SOME FUNCTIONAL LIMIT THEOREMS FOR THE INFINITE SERIES OF OU PROCESSES

WANG WENSHENG* LIN ZHENGYAN**

Abstract

This paper obtains functional modulus of continuity and Strassen's functional LIL of the infinite series of independent Ornstein-Uhlenbeck processes, which also imply the Lévy's exact modulus of continuity and LIL of this process respectively.

Keywords Ornstein-Uhlenbeck processes, Stationary Gaussian processes, Modulus of continuity, Law of the iterated logarithm

2000 MR Subject Classification 60F06, 60F15, 60F17, 60G15.

Chinese Library Classification O211.6 Document Code A Article ID 0252-9599(2003)02-0001-12

§1. Introduction

Let $\{Y(t), -\infty < t < \infty\} = \{X_k(t), -\infty < t < \infty\}_{k=1}^{\infty}$ be a sequence of independent Ornstein-Uhlenbeck (OU) processes with coefficients γ_k and λ_k , i.e., $\{X_k(t), -\infty < t < \infty\}$ are stationary, mean zero Gaussian processes with

$$E\{X_k(s)X_k(t)\} = \frac{\gamma_k}{\lambda_k} \exp\{-\lambda_k |t-s|\}, \quad k = 1, 2, \cdots,$$

where $\gamma_k \ge 0, \ \lambda_k > 0.$

The process $Y(\cdot)$ was first introduced by Dawson^[5] as the stationary solution of the infinite array of stochastic differential equations

$$dX_i(t) = -\lambda_i X_i(t) dt + (2\gamma_i)^{1/2} dW_i(t), \quad i = 1, 2, \cdots,$$

where $\{W_i(t), -\infty < t < \infty\}$ are independent Wiener processes (see also [6, 13]). Since then the properties of $Y(\cdot)$ have been extensively studied in the literature. The continuity properties of $Y(\cdot)$ were studied by, for example, Iscoe et al. (see [10] and the references therein). The moduli of continuity for ℓ^p -valued OU processes as well as for the ℓ^2 -norm squared process of these were investigated by, for example, Csáki et al., Csörgő and Shao (see

Manuscript received November 22, 2001.

^{*}Department of Mathematics, Zhejiang University, Hangzhou 310028, China.

Department of Mathematics, Hangzhou Teacher's College, Hangzhou 310012, China.

 $[\]textbf{E-mail: } wswang@mail.hz.zj.cn$

 $[\]ast\ast$ Department of Mathematics, Zhejiang University, Hangzhou 310028, China.

[2,3] and the references thereins). Csáki et al.^[1] studied the infinite series of the independent OU coordinate processes of $Y(\cdot)$, namely the process $X(\cdot)$ defined by

$$\{X(t), -\infty < t < \infty\} = \left\{\sum_{k=1}^{\infty} X_k(t), -\infty < t < \infty\right\},$$
(1.1)

and obtained the Lévy's exact modulus of continuity for $\{X(t), -\infty < t < \infty\}$.

Let $\log x$ denote $\log_e(\max\{x, 1\})$, and $\log \log x$ denote $\log_e(\log_e(\max\{x, e\}))$. In the sequel of the present paper we assume that for some $\delta > 0$,

$$0 < \Gamma_0 = \sum_{k=1}^{\infty} \gamma_k (\log(\lambda_k \vee e))^{1+\delta} / \lambda_k < \infty,$$

which, in turn, implies that $X(\cdot)$ is a stationary and almost surely (a.s.) continuous Gaussian process, and that

$$\sigma^{2}(h) = E(X(t+h) - X(t))^{2} = 2\sum_{k=1}^{\infty} \frac{\gamma_{k}}{\lambda_{k}} (1 - e^{-\lambda_{k}h}), \quad h \ge 0, t \ge 0.$$
(1.2)

The modulus of continuity of $X(\cdot)$ which was established by Csáki et al. (see [1, Theorem 4.1]) is the following

Theorem 1.1. Assume that $\sigma(\cdot)$ is a regularly varying function at zero with positive exponent, namely, $\sigma(s) = s^{\alpha}L(s)$ with $\alpha > 0$, where $L(\cdot)$ is slowly varying at zero, i.e. it is measurable, positive and satisfies

$$\lim_{s \downarrow 0} \frac{L(\lambda s)}{L(s)} = 1 \quad for \ all \ \lambda > 0.$$

Then

$$\lim_{h \downarrow 0} \sup_{0 \le t \le 1-h} \sup_{0 \le s \le h} \frac{|X(t+s) - X(t)|}{\sigma(h)(2\log h^{-1})^{1/2}} \stackrel{a.s.}{=} 1.$$
(1.3)

The LIL of $X(\cdot)$ is the following (see, e.g. [12]).

Theorem 1.2. Assume that there exist positive constants α and C_0 such that

$$(1/C_0)s^{\alpha} \le \sigma(s) \le C_0s^{\alpha}$$
 for all $0 < s \le 1$.

Then

$$\limsup_{h \downarrow 0} \sup_{0 \le s \le h} \frac{|X(s) - X(0)|}{\sigma(h)(2\log\log h^{-1})^{1/2}} \stackrel{a.s.}{=} 1.$$
(1.4)

The moduli of non-differentiability of $X(\cdot)$ were studied by Csörgő and Shao^[4] and Zhang^[15].

The purpose of this paper is to study functional modulus of continuity and Strassen's functional LIL for $X(\cdot)$, namely to establish Theorems 3.1, 3.2 and 4.1 below (see §3 and §4), which also imply (1.3) and (1.4) respectively.

For use later on, we introduce some notations: Let $C_0[0, 1]$ denote the set of all continuous functions f on [0, 1] with f(0) = 0, and $\|\cdot\|_{\infty}$ denote the sup-norm in $C_0[0, 1]$, i.e.,

$$||f||_{\infty} = \sup_{0 \le t \le 1} |f(t)|$$
 for $f \in C_0[0, 1]$.

