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Abstract

The authors prove the Hyers-Ulam-Rassias stability of the quadratic mapping in Banach
modules over a unital C∗-algebra, and prove the Hyers-Ulam-Rassias stability of the quadratic

mapping in Banach modules over a unital Banach algebra.
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§1. Introduction

In 1940, S.M. Ulam[14] raised the following question: Under what conditions does there
exist an additive mapping near an approximately additive mapping?

Let E1 and E2 be Banach spaces. Consider f : E1 → E2 to be a mapping such that f(tx)
is continuous in t ∈ R for each fixed x ∈ E1. Assume that there exist constants ϵ ≥ 0 and
p ∈ [0, 1) such that

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(||x||p + ||y||p)
for all x, y ∈ E1. Th.M. Rassias[11] showed that there exists a unique R-linear mapping
T : E1 → E2 such that

∥f(x)− T (x)∥ ≤ 2ϵ

2− 2p
||x||p

for all x ∈ E1.
A mapping f : E1 → E2 is called quadratic if f satisfies the quadratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ E1. F. Skof[13] was the first author to treat the Hyers-Ulam stability of a
quadratic functional equation. S. Czerwik[6] generalized the Skof’s result.
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Let f : E1 → E2 be a mapping with f(0) = 0 satisfying the inequality

∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)∥ ≤ φ(x, y)

for all x, y ∈ E1. Assume that one of the series
∞∑

n=1

2−2nφ(2n−1x, 2n−1x) and

∞∑
n=1

22n−2φ(2−nx, 2−nx)

converges for every x ∈ E1 and denote by φ̃(x) its sum. If, for every x, y ∈ E1, as n → ∞,
(i) 2−2nφ(2n−1x, 2n−1y) → 0 or (ii) 22n−2φ(2−nx, 2−ny) → 0, respectively, then there exists
a unique quadratic mapping Q : E1 → E2 such that

∥f(x)−Q(x)∥ ≤ φ̃(x)

for all x ∈ E1 (see [4] for details).
Throughout this paper, let B be a unital Banach algebra with norm | · |, B1 = {a ∈ B |

|a| = 1}, Bin the set of invertible elements in B, R+ the set of nonnegative real numbers, and
let BM1 and BM2 be left Banach B-modules with norms || · || and ∥ ·∥, respectively. Assume

that F (2nx) = 4nF (x) for all x ∈ BM1 if φ satisfies (i), and that F
(

x
2n

)
= 1

4n−1F (x) for all

x ∈ BM1 if φ satisfies (ii).
In this paper, we are going to prove the Hyers-Ulam-Rassias stability of the quadratic

mapping in Banach modules over a unital Banach algebra.

§2. Stability of the Quadratic Mapping
in Banach Modules over a C∗-Algebra

In this section, let B be a unital C∗-algebra of stable rank 1, which implies that Bin

is dense in B (see [3, 10]). Let F : BM1 → BM2 be a mapping such that (iii) F (ax) is
continuous in a ∈ B for each fixed x ∈ BM1.

A quadratic mapping Q : BM1 → BM2 is called B-quadratic if Q(ax) = a2Q(x) for all
a ∈ B and all x ∈ BM1.

Theorem 2.1. Let F : BM1 → BM2 be a mapping with F (0) = 0 for which there exists
a function φ : BM1 × BM1 → [0,∞) such that

φ̃(x) < ∞,

∥F (ax+ ay) + F (ax− ay)− 2a2F (x)− 2a2F (y)∥ ≤ φ(x, y)

for all a ∈ B1 ∩Bin and all x, y ∈ BM1, where φ̃(x) is as defined in the introduction. Then
the mapping F : BM1 → BM2 is a B-quadratic mapping.

Proof. Put a = 1 ∈ B1 ∩ Bin. By [4, Theorem 2], there exists a unique quadratic
mapping Q : BM1 → BM2 such that

(iv) ∥F (x)−Q(x)∥ ≤ φ̃(x)

for all x ∈ BM1. The mapping Q : BM1 → BM2 was given by Q(x) = lim
n→∞

F (2nx)
4n for all

x ∈ BM1 if φ satisfies (i), and Q(x) = lim
n→∞

4n−1F ( x
2n ) for all x ∈ BM1 if φ satisfies (ii).

