε (3.2)′

if h ≤ h0, where the following notations are used

Eε =:
{
g ∈ C0[0, 1], inf

f∈E
∥g − f∥∞ < ε

}
,

θVh = {θMt,h(·) ∈ C0[0, 1], 0 ≤ t ≤ 1− h}.

An equivalent result is the following theorem.

Theorem 3.2. Assume that there exist positive constants α and θ such that (2.2) is

satisfied. Then

lim
h↓0

sup
0≤t≤1−h

inf
f∈U

∥θMt,h − f∥∞
a.s.
= 0, (3.1)

and, for each f ∈ U ,

lim
h↓0

inf
0≤t≤1−h

∥θMt,h − f∥∞
a.s.
= 0. (3.2)

Proof. At first we prove (3.1). For any ϑ ∈ (1, 2) and integer n ≥ 1, let hn = ϑ−n. For

all h ∈ (0, 1), there is n such that hn+1 ≤ h ≤ hn. Then we have

sup
0≤t≤1−h

inf
f∈U

∥θMt,h − f∥∞

≤ sup
0≤t≤1−hn+1

inf
f∈U

∥θMt,hn+1 − f∥∞

+ sup
hn+1≤h≤hn

sup
0≤t≤1−hn+1

θ|Γ−1
hn+1

Γh − 1|∥Mt,hn+1∥∞

+ sup
hn+1≤h≤hn

sup
0≤t≤1−hn+1

θΓ−1
hn+1

Γh∥Mt,hn+1(h
−1
n+1h·)−Mt,hn+1(·)∥∞

=: J
(n)
1 + J

(n)
2 + J

(n)
3 .

(3.3)

Here, and in the sequel,

Γh =: (2h log h−1)−1/2.

By Lemma 2.2, we get that for any ε > 0 and n large enough,

P (J
(n)
1 ≥ 6ε) ≤ C

hn+1
exp{−(1 + ε)2 log h−1

n+1} ≤ Chε
n+1.
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Therefore, we have ∑
n

P (J
(n)
1 ≥ 6ε) < ∞,

which implies

lim
n→∞

J
(n)
1

a.s.
= 0 (3.4)

by the Borel-Cantelli lemma. By (2.7), the definition of hn, and the Borel-Cantelli lemma,

it is easy to show that

lim sup
n→∞

{J (n)
2 + J

(n)
3 }

a.s.
≤ 4

√
ϑ− 1,

which implies that

lim
n→∞

{J (n)
2 + J

(n)
3 } a.s.

= 0 (3.5)

if we let ϑ ↓ 1. From (3.3)–(3.5) we obtain (3.1).

Next, we prove (3.2) holds for each f ∈ U . For any ϑ ∈ (0, 1), let hn = ϑ−n, n ≥ 1. Let

ti = 2dihn, i = 0, 1, · · · , [(2dhn)
−1] =: ρhn ,

where d > 1 is a sufficiently large constant which will be specified later on.

We first show

lim
n→∞

min
0≤i≤ρhn

∥θMti,hn − f∥∞
a.s.
= 0. (3.6)

Let {Wk(t),−∞ < t < ∞}∞k=1 be a sequence of independent standard Wiener processes.

It is easy to see that{(γk
λk

)1/2Wk(e
2λkt)

eλkt
,−∞ < t < ∞

}
and {Xk(t),−∞ < t < ∞}

have the same distribution. Hence we can rewrite {X(t),−∞ < t < ∞} as

X(t) =

∞∑
k=1

(γk
λk

)1/2Wk(e
2λkt)

eλkt
(3.7)

and remain the almost sure path properties of X(·) without change.
By (3.7), we have

X(ti + hnx)−X(ti)

=
∞∑
k=1

(γk
λk

)1/2(Wk(e
2λk(2di+x)hn)

eλk(2di+x)hn
− Wk(e

2λk(2di)hn)

eλk(2di)hn

)
=

∞∑
k=1

(γk
λk

)1/2Wk(e
2λk(2di+x)hn)−Wk(e

2λk(2i−1)dhn)

eλk(2di+x)hn
−

−
∞∑
k=1

(γk
λk

)1/2Wk(e
2λk(2di)hn)−Wk(e

2λk(2i−1)dhn)

eλk(2di)hn

+

∞∑
k=1

(γk
λk

)1/2Wk(e
2λk(2i−1)dhn)

eλk(2di)hn
(e−λkhnx − 1)

=: ξ
(n)
i,d (x)− ξ

(n)
i,d (0) + η

(n)
i,d (x).