Let $H_{\mu} \subset C_0[0, 1]$ denote the reproducing kernel Hilbert space corresponding to the Gaussian measure μ on the separable Banach space $C_0[0, 1]$ induced by $\{X(t) - X(0), 0 \le t \le 1\}$. (The construction of H_{μ} can be found in, e.g., [11]). If $f \in H_{\mu}$, then $\|f\|_{\mu}$ denotes the H_{μ} -norm of f. Set $\mathcal{U} = \{f \in H_{\mu} : \|f\|_{\mu} \le 1\}$. For any $h \in (0, 1)$ and $t \in [0, 1 - h]$, put

$$M_{t,h}(x) = \frac{X(t+hx) - X(t)}{\sigma(h)(2\log h^{-1})^{1/2}}, \quad 0 \le x \le 1,$$

$$S_h(x) = \frac{X(hx) - X(0)}{\sigma(h)(2\log \log h^{-1})^{1/2}}, \quad 0 \le x \le 1,$$

$$V_h = \{M_{t,h}(\cdot) \in C_0[0,1], 0 \le t \le 1-h\}.$$

§2. Several Lemmas

In this section we give some lemmas which will be used in the following two sections, some of which are of independent interst.

Lemma 2.1. For any $\varepsilon > 0$, there exists a positive number $\lambda_0 = \lambda_0(\varepsilon)$ such that for any $\lambda \ge \lambda_0$,

$$P\Big(\inf_{f\in\mathcal{U}}\left\|\frac{X(\cdot)-X(0)}{\lambda}-f(\cdot)\right\|_{\infty}\geq 2\varepsilon\Big)\leq \exp\Big\{-\frac{(\lambda(1+\varepsilon))^2}{2}\Big\}.$$
(2.1)

Proof. This inequality appears in Lemma 2.1 of [14], or see Theorem 2.1 of [19]. Hence the lemma holds.

The following is an extension of Lemma 2.1.

Lemma 2.2. Assume that there exist positive constants α and θ such that

$$\sigma(s) = \theta s^{\alpha} \quad for \ all \quad 0 < s \le 1.$$

Then, for any $\varepsilon > 0$, there exist positive numbers $\lambda_0 = \lambda_0(\varepsilon)$ such that

$$P\Big(\sup_{0 \le t \le 1-h} \inf_{f \in \mathcal{U}} \left\| \frac{\theta(X(t+h\cdot) - X(t))}{\lambda\sigma(h)} - f(\cdot) \right\|_{\infty} \ge 6\varepsilon \Big)$$
$$\le \frac{C}{h} \exp\Big\{ -\frac{(\lambda(1+\varepsilon))^2}{2} \Big\}$$
(2.3)

for any $\lambda \geq \lambda_0$ and every $0 < h \leq h_0$ with some $h_0 < 1$. Here, and in the sequel, C stands a positive constant, whose value is irrelavant.

Proof. Let $t_j = h\left[t \cdot \frac{2^j}{h}\right]/2^j$ for real number $t \in [0, 1)$, where j is a positive integer which will be specified later on. Notice that

$$P\left(\sup_{0 \le t \le 1-h} \inf_{f \in \mathcal{U}} \left\| \frac{\theta(X(t+h\cdot) - X(t))}{\lambda\sigma(h)} - f(\cdot) \right\|_{\infty} \ge 6\varepsilon\right)$$

$$\le P\left(\sup_{0 \le t \le 1-h} \inf_{f \in \mathcal{U}} \left\| \frac{\theta(X(t_j+h\cdot) - X(t_j))}{\lambda\sigma(h)} - f(\cdot) \right\|_{\infty} \ge 4\varepsilon\right)$$

$$+ 2P\left(\sup_{0 \le t \le 1-h} \frac{\theta\|X(t+h\cdot) - X(t_j+h\cdot)\|_{\infty}}{\lambda\sigma(h)} \ge \varepsilon\right)$$

$$=: I_1 + I_2.$$

(2.4)

Put $t_j(l) = lh/2^j$, $l \ge 1$. Noting that $X(\cdot)$ is stationary, and that for any h > 0, $\left\{\frac{\theta(X(hx)-X(0))}{\sigma(h)}, 0 \le x \le 1\right\}$ and $\{X(x) - X(0), 0 \le x \le 1\}$ have the same distribution by

(2.2), we get

$$I_{1} \leq P\left(\max_{1\leq l\leq [2^{j}h^{-1}]+1}\sup_{t_{j}(l-1)\leq t< t_{j}(l)}\inf_{f\in\mathcal{U}}\left\|\frac{\theta(X(t_{j}+h\cdot)-X(t_{j}))}{\lambda\sigma(h)}-f(\cdot)\right\|_{\infty}\geq 4\varepsilon\right)$$

$$\leq \sum_{l=1}^{[2^{j}h^{-1}]+1}P\left(\inf_{f\in\mathcal{U}}\left\|\frac{\theta(X(t_{j}(l-1)+h\cdot)-X(t_{j}(l-1)))}{\lambda\sigma(h)}-f(\cdot)\right\|_{\infty}\geq 4\varepsilon\right)$$

$$\leq \frac{2^{j}+1}{h}P\left(\inf_{f\in\mathcal{U}}\left\|\frac{X(\cdot)-X(0)}{\lambda}-f(\cdot)\right\|_{\infty}\geq 4\varepsilon\right)$$

$$\leq \frac{2^{j}+1}{h}\exp\left\{-\frac{(\lambda(1+2\varepsilon))^{2}}{2}\right\},$$
(2.5)

where the last inequality follows from (2.1).