The mapping Q : BM1 → BM2 is similar to the additive mapping T given in the proof
of [11, Theorem]. Under the assumption that F (tx) is continuous in t ∈ R for each fixed
x ∈ BM1, by the same reasoning as the proof of [11, Theorem], the quadratic mapping
Q : BM1 → BM2 is R-quadratic.

Let us prove the theorem for the case that φ satisfies (i). By the assumption, for each
a ∈ B1 ∩Bin,

∥F (2nax)− 4a2F (2n−1x)∥ ≤ φ(2n−1x, 2n−1x)
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for all x ∈ BM1. Using the fact that for each a ∈ B and each z ∈ BM2, ∥az∥ ≤ K|a| · ∥z∥
for some K > 0, one can show that

∥a2F (2nx)− 4a2F (2n−1x)∥ ≤ K|a|2 · ∥F (2nx)− 4F (2n−1x)∥ ≤ Kφ(2n−1x, 2n−1x)

for all a ∈ B1 ∩Bin and all x ∈ BM1. So

∥F (2nax)− a2F (2nx)∥ ≤ ∥F (2nax)− 4a2F (2n−1x)∥
+ ∥4a2F (2n−1x)− a2F (2nx)∥

≤ φ(2n−1x, 2n−1x) +Kφ(2n−1x, 2n−1x)

for all a ∈ B1 ∩Bin and all x ∈ BM1. Thus 2
−2n∥F (2nax)− a2F (2nx)∥ → 0 as n → ∞ for

all a ∈ B1 ∩Bin and all x ∈ BM1. Hence

Q(ax) = lim
n→∞

F (2nax)

22n
= lim

n→∞

a2F (2nx)

22n
= a2Q(x) (2.1)

for all a ∈ B1 ∩Bin and all x ∈ BM1.
Let b ∈ B1 \Bin. Since Bin is dense in B, there exists a sequence {bm} in Bin such that

bm → b as m → ∞. Put am = 1
|bm|bm, then am → 1

|b|b = b as m → ∞ and am ∈ B1 ∩ Bin.

Thus there exists a sequence {am} in B1 ∩Bin such that am → b as m → ∞, and so

lim
m→∞

Q(amx) = lim
m→∞

lim
n→∞

4−nF (2namx)

= lim
m→∞

F (amx) = F ( lim
m→∞

amx)) by (iii) (2.2)

= lim
n→∞

4−nF (2nbx) = Q(bx)

for all x ∈ BM1. By (2.1),

∥Q(amx)− b2Q(x)∥ = ∥a2mQ(x)− b2Q(x)∥ → ∥b2Q(x)− b2Q(x)∥ = 0 (2.3)

as m → ∞. By (2.2),

∥4−nF (2namx)−Q(amx)∥ → ∥4−nF (2nbx)−Q(bx)∥ (2.4)

as m → ∞. By (2.3) and (2.4),

∥Q(bx)− b2Q(x)∥ ≤ ∥Q(bx)− 4−nF (2nbx)∥+ ∥4−nF (2nbx)− 4−nF (2namx)∥
+ ∥4−nF (2namx)−Q(amx)∥+ ∥Q(amx)− b2Q(x)∥

→ ∥Q(bx)− 4−nF (2nbx)∥+ ∥4−nF (2nbx)−Q(bx)∥ as m → ∞
→ 0 as n → ∞

for all x ∈ BM1. So

Q(bx) = b2Q(x) (2.5)

for all b ∈ B1 \ Bin and all x ∈ BM1. By (2.1) and (2.5), Q(ax) = a2Q(x) for all a ∈ B1

and all x ∈ BM1.
Similarly, for the case that φ satisfies (ii), one can obtain that

Q(ax) = lim
n→∞

F (2−nax)

41−n
= lim

n→∞

a2F (2−nx)

41−n
= a2Q(x)

for all a ∈ B1 and all x ∈ BM1.
Since Q is R-quadratic and Q(ax) = a2Q(x) for each a ∈ B1,

Q(ax) = Q
(
|a| · a

|a|
x
)
= |a|2 ·Q

( a

|a|
x
)
= |a|2 · a2

|a|2
·Q(x) = a2Q(x)

for all a ∈ B(a ̸= 0) and all x ∈ BM1. And Q(0x) = 02Q(x) for all x ∈ BM1. So the unique
quadratic mapping Q : BM1 → BM2 is a B-quadratic mapping satisfying (iv).
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But Q(x) = lim
n→∞

F (2nx)
4n = F (x) for all x ∈ BM1 if φ satisfies (i), and

Q(x) = lim
n→∞

4n−1F
( x

2n

)
= F (x)

for all x ∈ BM1 if φ satisfies (ii). So the B-quadratic mapping Q : BM1 → BM2 is the
mapping F , as desired.

