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Abstract

The author obtains the theorems of Barth-Lefschetz type on Kähler manifolds with partially
positive bisectional curvature without the assumption of nonnegative bisectional curvature.
Some applications of the results to holomorphic mappings are given.
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§1. Introduction

Let V be a v-dimensional compact Kähler manifold. In the case of V = CP v, Lefschetz[9]

stated now known as the Lefschetz theorem on hyperplane sections. This celebrated result

has been generalized by many authors (see, for example, [1, 11, 5] and references therein).

In particular they proved a “connectedness” theorem for closed local complete intersections

M,N ⊂ CP v of complex dimensions m,n respectively. It is proved that the relative homo-

topy groups satisfy

πj(N,N ∩M) = 0, j ≤ min{n+m− v, 2m− v + 1}.

On the other hand using the second variation formula of arc length Frankel[4] proved a

“connectedness” theorem for complex submanifolds of a Kähler manifold of positive sectional

curvature. Kenmotsu and Xia[10] generalized the intersection result of Frankel by using

partially positive bisectional curvature. The relevance of Frankel’s work to the theorem of

Barth and Larsen was noted by Fulton[5]. In 1998, Schoen and Wolfson[15] obtained an

elegant Morse-theoretic proof and some generalizations of the theorem of Barth and Larsen.

Also in 1984 in the case of codimension 1, Wu[17] proved that in another way one could be

led to stronger topological conclusions. He showed that a partial positivity condition on

the bisectional curvature can be utilized to prove q-completeness (q > 1) for the complex

manifolds (for the definition of q-positive bisectional curvature, see §2). For example, let M
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be a compact Kähler manifold and let N be a nonsingular complex hypersurface in M. If

the bisectional curvature of M is q-positive in a neighborhood of N, then M −N is strongly

q-pseudoconvex. If, in addition, the bisectional curvature is everywhere q-nonnegative on

M , then M −N is q-complete.

The notion of q-positive bisectional curvature was studied independently in several papers

(e.g., [7, 17]) and the determination of this integer q for Hermitian symmetric spaces was

carried out in [7].

The aim of this paper is to obtain some estimates for the index of geodesics normally

connecting two complex manifolds under the condition of partially positive bisectional cur-

vatures (without the assumption of nonnegative bisectional curvature) and combine some

abstract results obtained in [15] to give some topological applications. We present in §3 a

setup for the calculation of the Morse index of geodesics with respect to submanifolds. This

approach is different from that of [15] and has some advantages for the proof and applica-

tions. (In fact it can be seen from our proofs that the proofs of Theorems 2.1 and 2.5 in

[15] are not complete). For more applications of our index estimate we introduce the notion

of q-positive normal bisectional curvature with respect to a submanifold which is naturally

appeared in applications. For example, as special cases of Theorem 3.4 and Theorem 4.2 we

have

Theorem 1.1. Let V be a v-dimensional compact Kähler manifold and let M,N be

complex submanifolds in V . Suppose that V has q-positive bisectional curvature. Then the

homomorphism induced by the inclusion

i∗ : πj(N,N ∩M) → πj(V,M)

is an isomorphism for j ≤ m+ n− v + 1− q and is a surjection for j = m+ n− v + 2− q.

Theorem 1.2. Let V be a v-dimensional compact Kähler manifold of positive bisectional

curvature and let M be complex submanifolds in V and ∆ is the diagonal of V × V . Then

the homomorphism induced by the inclusion

i∗ : πj(∆,∆ ∩M) → πj(V × V,M)

is an isomorphism for j ≤ m− v and is a surjection for j = m− v + 1.

The manifolds with partially positive curvature cover many known examples and a refined

case-by-case study of the positivity of the curvature of irreducible symmetric spaces of the

compact type has been carried out by Lee[12]. Combining these results we actually generalize

the theorems of Barth-Lefschetz type for CP v to compact Hermitian symmetric spaces. Also

as a special case of another application we obtain that any holomorphic map from V to itself

has a fixed point provided V has positive bisectional curvature.

It should be remarked that one can also use the method here to discuss the corresponding

problem in [6]. One can reprove and extend the connectedness theorem and intersections in

a geometric way.