It holds that

$$I_{2} \leq \sum_{l=1}^{[2^{j}h^{-1}]+1} P\Big(\sup_{t_{j}(l-1)\leq t < t_{j}(l)} \frac{\theta \|X(t+h\cdot) - X(t_{j}(l-1)+h\cdot)\|_{\infty}}{\lambda\sigma(h)} \geq \varepsilon\Big)$$

$$\leq \frac{2^{j}+1}{h} P\Big(\sup_{0\leq t<2^{-j}} \|X(t+\cdot) - X(\cdot)\|_{\infty} \geq \varepsilon\lambda\Big)$$

$$\leq \frac{4^{j}+2^{j}}{h} \exp\Big\{-\frac{\varepsilon^{2}\lambda^{2}}{3\sigma^{2}(2^{-j})}\Big\},$$

$$(2.6)$$

where for obtaining the last inequality we have used the following inequality (see Lemma 3.2 of [1]): For any $\mu > 0$, there exists $0 < h'_0 = h'_0(\mu) < 1$ such that for every $0 < h' \leq h'_0$ and u > 0,

$$P\Big(\sup_{0 \le t \le 1-h'} \sup_{0 \le s \le h'} |X(t+s) - X(t)| \ge u\sigma(h')\Big) \le \frac{C}{h'} \exp\Big\{-\frac{u^2}{2+\mu}\Big\}$$
(2.7)

if $\sigma(\cdot)$ satisfies (2.2).

Choose j such that $2^j = (\frac{3(1+2\varepsilon)^2\theta^2}{\varepsilon^2})^{1/2\alpha}$. Then by combining (2.4)–(2.6), we have

$$I_1 + I_2 \le \frac{C}{h} \exp\left\{-\frac{(\lambda(1+2\varepsilon))^2}{2} - \frac{2}{\alpha}\log\varepsilon\right\} \le \frac{C}{h} \exp\left\{-\frac{(\lambda(1+\varepsilon))^2}{2}\right\}$$

for $\lambda > \lambda_0$ with $\lambda_0 = \lambda_0(\varepsilon) = -2\log \varepsilon / \alpha \varepsilon$. So, (2.3) is proved.

The following lemma follows from the well-known inequalities about the shift of symmetric convex sets (see, for example, [7]).

Lemma 2.3. For any $f \in H_{\mu}$ and r > 0,

$$\exp\{-\|f\|_{\mu}^{2}/2\}P(\|X(\cdot) - X(0)\|_{\infty} \le r) \le P(\|(X(\cdot) - X(0)) - f(\cdot)\|_{\infty} \le r)$$

$$\le P(\|X(\cdot) - X(0)\|_{\infty} \le r),$$

where H_{μ} is defined as in Section 1.

The following lemma is due to $\text{Fernique}^{[8]}$.

Lemma 2.4. Let $\{\xi(t), 0 \le t \le T\}$ be a Gaussian process with mean zero and

$$E(\xi(t) - \xi(s))^2 \le \Lambda^2(|t - s|) \text{ for } 0 \le s, t \le T,$$

where Λ is continuous, nondecreasing and satisfies $\int_1^\infty \Lambda(e^{-y^2}T)dy < \infty$ and also $E\xi^2(t) \leq 1$

 Γ^2 for $0 \le t \le T$. Then, for each x > 0,

$$P\Big(\sup_{0\le t\le T} |\xi(t)| > x\Big(\Gamma + \int_1^\infty \Lambda(e^{-y^2}T)dy\Big)\Big) \le Ce^{-x^2/2}.$$

§3. Functional Modulus of Continuity of $X(\cdot)$

In this section, we prove the following

Theorem 3.1. Assume that there exist positive constants α and θ such that (2.2) is satisfied. Then for any $\varepsilon > 0$, with probability one, there exists $h_0 = h_0(\varepsilon) > 0$ such that

$$\theta V_h \subset \mathcal{U}^{\varepsilon} \tag{3.1}$$

and

$$\mathcal{U} \subset (\theta V_h)^{\varepsilon} \tag{3.2}'$$

if $h \leq h_0$, where the following notations are used

$$E^{\varepsilon} \coloneqq \left\{ g \in C_0[0,1], \inf_{f \in E} \|g - f\|_{\infty} < \varepsilon \right\},$$
$$\theta V_h = \left\{ \theta M_{t,h}(\cdot) \in C_0[0,1], 0 \le t \le 1-h \right\}.$$

An equivalent result is the following theorem.

Theorem 3.2. Assume that there exist positive constants α and θ such that (2.2) is satisfied. Then

$$\lim_{h \downarrow 0} \sup_{0 \le t \le 1-h} \inf_{f \in \mathcal{U}} \|\theta M_{t,h} - f\|_{\infty} \stackrel{a.s.}{=} 0,$$

$$(3.1)$$

and, for each $f \in \mathcal{U}$,

$$\lim_{h \downarrow 0} \inf_{0 \le t \le 1-h} \|\theta M_{t,h} - f\|_{\infty} \stackrel{a.s.}{=} 0.$$
(3.2)

Proof. At first we prove (3.1). For any $\vartheta \in (1, 2)$ and integer $n \ge 1$, let $h_n = \vartheta^{-n}$. For all $h \in (0, 1)$, there is n such that $h_{n+1} \le h \le h_n$. Then we have

$$\sup_{\substack{0 \le t \le 1-h}} \inf_{f \in \mathcal{U}} \|\theta M_{t,h} - f\|_{\infty}
\le \sup_{\substack{0 \le t \le 1-h_{n+1}}} \inf_{f \in \mathcal{U}} \|\theta M_{t,h_{n+1}} - f\|_{\infty}
+ \sup_{\substack{h_{n+1} \le h \le h_n}} \sup_{0 \le t \le 1-h_{n+1}} \theta |\Gamma_{h_{n+1}}^{-1} \Gamma_h - 1| \|M_{t,h_{n+1}}\|_{\infty}
+ \sup_{\substack{h_{n+1} \le h \le h_n}} \sup_{0 \le t \le 1-h_{n+1}} \theta |\Gamma_{h_{n+1}}^{-1} \Gamma_h| \|M_{t,h_{n+1}}(h_{n+1}^{-1}h \cdot) - M_{t,h_{n+1}}(\cdot)\|_{\infty}
=: J_1^{(n)} + J_2^{(n)} + J_3^{(n)}.$$
(3.3)

