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Abstract

The authors prove the Hyers-Ulam-Rassias stability of the quadratic mapping in Banach
modules over a unital C'*-algebra, and prove the Hyers-Ulam-Rassias stability of the quadratic
mapping in Banach modules over a unital Banach algebra.

Keywords Stability, B-quadratic, Functional equation, Banach module over Banach
algebra

2000 MR Subject Classification 46105, 47J25, 39B72

Chinese Library Classification O177.2 Document Code A

Article ID 0252-9599(2003)02-0001-06

§1. Introduction

In 1940, S.M. Ulam!™¥ raised the following question: Under what conditions does there
exist an additive mapping near an approximately additive mapping?

Let E; and E5 be Banach spaces. Consider f : E; — F5 to be a mapping such that f(tx)
is continuous in ¢t € R for each fixed x € F;. Assume that there exist constants ¢ > 0 and
p € [0,1) such that

1f (@ +y) = @) = fF@)I < e(ll][” + [[y]]”)
for all z,y € E;. Th.M. Rassias!'!l showed that there exists a unique R-linear mapping
T : E1 — E5 such that
2e

1) - T@) < 5=

[|[[”

for all z € F5.
A mapping f : E1 — E» is called quadratic if f satisfies the quadratic functional equation

fl@+y)+ fle—y) =2f(x) +2f(y)
for all z,y € E,. F. Skofl'® was the first author to treat the Hyers-Ulam stability of a
quadratic functional equation. S. Czerwikl generalized the Skof’s result.
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Let f : Ey — FE5 be a mapping with f(0) = 0 satisfying the inequality
1f (@ +y) + fl@z—y) —2f(x) = 2f (W) < »(z,y)

for all z,y € F;. Assume that one of the series

22_2"g0(2"_1x,2"_1x) and 222"_24,0(2_"95,2_"3:)
n=1 n=1

converges for every x € E; and denote by @(z) its sum. If, for every z,y € E1, as n — oo,
(i) 272mp(2" 12,27 ty) — 0 or (ii) 22" 2 (27 "z, 27 "y) — 0, respectively, then there exists
a unique quadratic mapping @ : E; — FEs such that

1f(x) = Q)| < &(x)
for all x € Ey (see [4] for details).
Throughout this paper, let B be a unital Banach algebra with norm |- |, By = {a € B |
la| = 1}, By, the set of invertible elements in B, R* the set of nonnegative real numbers, and
let M7 and g M; be left Banach B-modules with norms ||-|| and || - ||, respectively. Assume

that F\(2"z) = 4" F(x) for all © € pM; if ¢ satisfies (i), and that F(%) = i F(z) for all

x € M if ¢ satisfies (ii).
In this paper, we are going to prove the Hyers-Ulam-Rassias stability of the quadratic
mapping in Banach modules over a unital Banach algebra.

§2. Stability of the Quadratic Mapping
in Banach Modules over a C*-Algebra

In this section, let B be a unital C*-algebra of stable rank 1, which implies that B;,
is dense in B (see [3, 10]). Let F : gM; — pM> be a mapping such that (iii) F(az) is
continuous in a € B for each fixed x € gMj.

A quadratic mapping Q : pM; — My is called B-quadratic if Q(ax) = a?Q(x) for all
a € B and all x € gM;.

Theorem 2.1. Let F': gpMy — gMs be a mapping with F(0) = 0 for which there exists
a function ¢ : pMy x gM; — [0,00) such that

p(x) < oo,
|F(az + ay) + F(az — ay) — 26> F(z) — 2a* F(y)|| < ¢(z,y)

for alla € By N By, and all x,y € pMy, where p(x) is as defined in the introduction. Then
the mapping F : pM1 — pMs is a B-quadratic mapping.

Proof. Put a = 1 € By N B;,. By [4, Theorem 2], there exists a unique quadratic
mapping Q : pM; — gMs; such that

(iv) [F(z) — Q)] < &(x)

for all x € gM;. The mapping Q : pM; — My was given by Q(x) = lim F(2"2)
n— oo

471,
x € gM; if ¢ satisfies (i), and Q(z) = Jim. 4"=1F (&) for all € pM; if ¢ satisfies (ii).
The mapping Q : gM; — M, is similar to the additive mapping T given in the proof
of [11, Theorem]. Under the assumption that F(tz) is continuous in ¢ € R for each fixed
x € pMj, by the same reasoning as the proof of [11, Theorem]|, the quadratic mapping
Q : pM; — gMs; is R-quadratic.