§2. Notations and Preliminaries

Let V be a v-dimensional compact Kähler manifold and TV be its holomorphic tangent

bundle. The letters J , G, R will denote, respectively, the complex structure tensor, the

(complex-valued) Kähler metric tensor, and the curvature tensor of the Riemannian metric

which is the real part of G; in turn this Riemannian metric will always be denoted by ⟨ , ⟩
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and its norm by | · |. If X,Y are vectors in TxV , as in [8] denote by H(X,Y ) the bisectional

curvature determined by X and Y , i.e.,

H(X,Y ) =

{
0 if X or Y = 0,
⟨R(X,JX)Y,JY ⟩

|X|2|Y |2 if X ̸= 0, Y ̸= 0.
(2.1)

Recall that H(X,Y ) depends only on the planes spanned by X, JX and Y, JY , further-

more, by Bianchi’s first identity,

H(X,Y ) =
1

|X|2|Y |2
{⟨R(X,Y )X,Y ⟩+ ⟨R(X, JY )X,JY ⟩}. (2.2)

Definition 2.1. V is said to have q-positive bisectional curvature in a subset W (1 ≤
q ≤ v) if for every x ∈ W and for every orthonormal basis {e1, Je1, · · · , ev, Jev} of TxV ,
q∑

i=1

H(X, ei) > 0 for all unit vectors X ∈ TxV . We can similarly define q-nonnegative

bisectional curvature by replacing the last strict inequality with “≥”.

Hermitian symmetric spaces of the compact type furnish many examples of Kähler man-

ifolds with q-positive bisectional curvatures. Let V be an irreducible Hermitian symmetric

space of compact type. From the calculations in [2] and [3], one can read off the smallest

integer q such that 1 ≤ q ≤ dimC V − 1 and the bisectional curvature of V is q-positive.

The general situation where V may not be irreducible is handled by noting that if V1 and

V2 have q1-positive and q2-positive bisectional curvatures respectively, then V1 × V2 in the

product metric has q-positive bisectional curvature, where

q = max{q1 + dimC V2, q2 + dimC V1}.

§3. The Index Estimate and Homotopy Results

In this section we will get some estimates of Morse index for the nontrivial critical point

of the energy function.

Let M,N be two complex submanifolds in V . We denote, by Ω(V ;M,N) (Ω, for short),

the space of paths γ : [0, 1] → V with γ(0) ∈ M,γ(1) ∈ N . The energy function E of the

path defines a function on Ω given by

E(γ) =
1

2

∫ 1

0

|γ̇(t)|2dt. (3.1)

It is shown in [15] that γ : [0, 1] → V is a critical point of E if and only if γ is a smooth

geodesic which is normal to M and N at γ(0), and γ(1), respectively.

If γ is a critical point of E, then the second variation of E in the directions W1,W2 ∈ TγΩ,

denoted E∗∗(W1,W2), is given by

E∗∗(W1,W2) = −
∫ 1

0

⟨
W2,

D2W1

dt2
+R(γ̇,W1)γ̇

⟩
dt. (3.2)

Recall that the Morse index of a critical point γ is defined as the dimension of the

maximal subspace of TγΩ on which the restriction of the symmetric bilinear form E∗∗ is

negative definite.

As seen above, if γ : [0, 1] → V is a critical point of the energy function E defined in

(3.1), then γ is a smooth geodesic normal to M and N at γ(0) and γ(1) respectively. Let

W1,W2 ∈ TγΩ. If γ is a critical point of the energy function E, the second variation formula
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(3.2) can be rewritten as

E∗∗(W1,W2) = ⟨∇W1W2, γ̇⟩|10 +
∫ 1

0

⟨∇γ̇W1,∇γ̇W2⟩ −
∫ 1

0

R(γ̇,W1)γ̇,W2⟩dt. (3.3)

Define the subspace S ⊂ TγΩ by S := S1 ∩ S2, where

S1 := {W (t) : W (t) is a parallel transport along γ of a vector v ∈ Tγ(0)M},
S2 := {W (t) : W (t) is a parallel transport along γ of a vector v ∈ Tγ(1)N}.

Clearly both the subspaces S1 and S2 are J-invariant and therefore they are complex

subspaces. So S is also a complex subspace and its complex dimension s := dimS =

dimS1 + dimS2 − dim(S1 + S2) ≥ m+ n− v + 1. Since for all X ∈ S, ∇γ̇X = 0. Then the

restriction of the index form of E∗∗ to S is

B(X,Y ) := E∗∗(X,Y ) = ⟨∇XY, γ̇⟩|10 −
∫ 1

0

⟨R(γ̇, X)γ̇, Y ⟩dt. (3.4)

Since the second fundamental forms ⨿γ̇(0)(X,Y ) := ⟨∇XY, γ̇(0)⟩, ⨿γ̇(1)(X,Y ) and the cur-

vature operator ⟨R(γ̇, X)γ̇, Y ⟩ are symmetric with respect to X,Y , B is a symmetric bi-

linear form on the Euclidean space S with the induced inner product from Tγ(0)M . So

there exist 2s orthonormal eigenvectors e1, e2, · · · , e2s and 2s corresponding eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λ2s, namely,