Here, and in the sequel,

$$\Gamma_h =: (2h \log h^{-1})^{-1/2}.$$

By Lemma 2.2, we get that for any $\varepsilon > 0$ and n large enough,

$$P(J_1^{(n)} \ge 6\varepsilon) \le \frac{C}{h_{n+1}} \exp\{-(1+\varepsilon)^2 \log h_{n+1}^{-1}\} \le Ch_{n+1}^{\varepsilon}.$$

Therefore, we have

$$\sum_{n} P(J_1^{(n)} \ge 6\varepsilon) < \infty,$$

which implies

$$\lim_{n \to \infty} J_1^{(n)} \stackrel{\text{a.s.}}{=} 0 \tag{3.4}$$

by the Borel-Cantelli lemma. By (2.7), the definition of h_n , and the Borel-Cantelli lemma, it is easy to show that

$$\limsup_{n \to \infty} \{J_2^{(n)} + J_3^{(n)}\} \stackrel{\text{a.s.}}{\leq} 4\sqrt{\vartheta - 1},$$

which implies that

$$\lim_{n \to \infty} \{J_2^{(n)} + J_3^{(n)}\} \stackrel{\text{a.s.}}{=} 0$$
(3.5)

if we let $\vartheta \downarrow 1$. From (3.3)–(3.5) we obtain (3.1).

Next, we prove (3.2) holds for each $f \in \mathcal{U}$. For any $\vartheta \in (0, 1)$, let $h_n = \vartheta^{-n}, n \ge 1$. Let

$$t_i = 2dih_n, \quad i = 0, 1, \cdots, [(2dh_n)^{-1}] =: \rho_{h_n},$$

where d > 1 is a sufficiently large constant which will be specified later on.

We first show

$$\lim_{n \to \infty} \min_{0 \le i \le \rho_{h_n}} \|\theta M_{t_i, h_n} - f\|_{\infty} \stackrel{\text{a.s.}}{=} 0.$$
(3.6)

Let $\{W_k(t), -\infty < t < \infty\}_{k=1}^{\infty}$ be a sequence of independent standard Wiener processes. It is easy to see that

$$\left\{ \left(\frac{\gamma_k}{\lambda_k}\right)^{1/2} \frac{W_k(e^{2\lambda_k t})}{e^{\lambda_k t}}, -\infty < t < \infty \right\} \quad \text{and} \quad \{X_k(t), -\infty < t < \infty\}$$

have the same distribution. Hence we can rewrite $\{X(t), -\infty < t < \infty\}$ as

$$X(t) = \sum_{k=1}^{\infty} \left(\frac{\gamma_k}{\lambda_k}\right)^{1/2} \frac{W_k(e^{2\lambda_k t})}{e^{\lambda_k t}}$$
(3.7)

and remain the almost sure path properties of $X(\cdot)$ without change.

By (3.7), we have

$$X(t_{i} + h_{n}x) - X(t_{i})$$

$$= \sum_{k=1}^{\infty} \left(\frac{\gamma_{k}}{\lambda_{k}}\right)^{1/2} \left(\frac{W_{k}(e^{2\lambda_{k}(2di+x)h_{n}})}{e^{\lambda_{k}(2di+x)h_{n}}} - \frac{W_{k}(e^{2\lambda_{k}(2di)h_{n}})}{e^{\lambda_{k}(2di)h_{n}}}\right)$$

$$= \sum_{k=1}^{\infty} \left(\frac{\gamma_{k}}{\lambda_{k}}\right)^{1/2} \frac{W_{k}(e^{2\lambda_{k}(2di+x)h_{n}}) - W_{k}(e^{2\lambda_{k}(2i-1)dh_{n}})}{e^{\lambda_{k}(2di+x)h_{n}}} - \sum_{k=1}^{\infty} \left(\frac{\gamma_{k}}{\lambda_{k}}\right)^{1/2} \frac{W_{k}(e^{2\lambda_{k}(2di)h_{n}}) - W_{k}(e^{2\lambda_{k}(2i-1)dh_{n}})}{e^{\lambda_{k}(2di)h_{n}}} + \sum_{k=1}^{\infty} \left(\frac{\gamma_{k}}{\lambda_{k}}\right)^{1/2} \frac{W_{k}(e^{2\lambda_{k}(2i-1)dh_{n}})}{e^{\lambda_{k}(2di)h_{n}}} (e^{-\lambda_{k}h_{n}x} - 1)$$

$$=: \xi_{i,d}^{(n)}(x) - \xi_{i,d}^{(n)}(0) + \eta_{i,d}^{(n)}(x).$$
(3.8)

Note that $\{\xi_{i,d}^{(n)}(x) - \xi_{i,d}^{(n)}(0), 0 \le x \le 1\}_{i=1}^{\infty}$ is a sequence of independent Gaussian processes. Therefore, $\forall 0 < \varepsilon < 1$,

$$P\left(\min_{0\leq i\leq \rho_{h_{n}}} \|\theta M_{t_{i},h_{n}} - f\|_{\infty} \geq 4\varepsilon\right)$$

$$\leq P\left(\min_{0\leq i\leq \rho_{h_{n}}} \left\|\frac{\theta(\xi_{i,d}^{(n)}(\cdot) - \xi_{i,d}^{(n)}(0))}{\sigma(h_{n})\sqrt{2\log h_{n}^{-1}}} - f(\cdot)\right\|_{\infty} \geq 3\varepsilon\right) + P\left(\max_{0\leq i\leq \rho_{h_{n}}} \frac{\theta\|\eta_{i,d}^{(n)}(\cdot)\|_{\infty}}{\sigma(h_{n})\sqrt{2\log h_{n}^{-1}}} \geq \varepsilon\right)$$