(3.8)
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Note that {ξ(n)i,d (x)−ξ
(n)
i,d (0), 0 ≤ x ≤ 1}∞i=1 is a sequence of independent Gaussian processes.

Therefore, ∀0 < ε < 1,

P
(

min
0≤i≤ρhn

∥θMti,hn − f∥∞ ≥ 4ε
)

≤ P
(

min
0≤i≤ρhn

∥∥∥θ(ξ(n)i,d (·)− ξ
(n)
i,d (0))

σ(hn)
√

2 log h−1
n

− f(·)
∥∥∥
∞

≥ 3ε
)
+ P

(
max

0≤i≤ρhn

θ∥η(n)i,d (·)∥∞
σ(hn)

√
2 log h−1

n

≥ ε
)

≤
ρhn∏
i=0

P
(∥∥∥θ(ξ(n)i,d (·)− ξ

(n)
i,d (0))

σ(hn)
√
2 log h−1

n

− f(·)
∥∥∥
∞

≥ 3ε
)
+

ρhn∑
i=0

P
( θ∥η(n)i,d (·)∥∞
σ(hn)

√
2 log h−1

n

≥ ε
)

(3.9)

≤
ρhn∏
i=0

{
P (∥θMti,hn(·)− f(·)∥∞ ≥ 2ε) + P

( θ∥η(n)i,d (·)∥∞
σ(hn)

√
2 log h−1

n

≥ ε
)}

+

ρhn∑
i=0

P
( θ∥η(n)i,d (·)∥∞
σ(hn)

√
2 log h−1

n

≥ ε
)
.

For any f ∈ U and 0 < ε < 1, let fε = (1− ε)f. Then fε ∈ U and ∥f −fε∥∞ ≤ ε. By Lemma

2.3, we get that ∀i ≥ 0,

P (∥θMti,hn(·)− f(·)∥∞ ≥ 2ε)

≤ P (∥(X(·)−X(0))−
√

2 log h−1
n fε(·)∥∞ ≥ ε

√
2 log h−1

n )

≤ 1− P (∥X(·)−X(0)∥∞ ≤ ε

√
2 log h−1

n ) exp{−(1− ε)2∥f∥2µ log h−1
n }

≤ 1− C exp{−(1− ε)2 log h−1
n }

≤ exp{−Cϑ−(1−ε)2n}

for n large enough since f ∈ U . Thus, if we can show that for any i ≥ 0 and ε > 0,

P
(

sup
0≤t≤1

|η(n)i,d (t)| ≥
ε

θ
σ(hn)

√
2 log h−1

n

)
≤ Cϑ−Cε2d1/2n (3.10)

for large n, then by (3.9) we get

P
(

min
0≤i≤ρhn

∥θMti,hn − f∥∞ ≥ 4ε
)

≤ exp{−Cρhnϑ
−(1−ε)2n}+ Cρhnϑ

−Cε2d1/2n

≤ exp{−Cϑεn}+ Cϑ−(Cε2d1/2−1)n.

(3.11)

Choosing d > 1 sufficiently large such that Cε2d1/2 > 1, we have the sum (3.11) is finite.