Now we prove the Hyers-Ulam-Rassias stability of another quadratic mapping in Banach
modules over a unital C∗-algebra.

Theorem 2.2. Let F : BM1 → BM2 be a mapping with F (0) = 0 for which there exists
a function φ : BM1 × BM1 → [0,∞) such that

φ̃(x) < ∞,

∥a2F (x+ y) + a2F (x− y)− 2F (ax)− 2F (ay)∥ ≤ φ(x, y)

for all a ∈ B1 ∩Bin and all x, y ∈ BM1, where φ̃(x) is as defined in the introduction. Then
the mapping F : BM1 → BM2 is a B-quadratic mapping.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique R-
quadratic mapping Q : BM1 → BM2 satisfying (iv).

Let us prove the theorem for the case that φ satisfies (i). By the assumption, for each
a ∈ B1 ∩Bin,

∥a2F (2nx)− 4F (2n−1ax)∥ ≤ φ(2n−1x, 2n−1x)

for all x ∈ BM1. So

∥a2F (2nx)− F (2nax)∥ ≤ ∥a2F (2nx)− 4F (2n−1ax)∥+ ∥4F (2n−1ax)− F (2nax)∥
≤ φ(2n−1x, 2n−1x) + φ(2n−1ax, 2n−1ax)

for all a ∈ B1 ∩Bin and all x ∈ BM1. Thus 2
−2n∥a2F (2nx)− F (2nax)∥ → 0 as n → ∞ for

all a ∈ B1 ∩Bin and all x ∈ BM1. Hence

a2Q(x) = lim
n→∞

a2F (2nx)

22n
= lim

n→∞

F (2nax)

22n
= Q(ax)

for all a ∈ B1 ∩Bin and all x ∈ BM1.
Similarly, for the case that φ satisfies (ii), one can obtain that

a2Q(x) = lim
n→∞

a2F (2−nx)

22−2n
= lim

n→∞

F (2−nax)

22−2n
= Q(ax)

for all a ∈ B1 ∩Bin and all x ∈ BM1.
The rest of the proof is the same as the proof of Theorem 2.1. So the unique quadratic

mapping Q : BM1 → BM2 is a B-quadratic mapping, which is the mapping F .
Theorem 2.3. Let F : BM1 → BM2 be a mapping with F (0) = 0 for which there exists

a function φ : BM1 × BM1 → [0,∞) such that

φ̃(x) < ∞,

∥F (x+ y) + F (x− y)− 2F (x)− 2F (y)∥ ≤ φ(x, y),

∥F (ax)− a2F (x)∥ ≤ φ(x, x)

for all a ∈ B1 ∩Bin and all x, y ∈ BM1, where φ̃(x) is as defined in the introduction. Then
the mapping F : BM1 → BM2 is a B-quadratic mapping.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique R-
quadratic mapping Q : BM1 → BM2 satisfying (iv).

Assume that φ satisfies (i). Since 2−2n∥F (2nax) − a2F (2nx)∥ → 0 as n → ∞ for all
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a ∈ B1 ∩Bin and all x ∈ BM1,

Q(ax) = lim
n→∞

F (2nax)

4n
= lim

n→∞
a2

F (2nx)

4n
= a2Q(x)

for all a ∈ B1 ∩Bin and all x ∈ BM1.
Similarly, for the case that φ satisfies (ii), one can obtain that

Q(ax) = lim
n→∞

F (2−nax)

22−2n
= lim

n→∞

a2F (2−nx)

22−2n
= a2Q(x)

for all a ∈ B1 ∩Bin and all x ∈ BM1.
The rest of the proof is the same as the proof of Theorem 2.1. So the unique R-quadratic

mapping Q : BM1 → BM2 is a B-quadratic mapping, which is the mapping F .