$$\leq \prod_{i=0}^{\rho_{h_{n}}} P\left(\left\|\frac{\theta(\xi_{i,d}^{(n)}(\cdot) - \xi_{i,d}^{(n)}(0))}{\sigma(h_{n})\sqrt{2\log h_{n}^{-1}}} - f(\cdot)\right\|_{\infty} \geq 3\varepsilon\right) + \sum_{i=0}^{\rho_{h_{n}}} P\left(\frac{\theta\|\eta_{i,d}^{(n)}(\cdot)\|_{\infty}}{\sigma(h_{n})\sqrt{2\log h_{n}^{-1}}} \geq \varepsilon\right)$$

$$\leq \prod_{i=0}^{\rho_{h_{n}}} \left\{P(\|\theta M_{t_{i},h_{n}}(\cdot) - f(\cdot)\|_{\infty} \geq 2\varepsilon) + P\left(\frac{\theta\|\eta_{i,d}^{(n)}(\cdot)\|_{\infty}}{\sigma(h_{n})\sqrt{2\log h_{n}^{-1}}} \geq \varepsilon\right)\right\}$$

$$+ \sum_{i=0}^{\rho_{h_{n}}} P\left(\frac{\theta\|\eta_{i,d}^{(n)}(\cdot)\|_{\infty}}{\sigma(h_{n})\sqrt{2\log h_{n}^{-1}}} \geq \varepsilon\right).$$
(3.9)

For any $f \in \mathcal{U}$ and $0 < \varepsilon < 1$, let $f_{\varepsilon} = (1 - \varepsilon)f$. Then $f_{\varepsilon} \in \mathcal{U}$ and $||f - f_{\varepsilon}||_{\infty} \le \varepsilon$. By Lemma 2.3, we get that $\forall i \ge 0$,

$$\begin{aligned} &P(\|\theta M_{t_i,h_n}(\cdot) - f(\cdot)\|_{\infty} \ge 2\varepsilon) \\ &\le P(\|(X(\cdot) - X(0)) - \sqrt{2\log h_n^{-1}} f_{\varepsilon}(\cdot)\|_{\infty} \ge \varepsilon \sqrt{2\log h_n^{-1}}) \\ &\le 1 - P(\|X(\cdot) - X(0)\|_{\infty} \le \varepsilon \sqrt{2\log h_n^{-1}}) \exp\{-(1-\varepsilon)^2 \|f\|_{\mu}^2 \log h_n^{-1}\} \\ &\le 1 - C \exp\{-(1-\varepsilon)^2 \log h_n^{-1}\} \\ &\le \exp\{-C\vartheta^{-(1-\varepsilon)^2 n}\} \end{aligned}$$

for n large enough since $f \in \mathcal{U}$. Thus, if we can show that for any $i \ge 0$ and $\varepsilon > 0$,

$$P\left(\sup_{0\le t\le 1} |\eta_{i,d}^{(n)}(t)| \ge \frac{\varepsilon}{\theta} \sigma(h_n) \sqrt{2\log h_n^{-1}}\right) \le C\vartheta^{-C\varepsilon^2 d^{1/2}n}$$
(3.10)

for large n, then by (3.9) we get

$$P\left(\min_{0\leq i\leq \rho_{h_n}} \|\theta M_{t_i,h_n} - f\|_{\infty} \geq 4\varepsilon\right)$$

$$\leq \exp\{-C\rho_{h_n}\vartheta^{-(1-\varepsilon)^2n}\} + C\rho_{h_n}\vartheta^{-C\varepsilon^2d^{1/2}n}$$

$$\leq \exp\{-C\vartheta^{\varepsilon n}\} + C\vartheta^{-(C\varepsilon^2d^{1/2}-1)n}.$$
(3.11)

Choosing d > 1 sufficiently large such that $C\varepsilon^2 d^{1/2} > 1$, we have the sum (3.11) is finite. Therefore we obtain (3.6) by the Borel-Cantelli lemma. We prove (3.10). For $0 \le s \le s + t \le 1$ we have $\forall i \ge 0$,

$$E(\eta_{i,d}^{(n)}(s+t) - \eta_{i,d}^{(n)}(s))^{2}$$

$$\leq \sum_{k=1}^{\infty} \frac{\gamma_{k}}{\lambda_{k}} e^{-2d\lambda_{k}h_{n}} (1 - e^{-\lambda_{k}h_{n}t})^{2}$$

$$\leq \left(\sum_{k=1}^{\infty} \frac{\gamma_{k}}{\lambda_{k}} (1 - e^{-\lambda_{k}h_{n}t})\right)^{1/2} \left(\sum_{k=1}^{\infty} \frac{\gamma_{k}}{\lambda_{k}} e^{-4d\lambda_{k}h_{n}} (1 - e^{-\lambda_{k}h_{n}t})^{3}\right)^{1/2}$$

$$\leq \sigma(h_{n}t) \left(\sum_{k=1}^{\infty} \frac{\gamma_{k}}{\lambda_{k}} e^{-4d\lambda_{k}h_{n}} (1 - e^{-\lambda_{k}h_{n}})^{3}\right)^{1/2}$$

and

$$\begin{split} &\sum_{k=1}^{\infty} \frac{\gamma_k}{\lambda_k} e^{-4d\lambda_k h_n} (1-e^{-\lambda_k h_n})^3 \\ &\leq \sum_{\lambda_k h_n \leq d^{-1/2}} \frac{\gamma_k}{\lambda_k} e^{-4d\lambda_k h_n} (1-e^{-\lambda_k h_n})^3 \\ &+ \sum_{\lambda_k h_n > d^{-1/2}} \frac{\gamma_k}{\lambda_k} e^{-4d\lambda_k h_n} (1-e^{-\lambda_k h_n})^3 \\ &\leq d^{-1} \sum_{k=1}^{\infty} \frac{\gamma_k}{\lambda_k} (1-e^{-\lambda_k h_n}) + e^{-d^{1/2}} \sum_{k=1}^{\infty} \frac{\gamma_k}{\lambda_k} (1-e^{-\lambda_k h_n}) \\ &\leq 4d^{-1} \sigma^2(h_n). \end{split}$$