Therefore we obtain (3.6) by the Borel-Cantelli lemma.
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We prove (3.10). For 0 ≤ s ≤ s+ t ≤ 1 we have ∀i ≥ 0,

E(η
(n)
i,d (s+ t)− η

(n)
i,d (s))

2

≤
∞∑
k=1

γk
λk

e−2dλkhn(1− e−λkhnt)2

≤
( ∞∑

k=1

γk
λk

(1− e−λkhnt)
)1/2( ∞∑

k=1

γk
λk

e−4dλkhn(1− e−λkhnt)3
)1/2

≤ σ(hnt)
( ∞∑

k=1

γk
λk

e−4dλkhn(1− e−λkhn)3
)1/2

and
∞∑
k=1

γk
λk

e−4dλkhn(1− e−λkhn)3

≤
∑

λkhn≤d−1/2

γk
λk

e−4dλkhn(1− e−λkhn)3

+
∑

λkhn>d−1/2

γk
λk

e−4dλkhn(1− e−λkhn)3

≤ d−1
∞∑
k=1

γk
λk

(1− e−λkhn) + e−d1/2
∞∑
k=1

γk
λk

(1− e−λkhn)

≤ 4d−1σ2(hn).

We have also

E(η
(n)
i,d (s+ t)− η

(n)
i,d (s))

2 ≤ 2d−1/2σ(hnt)σ(hn)

and

E(η
(n)
i,d (t))

2 = E(η
(n)
i,d (t)− η

(n)
i,d (0))

2 ≤ 2d−1/2σ(hnt)σ(hn).

By the condition (2.2) of σ(·),∫ ∞

1

Λ(e−y2

)dy = (2d−1/2σ2(hn))
1/2

∫ ∞

1

e−αy2

dy ≤ 2(2d−1/2σ2(hn))
1/2/

√
2α.

Appying Lemma 2.4 yields for each x > 0,

P
(

sup
0≤t≤1

|η(n)i,d (t)| > x(1 + 2/
√
2α)(2d−1/2)1/2σ(hn)

)
≤ Ce−x2/2,

which implies easily that (3.10) holds. So (3.6) is proved.

For all h ∈ (0, 1), there is n such that hn+1 ≤ h ≤ hn. Then, for each f ∈ U we have

inf
0≤t≤1−h

∥θMt,h − f∥∞

≤ min
0≤i≤ρhn

∥θMti,hn − f∥∞

+ sup
hn+1≤h≤hn

sup
0≤t≤1−hn

θ
{
|Γ−1

hn
Γh − 1|∥Mt,hn∥∞ + Γ−1

hn
Γh∥Mt,hn(h

−1
n h·)−Mt,hn(·)∥∞

}
=: J

(n)
4 + J

(n)
5 .
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It follows from (3.6) that

lim
n→∞

J
(n)
4

a.s.
= 0.

Similar to the arguments for J
(n)
2 and J

(n)
3 in (3.3), it is easy to show that

lim
n→∞

J
(n)
5

a.s.
= 0.

From these estimates we obtain (3.2). The proof is completed.

Corollary 3.1. Assume that there exist positive constants α and θ such that (2.2) is

satisfied. Then

lim
h↓0

sup
0≤t≤1−h

Φ(θMt,h)
a.s.
= sup

f∈U
Φ(f)

for any continuous function Φ : C0[0, 1] → R. In particular, (1.3) holds.

§4. Strassen’s Functional LIL of X( · )

In this section, we prove the following

Theorem 4.1. Assume that there exist positive constants α and θ such that (2.2) is

satisfied. Then

lim
h↓0

inf
f∈U

∥θSh − f∥∞
a.s.
= 0. (4.1)

If we also assume that one of the following conditions holds:

(i) α > 1;

(ii) 0 < max
k≥1

λk < ∞;

(iii)
∞∑
k=1

γk < ∞,

then, for each f ∈ U ,

lim inf
h↓0

∥θSh − f∥∞
a.s.
= 0. (4.2)

Proof. The proof of (4.1), which is completely similar to that of (3.1), is omitted.