B(ei, X) = λi(ei, X) for all X ∈ S, (3.5)

where i = 1, 2, · · · , 2s. Thus we have

index(γ) ≥ the number of negative λ′s. (3.6)

For any X ∈ S, we have JX ∈ S. Thus

B(X,X) = ⟨∇XX, γ̇⟩|10 −
∫ 1

0

⟨R(γ̇, X)γ̇, X⟩dt, (3.7)

B(JX, JX) = ⟨∇JXJX, γ̇⟩|10 −
∫ 1

0

⟨R(γ̇, JX)γ̇, JX⟩dt. (3.8)

Since Jγ̇(0) is normal to M , ⟨∇XY, Jγ̇(0)⟩ = ⟨∇Y X,Jγ̇(0)⟩ for any X,Y ∈ Tγ(0)M , and

⟨∇JXJX, γ̇(0)⟩ = ⟨J∇JXX, γ̇(0)⟩ = −⟨∇JXX, Jγ̇(0)⟩
= −⟨∇XJX, Jγ̇(0)⟩ = −⟨J∇XX,Jγ̇(0)⟩ = −⟨∇XX, γ̇(0)⟩.

(3.9)

Similarly we have

⟨∇JXJX, γ̇(1)⟩ = −⟨∇XX, γ̇(1)⟩. (3.10)

Summing up (3.7) and (3.8) and using (3.9) and (3.10), we have,

B(X,X) +B(JX, JX) = −
∫ 1

0

{⟨R(γ̇, JX)γ̇, JX⟩+ ⟨R(γ̇, JX)γ̇, JX⟩}dt

= −
∫ 1

0

⟨R(γ̇, Jγ̇)X,JX⟩ dt.
(3.11)

To continue our discussion we need the following definition.

Definition 3.1. V is said to have q-positive normal bisectional curvature with respect to

a submanifold M (1 ≤ q ≤ m) if for every x ∈ V , all geodesic γ : [0, d] → V with γ(0) ∈
M,γ(d) = x and γ̇(0)⊥Tγ(0)M , and for every orthonormal basis {e1, Je1, · · · , em, Jem}
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of Tγ(0)M ,
q∑

i=1

H(γ(t), ei(t)) > 0, where ei(t) is the parallel transport of ei along γ. We

can similarly define q-nonnegative normal bisectional curvature by replacing the last strict

inequality with “≥”.

We are now ready to state and prove our index estimate theorem.

Theorem 3.1. Let V be a v-dimensional compact Kähler manifold and let M,N be

complex submanifolds in V . Suppose that V has q-positive normal bisectional curvature with

respect to M (or N). Let γ be a smooth geodesic which is normal to M and N at γ(0), and

γ(1), respectively. Then

index(γ) ≥ s− q + 1 ≥ m+ n− v + 2− q. (3.12)

Proof. Denote p := s − q + 1. Let λ1 ≤ · · · ≤ λ2s be the eigenvalves of the symmetric

bilinear form E∗∗ on the subspace S. It suffices to show that λ1 ≤ · · · ≤ λp < 0. Otherwise

we assume for the sake of contradiction that λp ≥ 0. Let e1, · · · , e2s be the eigenvectors

corresponding to λ1, · · · , λ2s. The assumption that λp ≥ 0 implies that E∗∗ is nonnegative

definite on subspace V1 := span{ep, · · · , e2s}. Since S is J-invariant, JV1 ⊂ JS = S, and

dimR(V1 ∩ JV1) = dimR(V1) + dimR(JV1)− dimR(V1 + JV1)

≥ 2s− (p− 1) + 2s− (p− 1)− 2s

= 2s− 2p+ 2 = 2q,

where dimR denotes real dimension. It is easy to see that V1 ∩ JV1 is a complex subspace

with complex dimension at least q. Denote by t the dimension of V1 ∩ JV1. We can choose

an orthonormal basis of V1 ∩ JV1, {W1, JW1, · · · ,Wq, JWq, · · · ,Wt, JWt}.
Since B is nonnegative definite on V1, from (3.11),

0 ≤ B(Wi,Wi) +B(JWi, JWi) = −
∫ 1

0

⟨R(γ̇, Jγ̇)Wi, JWi⟩ dt = −
∫ 1

0

H(γ̇,Wi) dt. (3.13)

Thus

0 ≤
q∑

i=1

[B(Wi,Wi) +B(JWi, JWi)] = −
∫ 1

0

q∑
i=1

H(γ̇,Wi) dt < 0. (3.14)

The last inequality is due to the condition that V has q-positive normal bisectional curvature

with respect to M(or N). We arrive at a contradiction which shows our conclusion.