We have also

$$E(\eta_{i,d}^{(n)}(s+t) - \eta_{i,d}^{(n)}(s))^2 \le 2d^{-1/2}\sigma(h_n t)\sigma(h_n)$$

and

$$E(\eta_{i,d}^{(n)}(t))^2 = E(\eta_{i,d}^{(n)}(t) - \eta_{i,d}^{(n)}(0))^2 \le 2d^{-1/2}\sigma(h_n t)\sigma(h_n)$$

By the condition (2.2) of $\sigma(\cdot)$,

$$\int_{1}^{\infty} \Lambda(e^{-y^2}) dy = (2d^{-1/2}\sigma^2(h_n))^{1/2} \int_{1}^{\infty} e^{-\alpha y^2} dy \le 2(2d^{-1/2}\sigma^2(h_n))^{1/2} / \sqrt{2\alpha}$$

Appying Lemma 2.4 yields for each x > 0,

$$P\Big(\sup_{0 \le t \le 1} |\eta_{i,d}^{(n)}(t)| > x(1 + 2/\sqrt{2\alpha})(2d^{-1/2})^{1/2}\sigma(h_n)\Big) \le Ce^{-x^2/2},$$

which implies easily that (3.10) holds. So (3.6) is proved.

For all $h \in (0, 1)$, there is n such that $h_{n+1} \leq h \leq h_n$. Then, for each $f \in \mathcal{U}$ we have

$$\inf_{\substack{0 \le t \le 1-h}} \|\theta M_{t,h} - f\|_{\infty} \\
\le \min_{0 \le i \le \rho_{h_n}} \|\theta M_{t_i,h_n} - f\|_{\infty} \\
+ \sup_{h_{n+1} \le h \le h_n} \sup_{0 \le t \le 1-h_n} \theta \left\{ |\Gamma_{h_n}^{-1} \Gamma_h - 1| \|M_{t,h_n}\|_{\infty} + \Gamma_{h_n}^{-1} \Gamma_h \|M_{t,h_n}(h_n^{-1}h \cdot) - M_{t,h_n}(\cdot)\|_{\infty} \right\} \\
=: J_4^{(n)} + J_5^{(n)}.$$

It follows from (3.6) that

$$\lim_{n \to \infty} J_4^{(n)} \stackrel{\text{a.s.}}{=} 0$$

Similar to the arguments for $J_2^{(n)}$ and $J_3^{(n)}$ in (3.3), it is easy to show that

$$\lim_{n \to \infty} J_5^{(n)} \stackrel{\text{a.s.}}{=} 0.$$

From these estimates we obtain (3.2). The proof is completed.

Corollary 3.1. Assume that there exist positive constants α and θ such that (2.2) is satisfied. Then

$$\lim_{h \downarrow 0} \sup_{0 \le t \le 1-h} \Phi(\theta M_{t,h}) \stackrel{a.s.}{=} \sup_{f \in \mathcal{U}} \Phi(f)$$

for any continuous function $\Phi: C_0[0,1] \to \mathbf{R}$. In particular, (1.3) holds.

§4. Strassen's Functional LIL of $X(\cdot)$

In this section, we prove the following

1.

Theorem 4.1. Assume that there exist positive constants α and θ such that (2.2) is satisfied. Then

$$\lim_{h \downarrow 0} \inf_{f \in \mathcal{U}} \|\theta S_h - f\|_{\infty} \stackrel{a.s.}{=} 0.$$

$$\tag{4.1}$$

If we also assume that one of the following conditions holds:

(1)
$$\alpha > 1;$$

(ii) $0 < \max_{k \ge 1} \lambda_k < \infty;$
(iii) $\sum_{k=1}^{\infty} \gamma_k < \infty,$
then, for each $f \in \mathcal{U},$

$$\liminf_{h \downarrow 0} \|\theta S_h - f\|_{\infty} \stackrel{a.s.}{=} 0.$$
(4.2)

Proof. The proof of (4.1), which is completely similar to that of (3.1), is omitted.

Now we show that (4.2) holds for each $f \in \mathcal{U}$ if also one of the conditions (i)~(iii) is satisfied. Let $h_n = e^{-n^p}$, $n \ge 1, p > 1$. It is enough to show that for each $f \in \mathcal{U}$,

$$\liminf_{n \to \infty} \|\theta S_{h_n} - f\|_{\infty} \stackrel{\text{a.s.}}{=} 0.$$
(4.3)

Notice that

(•) . 1

$$\begin{split} & \liminf_{n \to \infty} \|\theta S_{h_n} - f\|_{\infty} \\ & \leq \liminf_{n \to \infty} \sup_{0 \le x \le 1} \Big| \frac{\theta(X(h_n x + rh_n) - X(rh_n))}{\sigma(h_n)(2 \log \log h_n^{-1})^{1/2}} - f(x) \Big| \\ & + 2 \limsup_{n \to \infty} \sup_{0 \le x \le 1} \frac{\theta |X(h_n x + rh_n) - X(h_n x)|}{\sigma(h_n)(2 \log \log h_n^{-1})^{1/2}} \\ & =: L_1 + L_2, \end{split}$$

where r > 0, which will be specified later on. It is enough to show that the following two equalities are true:

$$L_1 \stackrel{\text{a.s.}}{=} 0, \tag{4.4}$$

$$L_2 \stackrel{\text{a.s.}}{=} 0. \tag{4.5}$$

We proceed with the proofs of (4.4) and (4.5) by considering the case of (i)-(iii), separately.