Now we show that (4.2) holds for each f ∈ U if also one of the conditions (i)∼(iii) is

satisfied. Let hn = e−np

, n ≥ 1, p > 1. It is enough to show that for each f ∈ U ,

lim inf
n→∞

∥θShn
− f∥∞

a.s.
= 0. (4.3)

Notice that

lim inf
n→∞

∥θShn − f∥∞

≤ lim inf
n→∞

sup
0≤x≤1

∣∣∣θ(X(hnx+ rhn)−X(rhn))

σ(hn)(2 log log h
−1
n )1/2

− f(x)
∣∣∣

+ 2 lim sup
n→∞

sup
0≤x≤1

θ|X(hnx+ rhn)−X(hnx)|
σ(hn)(2 log log h

−1
n )1/2

=: L1 + L2,
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where r > 0, which will be specified later on. It is enough to show that the following two

equalities are true:

L1
a.s.
= 0, (4.4)

L2
a.s.
= 0. (4.5)

We proceed with the proofs of (4.4) and (4.5) by considering the case of (i)–(iii), sepa-

rately.

Case 1. α > 1. Choose r > 0 sufficiently large. Notice that

lim sup
n→∞

sup
0≤x≤1

θ|X(hnx+ rhn)−X(hnx)|
σ(hn)(2 log log h

−1
n )1/2

≤ lim sup
n→∞

[r/δ]∑
i=1

sup
0≤x≤1

θ|X(hnx+ iδhn)−X(hnx+ (i− 1)δhn)|
σ(hn)(2 log log h

−1
n )1/2

+ lim sup
n→∞

sup
0≤x≤1

sup
0≤s≤δhn

θ|X(hnx+ [r/δ]δhn + s)−X(hnx+ [r/δ]δhn)|
σ(hn)(2 log log h

−1
n )1/2

=: L′
2 + L′′

2 ,

where 0 < δ ≤ r, which will be specified later on. By (2.7), it holds that ∀ε > 0,

P
( [r/δ]∑

i=1

sup
0≤x≤1

|X(hnx+ iδhn)−X(hnx+ (i− 1)δhn)| ≥
ε

θ
σ(hn)(2 log log h

−1
n )1/2

)
≤ r

δ
P
(

sup
0≤x≤1

|X(x+ δ)−X(x)| ≥ εδ(2 log log h−1
n )1/2/r

)
(4.6)

≤ r

δ
exp

{
− ε2δ2

r2σ2(δ)
log log h−1

n

}
≤ Cn

− ε2δ2p

r2σ2(δ) ,

where 0 < δ < r. If we choose δ small enough such that

ε2p

θ2r2δ2α−2
> 1,

then the sum (4.6) is finite. Hence by the Borel-Cantelli lemma we obtain

L′
2
a.s.
= 0.

Similarly, by (2.7) and the Borel-Cantelli lemma, we have L′′
2
a.s.
= 0 when δ ↓ 0. Therefore

(4.5) is proved.

Put

Υn(x) = ξ
(n)
1,r/2(x) and ζn(x) = η

(n)
1,r/2(x),

where ξ
(n)
1,r/2(x) and η

(n)
1,r/2(x) are defined as in (3.8) (with i = 1 and d = r/2 there). Then

X(hnx+ rhn)−X(rhn) = Υn(x)−Υn(0) + ζn(x). (4.7)

Along the same lines as that of the proof of (3.10), we have ∀ε > 0,

P
(

sup
0≤x≤1

θ|ζn(x)|
σ(hn)(2 log log h

−1
n )1/2

≥ ε
)
≤ Cn−2 for large n, (4.8)

which implies

lim sup
n→∞

sup
0≤x≤1

θ|ζn(x)|
σ(hn)(2 log log h

−1
n )1/2

a.s.
= 0 (4.9)
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by the Borel-Cantelli lemma.