Let us prove the theorem for the case that ¢ satisfies (i). By the assumption, for each
a € BN By,

for all

| F(2"azx) — 4a®F (2" '2)|| < p(2" 1z, 2" 1)
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for all € pM;. Using the fact that for each a € B and each z € gMs, |laz| < Kla| - ||2|
for some K > 0, one can show that
|a?F(2"z) — 4a®>F(2" 'z)|| < Kla|? - |F(2"z) — 4F (2" 12)|| < Kp(2" 1z, 2" 1)
for all a € By N By, and all x € gpM;. So
|F(2"azx) — a®F(2"x)|| < ||F(2"az) — 4a*>F (2" 12)||
+ [4a*F (2" tz) — a*F(2"2))||
< 2" e 2 y) + Kp(2 e, 27 )

for all @ € By N By, and all x € gM;. Thus 272"||F(2"ax) — a>F(2"z)|| — 0 as n — oo for
all a € By N By, and all x € gM;. Hence

Q(az) = lim w = lim % = a’Q(z) (2.1)

n—00 n n— 00
for all a € B N B;, and all x € gM;.
Let b € By \ Byy,. Since B, is dense in B, there exists a sequence {b,,} in B;, such that
b,y — b as m — oo. Put a,, = |b—1n|bm, then a,, — ﬁb:basm%oo and a,, € B1 N B;,.
Thus there exists a sequence {a,,} in By N By, such that a,, — b as m — oo, and so

m lim 47"F(2"a,x)

lim Qamz) = Ui
m—r oo m—o0 N—ro0

= liﬁm F(amz) = F( lign ame)) by (iil) (2.2)
= lim 47"F(2"bz) = Q(bx)
n—oo

for all x € pM;. By (2.1),
1Q(amz) = v*Q(@)|| = llaz,Q(z) = ¥*Q(2)l| = [1*Q(z) — *Q()[| = 0 (2.3)
as m — co. By (2.2),
[47"F (2" amz) — Qamz)|| = 47" F(2"bz) — Q(bz)| (2.4)
as m — oo. By (2.3) and (2.4),
1Q(b) — ¥ Q)| < [|Q(bx) — 47" F(2"bx)|| + [[47" F(2"bx) — 47" F(2"apa)|
+ 47" F (2" am) — Qama)| + 1Q(amz) — bQ(a)]
= |Q(bx) — 47" F(2"bx)|| + [|[4 " F(2"bx) — Q(bx)|| as m — oo
—+0 as n— o0
for all x € gM;. So
Q(bx) = b*Q(z) (2.5)
for all b € By \ Bi, and all z € gM;. By (2.1) and (2.5), Q(az) = a?Q(z) for all a € By

and all x € gM;.
Similarly, for the case that ¢ satisfies (ii), one can obtain that
. F@TMax) | a®F(27"z)
Qlar) = lim =g =, g =@ Ql)
for all a € By and all x € gM;.
Since Q is R-quadratic and Q(ax) = a?Q(z) for each a € By,
Q) = Qjal - %a) = la - Q(22) = 1al*- - Qla) = *Qa)
ax) =Q(la| - —z) =lal*- Q| —z) =a|*  — - Qz) = a*Q(z
lal lal la?
for all a € B(a # 0) and all z € gM;. And Q(0z) = 02Q(x) for all z € g M;. So the unique
quadratic mapping @ : pM; — pMs is a B-quadratic mapping satisfying (iv).
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But Q(z) = lim E@2'2) _ F(z) for all x € pM; if ¢ satisfies (i), and
x

2n> = Fle)

for all z € gpM; if ¢ satisfies (ii). So the B-quadratic mapping Q : gM; — pM, is the
mapping F, as desired.

Now we prove the Hyers-Ulam-Rassias stability of another quadratic mapping in Banach
modules over a unital C*-algebra.

Theorem 2.2. Let F': gM; — gMs be a mapping with F(0) =0 for which there exists
a function ¢ : pMy x My — [0,00) such that

Qz) = lim 4“*1F(

p(x) < oo,
la*F(x +y) + a®F(z — y) — 2F (az) — 2F (ay)|| < p(z,y)

for all a € By N By, and all x,y € gM;, where @(x) is as defined in the introduction. Then
the mapping F : pMy — gMs is a B-quadratic mapping.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique R-
quadratic mapping @ : M7 — g M, satisfying (iv).

Let us prove the theorem for the case that ¢ satisfies (i). By the assumption, for each
a € B1N By,

a?F(2"2) — 4F (2" tax)|| < p(2" 2, 2" 12)
for all x € gM;. So
|a?F(2"z) — F(2"ax)|| < ||a*F(2"z) — 4F (2" tax)|| + [[4F (2" taz) — F(2"ax))|
<@ e, 2 ) + (2" tax, 2" Lax)

for all @ € By N By, and all x € gM;. Thus 272"||a®F(2"z) — F(2"az)|| — 0 as n — oo for
all a € B1 N By, and all x € gM;. Hence

a’Q(z) = lim % = lim w = Q(ax)

n—oo n— oo
for all a € By N B;, and all x € g M.
Similarly, for the case that ¢ satisfies (ii), one can obtain that