Case 1. $\alpha > 1$. Choose r > 0 sufficiently large. Notice that

$$\begin{split} &\limsup_{n \to \infty} \sup_{0 \le x \le 1} \frac{\theta |X(h_n x + rh_n) - X(h_n x)|}{\sigma(h_n) (2 \log \log h_n^{-1})^{1/2}} \\ &\le \limsup_{n \to \infty} \sum_{i=1}^{[r/\delta]} \sup_{0 \le x \le 1} \frac{\theta |X(h_n x + i\delta h_n) - X(h_n x + (i-1)\delta h_n)|}{\sigma(h_n) (2 \log \log h_n^{-1})^{1/2}} \\ &+ \limsup_{n \to \infty} \sup_{0 \le x \le 1} \sup_{0 \le x \le 1} \sup_{0 \le s \le \delta h_n} \frac{\theta |X(h_n x + [r/\delta]\delta h_n + s) - X(h_n x + [r/\delta]\delta h_n)|}{\sigma(h_n) (2 \log \log h_n^{-1})^{1/2}} \\ &=: L_2' + L_2'', \end{split}$$

where $0 < \delta \leq r$, which will be specified later on. By (2.7), it holds that $\forall \varepsilon > 0$,

$$P\Big(\sum_{i=1}^{[r/\delta]} \sup_{0 \le x \le 1} |X(h_n x + i\delta h_n) - X(h_n x + (i-1)\delta h_n)| \ge \frac{\varepsilon}{\theta} \sigma(h_n) (2\log\log h_n^{-1})^{1/2} \Big)$$

$$\le \frac{r}{\delta} P\Big(\sup_{0 \le x \le 1} |X(x+\delta) - X(x)| \ge \varepsilon \delta (2\log\log h_n^{-1})^{1/2} / r \Big)$$

$$\le \frac{r}{\delta} \exp\Big\{-\frac{\varepsilon^2 \delta^2}{r^2 \sigma^2(\delta)} \log\log h_n^{-1}\Big\} \le C n^{-\frac{\varepsilon^2 \delta^2 p}{r^2 \sigma^2(\delta)}},$$

(4.6)

where $0 < \delta < r$. If we choose δ small enough such that

$$\frac{\varepsilon^2 p}{\theta^2 r^2 \delta^{2\alpha - 2}} > 1,$$

then the sum (4.6) is finite. Hence by the Borel-Cantelli lemma we obtain

$$L'_2 \stackrel{\text{a.s.}}{=} 0.$$

Similarly, by (2.7) and the Borel-Cantelli lemma, we have $L_2'' \stackrel{\text{a.s.}}{=} 0$ when $\delta \downarrow 0$. Therefore (4.5) is proved.

Put

$$\Upsilon_n(x) = \xi_{1,r/2}^{(n)}(x) \text{ and } \zeta_n(x) = \eta_{1,r/2}^{(n)}(x),$$

where $\xi_{1,r/2}^{(n)}(x)$ and $\eta_{1,r/2}^{(n)}(x)$ are defined as in (3.8) (with i = 1 and d = r/2 there). Then

$$X(h_n x + rh_n) - X(rh_n) = \Upsilon_n(x) - \Upsilon_n(0) + \zeta_n(x).$$

$$(4.7)$$

Along the same lines as that of the proof of (3.10), we have $\forall \varepsilon > 0$,

$$P\left(\sup_{0 \le x \le 1} \frac{\theta|\zeta_n(x)|}{\sigma(h_n)(2\log\log h_n^{-1})^{1/2}} \ge \varepsilon\right) \le Cn^{-2} \quad \text{for large } n,$$
(4.8)

which implies

$$\limsup_{n \to \infty} \sup_{0 \le x \le 1} \frac{\theta |\zeta_n(x)|}{\sigma(h_n) (2 \log \log h_n^{-1})^{1/2}} \stackrel{\text{a.s.}}{=} 0$$
(4.9)

by the Borel-Cantelli lemma.

By (4.7), (4.8) and Lemma 2.3, we get that $\forall 0 < \varepsilon < 1$,

$$\begin{split} &P\Big(\sup_{0 \le x \le 1} \Big| \frac{\theta(\Upsilon_n(x) - \Upsilon_n(0))}{\sigma(h_n)(2 \log \log h_n^{-1})^{1/2}} - f(x) \Big| \le 3\varepsilon \Big) \\ \ge &P\Big(\sup_{0 \le x \le 1} \Big| \frac{\theta(X(h_n x + rh_n) - X(rh_n))}{\sigma(h_n)(2 \log \log h_n^{-1})^{1/2}} - f(x) \Big| \le 2\varepsilon \Big) \\ &- &P\Big(\sup_{0 \le x \le 1} \frac{\theta|\zeta_n(x)|}{\sigma(h_n)(2 \log \log h_n^{-1})^{1/2}} \ge \varepsilon \Big) \\ \ge &P\Big(\sup_{0 \le x \le 1} \Big| \frac{X(x) - X(0)}{(2 \log \log h_n^{-1})^{1/2}} - f_\varepsilon(x) \Big| \le \varepsilon \Big) - Cn^{-2} \\ \ge &P(||X(\cdot) - X(0)||_{\infty} \le \varepsilon (2 \log \log h_n^{-1})^{1/2}) \\ &\circ \exp\{-||f_\varepsilon||_{\mu}^2 \log \log h_n^{-1}\} - Cn^{-2} \\ \ge &Cn^{-(1-\varepsilon)^2 p} - Cn^{-2}, \end{split}$$
(4.10)

where f_{ε} is defined as in §3. Choosing p > 1 small enough such that $(1 - \varepsilon)^2 p \le 1$, we have the sum (4.10) is infinite. Since $\{\Upsilon_n(x) - \Upsilon_n(0), 0 \le x \le 1\}_{n=1}^{\infty}$ is a sequence of independent Gaussian processes, we get

$$\liminf_{n \to \infty} \sup_{0 \le x \le 1} \left| \frac{\theta(\Upsilon_n(x) - \Upsilon_n(0))}{\sigma(h_n) (2 \log \log h_n^{-1})^{1/2}} - f(x) \right| \stackrel{\text{a.s.}}{=} 0$$
(4.11)

by the Borel-Cantelli lemma. Putting (4.7), (4.9) and (4.11) together implies (4.4).