By (4.7), (4.8) and Lemma 2.3, we get that ∀0 < ε < 1,

P
(

sup
0≤x≤1

∣∣∣ θ(Υn(x)−Υn(0))

σ(hn)(2 log log h
−1
n )1/2

− f(x)
∣∣∣ ≤ 3ε

)
≥ P

(
sup

0≤x≤1

∣∣∣θ(X(hnx+ rhn)−X(rhn))

σ(hn)(2 log log h
−1
n )1/2

− f(x)
∣∣∣ ≤ 2ε

)
− P

(
sup

0≤x≤1

θ|ζn(x)|
σ(hn)(2 log log h

−1
n )1/2

≥ ε
)

≥ P
(

sup
0≤x≤1

∣∣∣ X(x)−X(0)

(2 log log h−1
n )1/2

− fε(x)
∣∣∣ ≤ ε

)
− Cn−2

≥ P (∥X(·)−X(0)∥∞ ≤ ε(2 log log h−1
n )1/2)

◦ exp{−∥fε∥2µ log log h−1
n } − Cn−2

≥ Cn−(1−ε)2p − Cn−2,

(4.10)

where fε is defined as in §3. Choosing p > 1 small enough such that (1− ε)2p ≤ 1, we have

the sum (4.10) is infinite. Since {Υn(x)−Υn(0), 0 ≤ x ≤ 1}∞n=1 is a sequence of independent

Gaussian processes, we get

lim inf
n→∞

sup
0≤x≤1

∣∣∣ θ(Υn(x)−Υn(0))

σ(hn)(2 log log h
−1
n )1/2

− f(x)
∣∣∣ a.s.= 0 (4.11)

by the Borel-Cantelli lemma. Putting (4.7), (4.9) and (4.11) together implies (4.4).

Case 2. 0 < max
k≥1

λk < ∞. Choose r = δ small enough in Case 1. Note the following

fact: for 0 ≤ s ≤ s+ t ≤ 1,

E(ζn(s+ t)− ζn(s))
2 ≤

∞∑
k=1

γk
λk

e−2δλkhn(1− e−λkhn)2 ≤ δσ2(hn).

Then, along the same lines as that of Case 1, we have that (4.4) and (4.5) are true.

Case 3.
∞∑
k=1

γk < ∞. Choose r = δ small enough in Case 1. If

Γ1 =:

∞∑
k=1

γk < ∞,

then

lim
h↓0

σ2(h)

h
= (σ2(h))′

∣∣
h=0

= 2

∞∑
k=1

γk(1− e−λkh)
∣∣∣
h=0

= 2Γ1.

In this case, by (2.2), we have σ2(s) = 2Γ1s for all 0 < s ≤ 1. It follows easily that

{X(hnx+ δhn)−X(δhn); 0 ≤ x ≤ 1}∞n=1

are independent. By Lemma 2.3, ∀0 < ε < 1, we have

P
(

sup
0≤x≤1

∣∣∣θ(X(hnx+ δhn)−X(δhn))

σ(hn)(2 log log h
−1
n )1/2

− f(x)
∣∣∣ ≤ 2ε

)
≥ Cn−(1−ε)2p. (4.12)

Choosing p > 1 small enough such that (1 − ε)2p ≤ 1, the sum (4.12) is infinite. Hence by

the Borel-Cantelli lemma, (4.4) follows in this case as well. The proof of (4.5) is the same

as that in Case 1. The proof is completed.
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Corollary 4.1. Assume that there exist positive constants α and θ such that (2.2) is

satisfied and that one of the conditions (i)–(iii) is satisfied. Then, with probability one, the

process {θSh(x), 0 ≤ x ≤ 1, 0 < h < 1/3} is relatively compact in C0[0, 1], and the set of its

limit points (as h → 0) is U .
Corollary 4.2. Assume that there exist positive constants α and θ such that (2.2) is

satisfied and that one of the conditions (i)–(iii) is satisfied. Then

lim sup
h↓0

Φ(θSh)
a.s.
= sup

f∈U
Φ(f)

for any continuous function Φ : C0[0, 1] → R. In particular, (1.4) holds.

Remark. The assumption (2.2) used in Theorems 3.1, 3.2 and 4.1 is weak and standard,

since for studying the functional limit law of X(·) we need this condition to ensure that for

any h > 0, {θ(X(hx)−X(0))

σ(h)
, 0 ≤ x ≤ 1

}
and {X(x)−X(0), 0 ≤ x ≤ 1}

have the same distribution.
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