§3. Stability of the Quadratic Functional Equation
in Banach Modules a over Banach Algebra

In this section, we prove the Hyers-Ulam-Rassias stability of a quadratic mapping in
Banach modules over a unital Banach algebra.

Theorem 3.1. Let F : BM1 → BM2 be a mapping with F (0) = 0 for which there exists
a function φ : BM1 × BM1 → [0,∞) such that

φ̃(x) < ∞,

∥F (ax+ ay) + F (ax− ay)− 2a2F (x)− 2a2F (y)∥ ≤ φ(x, y)

for all a ∈ B1 and all x, y ∈ BM1, where φ̃(x) is as defined in the introduction. If F (tx)
is continuous in t ∈ R for each fixed x ∈ BM1, then the mapping F : BM1 → BM2 is a
B-quadratic mapping.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique R-
quadratic mapping Q : BM1 → BM2 satisfying (iv).

Let us prove the theorem for the case that φ satisfies (i). By the same method as the
proof of Theorem 2.1, one can obtain that

Q(ax) = lim
n→∞

F (2nax)

22n
= lim

n→∞

a2F (2nx)

22n
= a2Q(x)

for all a ∈ B1 and all x ∈ BM1.
Similarly, for the case that φ satisfies (ii), one can obtain that

Q(ax) = lim
n→∞

F (2−nax)

22−2n
= lim

n→∞

a2F (2−nx)

22−2n
= a2Q(x)

for all a ∈ B1 and all x ∈ BM1.
The rest of the proof is the same as the proof of Theorem 2.1. So the unique R-quadratic

mapping Q : BM1 → BM2 is a B-quadratic mapping, which is the mapping F . �
Similarly, one can obtain similar results to Theorem 2.2 and Theorem 2.3.
Theorem 3.2. Let F : BM1 → BM2 be a mapping with F (0) = 0 for which there exists

a function φ : BM1 × BM1 → [0,∞) such that

φ̃(x) < ∞,

∥F (ax+ ay) + F (ax− ay)− 2a2F (x)− 2a2F (y)∥ ≤ φ(x, y)

for all a ∈ B1 ∪ R+ and all x, y ∈ BM1, where φ̃(x) is as defined in the introduction. Then
the mapping F : BM1 → BM2 is a B-quadratic mapping.

Proof. Put a = 1 ∈ B1∪R+. By [4, Theorem 2], there exists a unique quadratic mapping
Q : BM1 → BM2 satisfying (iv).
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Let us prove the theorem for the case that φ satisfies (i). By the same method as the
proof of Theorem 2.1, one can obtain that

Q(ax) = lim
n→∞

F (2nax)

22n
= lim

n→∞

a2F (2nx)

22n
= a2Q(x)

for all a ∈ B1 ∪ R+ and all x ∈ BM1.
Similarly, for the case that φ satisfies (ii), one can obtain that

Q(ax) = lim
n→∞

F (2−nax)

22−2n
= lim

n→∞

a2F (2−nx)

22−2n
= a2Q(x)

for all a ∈ B1 ∪ R+ and all x ∈ BM1.
The rest of the proof is similar to the proof of Theorem 2.1. So the unique quadratic

mapping Q : BM1 → BM2 is a B-quadratic mapping, which is the mapping F .
Remark 3.1. If the second inequality in the statement of Theorem 2.1 is replaced by

∥F (ax+ y) + F (ax− y)− 2a2F (x)− 2F (y)∥ ≤ φ(x, y),

then

∥F (ax+ x) + F (ax− x)− 2a2F (x)− 2F (x)∥ ≤ φ(x, x),

∥F (ax+ x) + F (ax− x)− 2F (ax)− 2F (x)∥ ≤ φ(ax, x).

So

∥2F (ax)− 2a2F (x)∥ ≤ φ(x, x) + φ(ax, x),

hence the result does also hold as a corollary of Theorem 2.3.
Similarly, one can prove the stability of the other quadratic mappings in Banach modules

over a unital C∗-algebra or a unital Banach algebra, and obtain similar results to Theorem
2.2 and Theorem 2.3.
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