Case 2. $0 < \max_{k \ge 1} \lambda_k < \infty$. Choose $r = \delta$ small enough in Case 1. Note the following fact: for $0 \le s \le s + t \le 1$,

$$E(\zeta_n(s+t)-\zeta_n(s))^2 \le \sum_{k=1}^{\infty} \frac{\gamma_k}{\lambda_k} e^{-2\delta\lambda_k h_n} (1-e^{-\lambda_k h_n})^2 \le \delta\sigma^2(h_n).$$

Then, along the same lines as that of Case 1, we have that (4.4) and (4.5) are true.

Case 3. $\sum_{k=1}^{\infty} \gamma_k < \infty$. Choose $r = \delta$ small enough in Case 1. If

$$\Gamma_1 =: \sum_{k=1}^{\infty} \gamma_k < \infty,$$

then

$$\lim_{h \downarrow 0} \frac{\sigma^2(h)}{h} = (\sigma^2(h))' \Big|_{h=0} = 2 \sum_{k=1}^{\infty} \gamma_k (1 - e^{-\lambda_k h}) \Big|_{h=0} = 2\Gamma_1.$$

In this case, by (2.2), we have $\sigma^2(s) = 2\Gamma_1 s$ for all $0 < s \le 1$. It follows easily that

$$\{X(h_n x + \delta h_n) - X(\delta h_n); 0 \le x \le 1\}_{n=1}^{\infty}$$

are independent. By Lemma 2.3, $\forall 0 < \varepsilon < 1$, we have

$$P\Big(\sup_{0 \le x \le 1} \left| \frac{\theta(X(h_n x + \delta h_n) - X(\delta h_n))}{\sigma(h_n)(2\log\log h_n^{-1})^{1/2}} - f(x) \right| \le 2\varepsilon \Big) \ge C n^{-(1-\varepsilon)^2 p}.$$
(4.12)

Choosing p > 1 small enough such that $(1 - \varepsilon)^2 p \leq 1$, the sum (4.12) is infinite. Hence by the Borel-Cantelli lemma, (4.4) follows in this case as well. The proof of (4.5) is the same as that in Case 1. The proof is completed.

Corollary 4.1. Assume that there exist positive constants α and θ such that (2.2) is satisfied and that one of the conditions (i)–(iii) is satisfied. Then, with probability one, the process $\{\theta S_h(x), 0 \leq x \leq 1, 0 < h < 1/3\}$ is relatively compact in $C_0[0, 1]$, and the set of its limit points (as $h \to 0$) is \mathcal{U} .

Corollary 4.2. Assume that there exist positive constants α and θ such that (2.2) is satisfied and that one of the conditions (i)–(iii) is satisfied. Then

$$\limsup_{h \downarrow 0} \Phi(\theta S_h) \stackrel{\text{a.s.}}{=} \sup_{f \in \mathcal{U}} \Phi(f)$$

for any continuous function $\Phi: C_0[0,1] \to \mathbf{R}$. In particular, (1.4) holds.

Remark. The assumption (2.2) used in Theorems 3.1, 3.2 and 4.1 is weak and standard, since for studying the functional limit law of $X(\cdot)$ we need this condition to ensure that for any h > 0,

$$\left\{\frac{\theta(X(hx) - X(0))}{\sigma(h)}, 0 \le x \le 1\right\} \text{ and } \{X(x) - X(0), 0 \le x \le 1\}$$

have the same distribution.

References

- Csáki, E., Csörgő, M., Lin, Z. Y. & Révész, P., On infinite series of independent Ornstein-Uhlenbeck processes, Stoch. Process. Their Appl., 39(1991), 25–44.
- [2] Csáki, E., Csörgő, M. & Shao, Q. M., Fernique type inequalities and moduli of continuity for l²-valued Ornstein-Uhlenbeck processes, Ann. Inst. Henri Poincaré Probab. Statist., 28(1992), 479–517.
- [3] Csörgő, M. & Shao, Q. M., Strong limit theorems for large and small increments of l^p-valued Gaussian processes, Ann. Probab., 21(1993), 1958–1990.
- [4] Csörgő, M. & Shao, Q. M., On almost sure limit inferior for B-valued stochastic processes and applications, Probab. Theory Relat. Fields, 99(1994), 29–54.
- [5] Dawson, D. A., Stochastic evolution equations, Math. Biosciences, 15(1972), 287-316.
- [6] Dawson, D. A., Stochastic evolution equations and related measure processes, J. Multivariate Anal., 5(1975), 1–52.
- [7] Dudley, R. M., Hoffmann-Jørgensen, J. & Shepp, L. A., On the lower tail of Gaussian seminorms, Ann. Probab., 9(1979), 319–342.
- [8] Fernique, X., Continuite des processus Gaussiens, C.R. Acad. Sci., Paris, 258(1964), 6058–6060.
- [9] Goodman, V. & Kuelbs, J., Rates of clustering for some Gaussian self-similar processes, Probab. Theory Relat. Fields, 88(1991), 47–75.
- [10] Iscoe, I., Marcus, M., McDonald, D., Talagrand, M. & Zinn, J., Continuity of l^p-valued Ornstein-Uhlenbeck processes, Ann. Probab., 18(1990), 68–84.
- [11] Kuelbs, J., Li, W. V. & Talagrand, M., Lim inf results for Gaussian samples and Chung's functional LIL, Ann. Probab., 22(1994), 1879–1903.
- [12] Lin, Z. Y., Lu, C. R. & Zhang L. X., Path Properties of Gaussian Processes, Zhejiang Univ. Press, 2001.
- [13] Walsh, J. B., A stochastic model of neural response, Adv. Appl. Probab., 13(1981), 231–281.
- [14] Wang, W. S., On a functional limit result for increments of a fractional Brownian motion, Acta Math. Hung., 93:(1-2)(2001), 167-184.
- [15] Zhang, L. X., The exact moduli of non-differentiability of the infinite series of Ornstein-Uhlenbeck processes, *Chin. Ann. Math.*, **16A**(1995), 263–268.