Denote Ωc := E−1([0, c]) and Ω◦
c := E−1([0, c)). The following theorem was proved by

Schoen and Wolfson[15, Theorem 1.5].

Theorem 3.2.[15] Let V be a v-dimensional compact Kähler manifold and let M,N be

complex submanifolds in V . Suppose that every nontrivial critical point of E on Ω has index

µ > µ0 ≥ 0. Then the relative homotopy groups πj(Ω,Ω0) are zero for 0 ≤ j ≤ µ0.

Combining this with the usual argument with the homotopy exact sequence and the

relative Hurewicz isomorphism, we get the following theorem. We will not include here the

proof because the proof of Theorem 3.2 in [15] works here without change since they used

only homotopy exact sequence.

Theorem 3.3. Let V be a v-dimensional compact Kähler manifold and let M,N be

complex submanifolds in V . Suppose that every nontrivial smooth geodesic which is normal

to M and N at γ(0), γ(1) has index µ > µ0 ≥ 0. Then the homomorphism induced by the

inclusion i∗ : πj(N,N ∩M) → πj(V,M) is an isomorphism for j ≤ µ0 and is a surjection

for j = µ0 + 1.
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Combining this theorem and Theorem 3.1, we have

Theorem 3.4. Let V be a v-dimensional compact Kähler manifold and let M,N be

complex submanifolds in V . Suppose that V has q-positive normal curvature with respect to

M (or N). Then the homomorphism induced by the inclusion

i∗ : πj(N,N ∩M) → πj(V,M)

is an isomorphism for j ≤ m+ n− v + 1− q and is a surjection for j = m+ n− v + 2− q.

Remark 3.1. The conclusions of Theorem 3.1 and Theorem 3.4 hold if we replace

the curvature conditions by the condition that V has q-nonnegative normal curvature with

respect to M (or N) and has q-positive normal curvature with respect to M (or N) at all

points in M (or N). This can be seen from the proof of Theorem 3.1. This observation is

important in applications and will be seen in §4.
Remark 3.2. In fact we can consider the corresponding relative homotopy group induced

by immersion maps. Since we care mainly about the image of submanifolds (as many people

considered, see e.g. [4, 15]) we prefer to concentrate on the present case.

§4. Applications

To give some applications of our theorems we need to calculate curvatures in the normal

directions.

Let (V, g, J) be a Kähler manifold. It can be verified that (V × V, g × g, J × J) is a

Hermitian manifold. The almost complex structure J × J , denoted by J̄ , and the product

metric g × g, are given as follows: for X,Y ∈ T(p,q)(V × V ), (p, q) ∈ V × V,

J̄ X = (JX1, JX2),

(g × g)(X,Y ) = g(X1, Y1) + g(X2, Y2), (4.1)

where X = (X1, X2), Y = (Y1, Y2), X1, Y1 ∈ TpM and X2, Y2 ∈ TqM .

In fact, (V × V, g × g, J × J) is a Kähler manifold. It is sufficient to verify that ∇J̄ = 0,

where ∇ is the Levi-Civita connection of (V × V, g × g).

It is well known that the connection ∇ satisfies, for X,Y above,

∇XY = (∇X1Y1,∇X2Y2), (4.2)

where ∇ is the Levi-Civita connection of (M, g). Hence

(∇J̄)(Y ,X) = ∇X(J̄ Y )− J̄(∇XY )

= ∇(X1,X2)(JY1, JY2)− J̄(∇X1Y1,∇X2Y2)

= (∇X1
(JY1),∇X2

(JY2))− (J∇X1
Y1, J∇X2

Y2) = 0.

The third equality above is due to (4.2).

Theorem 4.1. Let (V, g, J, ω) be a compact connected Kähler manifold of positive bi-

sectional curvature. Assume that f and g are holomorphic maps from V to itself and at

least one of them is a local diffeomorphism. Then there exists a point x ∈ V such that

f(x) = g(x).

Proof. We have that (V × V, g × g, J × J) is a Kähler manifold. We first claim that

(V × V, g × g, J × J) has nonnegative bisectional curvature when V has a nonnegative one.