2F(2—" F2 "
@F(22) P2 ar)

a’Q(x) = lim gon = Q(ax)

n—o0 22*271 B n—o00
for all a € By N B;, and all x € gM;.
The rest of the proof is the same as the proof of Theorem 2.1. So the unique quadratic
mapping @ : My — M, is a B-quadratic mapping, which is the mapping F'.
Theorem 2.3. Let F': gM; — gMs be a mapping with F(0) =0 for which there exists
a function ¢ : pMy x My — [0,00) such that

p(x) < oo,
[F(z+y) + F(z —y) — 2F(z) = 2F (y)|| < o(z,y),
[F(az) — a®F(2)]| < ¢(, )
for all a € By N By, and all x,y € gMy, where @(x) is as defined in the introduction. Then
the mapping F : pMy — gMs is a B-quadratic mapping.
Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique R-
quadratic mapping Q : My — pMs satisfying (iv).
Assume that ¢ satisfies (i). Since 272"||F(2"ax) — a®’F(2"x)| — 0 as n — oo for all
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a € BiN B, and all x € g M7,
Q(ax) - nh—{%o n n— 00 4n
for all a € By N B;, and all x € g M.
Similarly, for the case that ¢ satisfies (ii), one can obtain that
. F(27"ax) . a’F(27"x)
Qaz) = lim —gmge = Jim —p 5 = 0*Q)
for all a € By N B;, and all x € g M.

The rest of the proof is the same as the proof of Theorem 2.1. So the unique R-quadratic
mapping Q : pM; — pM> is a B-quadratic mapping, which is the mapping F.

§3. Stability of the Quadratic Functional Equation
in Banach Modules a over Banach Algebra

In this section, we prove the Hyers-Ulam-Rassias stability of a quadratic mapping in
Banach modules over a unital Banach algebra.

Theorem 3.1. Let F': gM; — gMs be a mapping with F(0) =0 for which there exists
a function ¢ : pMy x gM; — [0,00) such that

p(r) < oo,
|F(az + ay) + F(ax — ay) — 2a*F(z) — 2a°F (y)|| < o(z,y)

for all a € By and all z,y € My, where ¢(x) is as defined in the introduction. If F(tx)
is continuous in t € R for each fired x € gMy, then the mapping F : My — pMs is a
B-quadratic mapping.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique R-
quadratic mapping @ : My — pMs satisfying (iv).

Let us prove the theorem for the case that ¢ satisfies (i). By the same method as the
proof of Theorem 2.1, one can obtain that
F(2"ax) — fim a’F(2"x)

Q(azx) = lim o = a*Q(x)

n— o0 22n n—00

for all a € By and all z € gM;.

Similarly, for the case that ¢ satisfies (ii), one can obtain that

—n 2 —-n
Q) = Jim “5 = i ) = Q)

for all a € By and all z € gM;.

The rest of the proof is the same as the proof of Theorem 2.1. So the unique R-quadratic
mapping Q : My — M, is a B-quadratic mapping, which is the mapping F. O

Similarly, one can obtain similar results to Theorem 2.2 and Theorem 2.3.

Theorem 3.2. Let F': gM; — gMs be a mapping with F(0) = 0 for which there exists
a function ¢ : pMy x pM; — [0,00) such that

p(x) < oo,
|F(az + ay) + Flaz — ay) - 2°F(z) - 2°F(y)]| < o(a, 1)
for all a € By URT and all x,y € M, where p(x) is as defined in the introduction. Then
the mapping F : pM, — gMs is a B-quadratic mapping.

Proof. Put a =1 € BjUR™. By [4, Theorem 2], there exists a unique quadratic mapping
Q : pM; — M, satistying (iv).
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Let us prove the theorem for the case that ¢ satisfies (i). By the same method as the
proof of Theorem 2.1, one can obtain that
. F(2"ax) )
Qlow) = oy —om— = 1%,
for all a € By URT and all z € gM;.
Similarly, for the case that ¢ satisfies (ii), one can obtain that
. F(@2"ax . ad’F(2™"x
Q(ax) = lim % = lim % = a’Q(z)

n— oo n—oo

2F n
IR _ Q)

for all @ € By URT and all z € gM;.

The rest of the proof is similar to the proof of Theorem 2.1. So the unique quadratic
mapping @ : My — M, is a B-quadratic mapping, which is the mapping F'.

Remark 3.1. If the second inequality in the statement of Theorem 2.1 is replaced by

|F(az +y) + Flax — y) — 2a°F(z) = 2F(y)|| < ¢(z,y),
then
|F(azx + x) + F(az — z) — 2a*F () — 2F (z)|| < ¢(x, x),
|F(ax + x) + F(ax — z) — 2F (ax) — 2F (2)|| < p(ax, x).
So
12F (az) — 2a*F(z)|| < (=, ) + ¢(az, ),

hence the result does also hold as a corollary of Theorem 2.3.

Similarly, one can prove the stability of the other quadratic mappings in Banach modules
over a unital C*-algebra or a unital Banach algebra, and obtain similar results to Theorem
2.2 and Theorem 2.3.
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