For any unit vectors X,Y ∈ T(p,q)(V × V ) as in (4.1), we denote (X1, 0), (Y1, 0) and

(0, X2), (0, Y2) by X1, Y 1 and X2, Y 2 respectively. The bisectional curvature H(X,Y )
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satisfies

H(X,Y ) = ⟨R(X1 +X2, J̄ X1 + J̄ X2)(Y 1 + Y 2), J̄ Y 1 + J̄ Y 2⟩
= ⟨R(X1, J̄ X1)Y 1, J̄ Y 1⟩+ ⟨R(X2, J̄ X2)Y 2, J̄ Y 2⟩
= ⟨R(X1, JX1)Y1, JY1⟩+ ⟨R(X2, JX2)Y2, JY2⟩.

(4.3)

The second equality in (4.3) holds since ∇X1
X2 = ∇X2

X1 = 0. It is easy to see that

both terms of the right hand side of (4.3) are nonnegative and the claim holds.

Assume that g is a local diffeomorphism. We now consider the graphs of f and g, denoted

by G(f) and G(g) respectively.

We see that both graphs are compact complex analytic submanifolds of (V × V, ω × ω).

It remains to show that G(f) ∩G(g) ̸= ∅.
It suffices to show that any nontrivial geodesic connecting G(f) and G(g) has positive in-

dex since no intersection implies the existence of a stable nontrivial normal minimal geodesic

connecting them.

From Theorem 3.1 and Remark 3.1, we only need to verify that G(g) has normal pos-

itive bisectional curvature for any point (x, g(x)) ∈ ∆. For any two unit vectors X,Y ∈
T(x,g(x))(V × V ) such that X ∈ T(x,g(x))G(g) and Y⊥T(x,g(x))G(g), there exists a vector

X1 ∈ TxV such that X = (X1, dg(X1)), and therefore since dg is a isomorphism, we have

X /∈ T(x,g(x))({x} × V ). We also have Y /∈ T(x,g(x))({x} × V ), otherwise Y = (0, Y2), we

could choose a vector (dg−1Y2, Y2) ∈ T(x,g(x))G(g) which is not orthonormal to Y .

Then X1 ̸= 0 and Y1 ̸= 0 and positivity of bisectional curvature of V implies

⟨R(X1, JX1)Y1, JY1⟩ > 0.

It follows immediately from (4.3) that H(X,Y ) > 0 for any two unit vectors X,Y ∈
T(x,x)(V × V ) such that X ∈ T(x,x)G(g) and Y⊥T(x,x)G(g). Hence by Theorem 3.1, the

index of any nontrivial geodesic is greater than or equal to v+ v− 2v+2− 1 = 1. Thus the

graph G(f) and the graph of G(g) must intersect. That is, f(x) = g(x) has a solution.

Remark 4.1. In [4], Frankel proved that every holomorphic map of a connected compact

Kähler manifold with positive sectional curvature has a fixed point by using his intersection

theorem for compact complex submanifolds of a Kähler manifold. In [16], Weinstein proved

that every isometry of a compact oriented even-dimensional Riemannian manifold with

positive sectional curvature has a fixed point if it preserves orientation. Sakai[14] proved a

theorem for holomorphic isometric map which is considered as a holomorphic analogue of

Weinstein’s theorem. In our theorem we do not assume that f is isometric.

As a special case of Theorem 4.1, taking g as the identity map, we have the following

fixed point theorem.

Corollary 4.1. Let (V, g, J, ω) be a compact connected Kähler manifold of positive bisec-

tional curvature. Assume that f is a holomorphic map from V to itself. Then f has a fixed

point.

Furthermore, as a special case of Theorem 3.4, we have

Theorem 4.2. Let V be a v-dimensional compact Kähler manifold of positive bisectional

curvature and let M be complex submanifolds in V and f is a holomorphic local diffeomor-

phism. Then the homomorphism induced by the inclusion

i∗ : πj(G(f), G(f) ∩M) → πj(V × V,M)

is an isomorphism for j ≤ m− v and is a surjection for j = m− v + 1.
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Proof. Take N in Theorem 3.4 as G(f). From the proof of Theorem 4.1 we know

that V × V has nonnegative normal curvature with respect to ∆ and has positive normal

curvature with respect to G(f) at all points in G(f). So in the Theorem 3.4 we replace v

by 2v, n by v and q by 1, then the homomorphism induced by the inclusion

i∗ : πj(G(f), G(f) ∩M) → πj(V × V,M)

is an isomorphism for j ≤ m−v and is a surjection for j = m−v+1. The proof is complete.

We conclude this paper by the following remark.

Remark 4.2. Theorem 1.2 is a special case of Theorem 4.2 by replacing f by the identity

map because ∆ = G(id).
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